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Abstract 

In this paper, we define hamiltonian chromatic number of fuzzy graph, 
hamiltonian connected and semi-hamiltonian-connected fuzzy graph. 
Further we introduce a hamiltonian fuzzy coloring of a connected 

fuzzy graph G
~

 of order n is an assignment c of color (positive integer) 

to the vertices of G
~

 such that ( ) ( ) ( ) 1, −≥−+ nvcucvuD  for every 

two distinct vertices u and v of ,
~
G  where ( )vuD ,  is the length of the 

longest vu −  path in .
~G  The circumference ( )Gcir

~
 of a fuzzy graph 

G
~

 is the length of a longest cycle in .
~
G  Color sequences of fuzzy 

graphs provide some interesting theorems, corollaries, propositions as 
discussed here. 
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1. Introduction 

Fuzzy graph theory is now finding numerous applications modern 
science and technology especially in the fields of information theory, neural 
network, expert systems and cluster analysis, medical diagnosis, etc. 
Bhattacharya [1] has established some connectivity concepts regarding fuzzy 
cut nodes and fuzzy bridges. Rosenfeld [21] has obtained the fuzzy 
analogues of several basic graph theoretic concepts like bridges, paths, 
cycles, trees, and connectedness and established some of the properties. The 
concepts of decomposition of graphs into hamiltonian cycles, hamiltonian 
paths decomposition of regular graphs was introduced by Markstrom [13]. 
Hamiltonian fuzzy path and hamiltonian fuzzy cycle of graphs was 
introduced by Nirmala and Vijaya [20]. 

For a connected graph G of order n and diameter d and an integer k with 
,1 dk ≤≤  a radio k-coloring of is defined in [3] as an assignment c of colors 

( positive integers) to the vertices of G such that ( ) ( ) ( ) ≥−+ vcucvud ,  

k+1  for every two distinct vertices u and v of G. The value ( )crck  of a 

radio k-coloring c of G is the maximum color assigned to a vertex of G; 
while the radio k-chromatic number ( )Grck  of G is ( ){ }crckmin  over all 

radio k-colorings c of G is a minimum radio k-coloring if ( ) ( ).Grccrc kk =  

These concepts were inspired by the so-called channel assignment problem, 
where channels are assigned to FM radio stations according to the distances 
between the stations (and some other factors as well). 

Since ( )Grc1  is the chromatic number ( ),Gχ  radio k-colorings provide a 

generalization of ordinary colorings of graphs. The radio d-chromatic 
number was studied in [3, 4] and also called the radio number. Radio                
d-colorings are also referred to as radio labelings since no two vertices can 
be covered the same in a radio d-coloring. Thus, in a radio labeling of a 
connected graph of diameter d, the labels (colors) assigned to adjacent 
vertices must differ by at least d, the labels assigned to two vertices whose 
distance is 2 must differ by at least ,1−d  and so on, up to the vertices whose 
distance is d, that is, antipodal vertices, whose labels are only required to be 
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different. A radio ( )1−d -coloring is less restrictive in that colors assigned to 

two vertices whose distance is i, where ,1 di ≤≤  are only required to differ 
by at least .id −  In particular, antipodal vertices can be colored in same. For 
this reason, radio ( )1−d -colorings are also called radio antipodal colorings 

or, more simply, antipodal colorings. Antipodal colorings of graphs were 
studied in [5, 6], where ( )Grcd 1−  was written as ( ).Gac  

Radio k-coloring of paths were studied in [7] for all possible values of k. 
In the case of an antipodal coloring of the path nP  of order 3≥n  (and 

diameter ),1−n  only the end-vertices of nP  are permitted to be colored the 

same since the only pair of antipodal vertices in nP  are its two end-vertices. 

Of course, the two end-vertices of nP  are connected by a hamiltonian path. 

As mentioned earlier, if u and v are any two distinct vertices of nP  and 

( ) ,, ivud =  then ( ) ( ) .1 invcuc −−≥−  Since nP  is a tree, not only is i 

the length of a shortest vu −  path in ,nP  it is, in fact, the length of any 

vu −  path in nP  since every two vertices are connected by a unique path. In 

particular, the length of a longest vu −  path in nP  is i as well. 

Hamiltonian colorings were studied in [8-10] for an arbitrary connected 
graph G. While radio k-colorings of graphs G of order n concern the 
distances ( )vud ,  between pairs u, v of distinct vertices of G and therefore 

paths of smallest length, much of the work concerning paths and cycles deals 
with those of greatest length. For distinct vertices u and v, let ( )vuD ,  denote 

the length of a longest vu −  path. Of course, if G is a tree, then ( ) =vuD ,  

( )vud ,  for every pair u, v of distinct vertices of G. 

In this paper, we focus on the hamiltonian fuzzy coloring of graphs by 
taking fuzzy graph. In Section 2, we review the basic definition of fuzzy 
graphs. In Section 3, we introduce the hamiltonian fuzzy coloring, 
hamiltonian connected and semi-hamiltonian-connected fuzzy graph, 
hamiltonian chromatic number of a fuzzy graph and using some related 
theorems, corollaries, propositions, in Section 4, on the circumference of 
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fuzzy graphs having many vertices with prescribed colors, in Section 5, 
circumference of the definition and related to lemma, some theorems, 
corollaries and finally in Section 6, on the circumference and color sequences 
of fuzzy graph using the theorems, definition of closure, and corollaries. 

2. Preliminary Definitions 

The following basic definitions are taken from [11-20]. A fuzzy graph 
( )μσ= ,G  is a pair of functions [ ]1,0: →σ V  and [ ],1,0: →×μ VV  

where for all ,, Vvu ∈  we have ( ) ( ) ( )., vuvu σ∧σ≤μ  The fuzzy graph 

( )ρτ= ,H  is called a fuzzy subgraph of ( )μσ= ,G  if ( ) ( )uu σ≤τ  for all 

Vu ∈  and ( ) ( )uvuv μ≤ρ  for all .Vuv ∈  A fuzzy graph ( )ρτ= ,H  is said 

to be a spanning fuzzy subgraph of ( )μσ= ,G  if ( ) ( )uu σ≤τ  for all u. In 

this case the two graphs have same fuzzy node set; they differ only is the arc 
weights. A fuzzy graph ( )μσ= ,G  is a complete fuzzy graph if ( ) =μ vu,  

( ) ( )vu σ∧σ  for all ., ∗σ∈vu  The complement of a fuzzy graph ( )μσ= ,G  

is a fuzzy graph ( ),, CCCG μσ=  where σ=σC  and ( ) ( ) ∧σ=μ uvuC ,  

( ) ( )vuv ,μ−σ  for all u, v in V. Two vertices u and v in Ĝ  is called adjacent 

if ( ) ( ){ } ( ).,,min2
1 vuvu μ≤σσ⎟
⎠
⎞⎜

⎝
⎛  The edge uv of Ĝ  is called strong if u and 

v are adjacent, otherwise it is called walk. Two nodes u and v are said to be 
neighbors if ( ) .0, >μ vu  Two edges jivv  and kjvv  are said to be incident        

if { ( ) ( )} ( )jkjji vvvvv σ≤μμ ,min2  for ,...,,2,1 vj =  ,1 i≤  .vk ≤  Let 

( )μσ= ,G  be a fuzzy graph and τ be any fuzzy subset of σ, i.e., ( ) ≤τ u  

( )uσ  for all u. Then the fuzzy subgraph of ( )μσ= ,G  induced by τ is the 

maximal fuzzy subgraph of ( )μσ= ,G  that has fuzzy node set τ. Evidently, 

this is just the fuzzy graph ( ),, ρτ  where ( ) ( ) ( ) ( )vuvuvu ,, μ∧τ∧τ=ρ  for 

all ., Vvu ∈  Let ( )μσ= ,G  be a fuzzy graph. The degree of vertex u is 

( ) ( )∑
≠
μ=

vu
G uvud .  Since ( ) 0>μ uv  for Euv ∈  and ( ) 0=μ uv  for ,Euv ∉  
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i.e., equivalent to ( ) ( )∑
∈

μ=
Euv

G uvud .  Minimum degree of ( ) =δ= GG  

( ){ }.Vvvd ∈|∧  Maximum degree of ( ) ( ){ }.VvvdGG ∈|∨=Δ=  The order 

and size of a fuzzy graph, ( )μσ= ,,VG  are defined ( ) ( )∑
∈
σ=

Vv
vGO  and 

( ) ( )∑
≠
μ=

Euv
vuGS .,  Let G be a graph with vertex set ( )GV  and edge set 

( ).GE  Vertex coloring of G is a mapping ( ) N→GVC :  with N  is a set of 

natural numbers such that ( ) ( )yCxC ≠  if ( ) ( )., GEyx ∈  Given an integer 

k, a coloring of G is a mapping ( ) { }kGVC ...,,2,1: →  such that ( ) ≠xC  

( )yC  if ( ) ( )., GEyx ∈  A family { }kγγγ=Γ ...,,, 21  of fuzzy sets on V is 

called a k-fuzzy coloring of ( )μσ= ,,ˆ VG  if 

(a) ,σ=ΓV  

(b) ,0=γ∧γ ji  

(c) For every strong edge xy of G, ( ) ( ){ } ( ).10,min kiyx ii ≤≤=γγ  

The minimum number k for which there exists a k-fuzzy coloring is called 

the fuzzy chromatic number of G, denoted as ( ).Gfχ  A fuzzy graph is said 

to be connected fuzzy graph if there is at least one path between every pair of 
vertices in fuzzy graph. A path P of length n is a sequence of distinct nodes 

nuuu ...,,, 10  such that ( ) niuu ii ...,,2,1,0,1 =>μ −  is called a fuzzy path 

and the degree of membership of a weakest arc is defined as its strength. If 

nuu =0  and ,3≥n  then P is called a cycle and cycle P is called a fuzzy 

cycle ( f-cycles) if it contains more than one weakest arc. A fuzzy cycle of 
length n is denoted by .nC  Two nodes of a fuzzy graph are said to be fuzzy 

independent if there is no strong arc between them. A subset S of V is said to 
be a fuzzy independent set of G if any two nodes of S are fuzzy independent. 
A fuzzy graph ( )μσ,:G  is fuzzy bipartite if it has a spanning fuzzy 

subgraph ( )πτ,:H  which is bipartite where for all edges ( )vu,  not in 

( ),,: πτH  weight of ( )vu,  in G is strictly less than the strength of pair 
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( )vu,  in H, i.e., ( ) ( ).,, vuvu ∞π<μ  A fuzzy graph ( )μσ,:G  is fuzzy 

bipartite then the node set V can be partitioned into nonempty sets 1V  and 2V  

such that 1V  and 2V  are fuzzy independent sets. These 1V  and 2V  are called 

fuzzy bipartition of V. Thus every strong arc of ( )μσ,:G  has one end in 1V  

and the other end in .2V  The size of a fuzzy bipartite graph is defined to be 

the sum of the weights of all strong arcs of it. A fuzzy bipartite graph 
( )μσ,:G  with fuzzy bipartition ( )21, VV  is said to be complete fuzzy 

bipartite graph if for each node of ,1V  every node of 2V  is a strong neighbor. 

A connected fuzzy graph ( )μσ,:G  is called a fuzzy tree if it has a spanning 

fuzzy subgraph ( )πσ,:F  which is a tree, where for all arcs ( )vu,  not in F, 

i.e., ( ) ( ).,, vuvu ∞μ<μ  Equivalently, there is a path in F between u and v 

whose strength exceeds ( )., vuμ  Fuzzy spanning tree is a fuzzy tree which 

covers all the vertices of a fuzzy graph, note that fuzzy trees has no circuits 
and it is fine to have vertices with degree higher than two. A fuzzy graph 

( )μσ,:G  be a fuzzy path P covers all the vertices of G exactly once then 

the path is called hamiltonian fuzzy path. A fuzzy graph ( )μσ,:G  be a fuzzy 

cycle C covers all the vertices of G exactly once expect the end vertices then 
the cycles is called hamiltonian fuzzy cycle. Fuzzy hamiltonian circuit in a 
connected fuzzy graph is defined as a closed walk that traverses every vertex 
of G exactly once, except the starting vertex at which that walk also 
terminates. 

3. Hamiltonian Fuzzy Coloring 

The distance ( )vud ,  from a vertex u to a vertex v in a connected fuzzy 

graph G~  is minimum of the lengths of the vu −  paths in .~G  A vu −  path of 
length ( )vud ,  is called a vu −  geodesic. The distance ( )vud ,  by following 

four properties in a connected fuzzy graph G~ : 

(1) ( ) 0, ≥vud  for every two vertices u and v of ;~G  
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(2) ( ) 0, =vud  if and only if ;vu =  

(3) ( ) ( )uvdvud ,, =  for all ( )GVvu ~, ∈  (the symmetric property); 

(4) ( ) ( ) ( )wvdvudwud ,,, +≤  for all ( )GVwvu ~,, ∈  (the triangle 

inequality). 

Since d satisfies the four properties, d is a metric on ( )GV ~  and ( ( ) )dGV ,~  is 

a metric space. Since d is symmetric, we can speak of the distance between 
two vertices u and v rather than the distance from u to v. The eccentricity of a 

vertex v in a connected fuzzy graph G~  is the distance between vertex v is 

( ) ( ){ }.:,max Vwwvdvecc ∈=  The radius of G~  is ( ) { ( ) :min~ veccGrad =  

}Vv ∈  and the diameter G~  is ( ) ( ){ }.:max~ VvveccGdiam ∈=  

A vertex v with ( ) ( )Gradvecc ~
=  is called a central vertex of .~G  A vertex 

v with ( ) ( )Gdiamvecc ~
=  is called a peripheral vertex of .~G  Two vertices u 

to v of G~  with ( ) ( )Gdiamvud ~, =  are antipodal vertices of .~G  Necessarily, 

if u and v are antipodal vertices in ,~G  then each of u and v is a peripheral 

vertex. The girth of a fuzzy graph G~  with cycle is the length of a smallest 

cycle in a connected fuzzy graph .~G  The detour distance ( )vuD ,  from a 

vertex u to v in G~  is the length of a longest vu −  path in .~G  Thus 
( ) 0, =uuD  and if ,vu ≠  then ( ) .1,1 −≤≤ nvuD  A vu −  path of the 

length ( )vuD ,  is called a vu −  detour. If ( ) ,1, −= nvuD  then G~  contains 

a spanning vu −  path. The fuzzy graph tK ,1  is called star. The fuzzy graph 

tsK ,  has order ts +  and size st. A tree containing exactly two vertices that 

are not leaves (which are necessarily adjacent) is called a double star. Thus a 
double star is a tree of diameter 3. 

If fuzzy graph G~  has a spanning cycle z, then G~  is called hamiltonian 

fuzzy graph. A fuzzy graph G~  is a hamiltonian connected, if for every pair u, 

v of vertices of ,~G  there is a hamiltonian vu −  path in .~G  Necessarily, every 
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hamiltonian connected fuzzy graph of order 3 or more is hamiltonian but the 

converse is not true. The cubic fuzzy graph 231
~ kCG ×=  is hamiltonian 

connected fuzzy graph, while the cubic fuzzy graph QkCG ~~
242 =×=  is not 

hamiltonian connected fuzzy graph. The graph 2
~G  contains no hamiltonian 

vu −  path. A connected fuzzy graph G~  of order 3≥n  is called semi-
hamiltonian connected fuzzy graph if 

( ) ( )
( )⎩

⎨
⎧

∉−
∈−

=
.~if1
,~if2,

GEuvn
GEuvnvuD  

Moreover, semi-hamiltonian-connected fuzzy graphs, a vertex coloring c 
is a hamiltonian fuzzy coloring if and only if c is a proper coloring. If fuzzy 

graph G~  has a spanning cycle z, then G~  is called hamiltonian fuzzy graph. A 

hamiltonian fuzzy coloring of a connected fuzzy graph G~  of order n is a 
vertex coloring c such that ( ) ( ) ( ) 1, −≥−+ nvcucvuD  for every two 

distinct vertices u and v of .~G  The hamiltonian chromatic number of a fuzzy 

graph G~  is denoted by ( ).~Ghc  The smallest value among all hamiltonian 

fuzzy colorings of .~G  

A hamiltonian fuzzy coloring c of a connected fuzzy graph G~  of order n 

is a function ( ) NGVc →
~:  for which 

 ( ) ( ) ( ) .1, −≥+− nvuDvcuc  (1) 

For every pair u, v of distinct vertices of .~G  If c is hamiltonian fuzzy 

coloring of a connected fuzzy graph G~  and u and v are two distinct vertices 

of G~  with ( ) ( ),vcuc =  then G~  contains a hamiltonian vu −  path. For a 

hamiltonian fuzzy coloring c, ( )chc  denotes the largest color assigned to any 

vertex of ;~G  while the hamiltonian chromatic number ( )Ghc ~  is the minimum 

value of ( )chc  over all hamiltonian fuzzy colorings c of .~G  Hence ( ) 1~
=Ghc  

if and only if G~  is hamiltonian-connected. Thus the hamiltonian chromatic 
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number of a connected fuzzy graph G~  can be thought of as a measure of how 

close G~  is to be hamiltonian-connected, namely, the closer ( )Ghc ~  is to 1, 

the closer G~  is to be hamiltonian-connected. If ( ) ( ),~Ghcchc =  then c is a 

minimum hamiltonian fuzzy coloring. 

 
 (a) (b) 

Figure 3.1 

Figure 3.1(a) shows a fuzzy graph H~  of order 5. A vertex coloring c of 

H~  is shown in Figure 3.1(b). Since ( ) ( ) ( ) 4, ≥−+ vcucvuD  for every two 

distinct vertices u and v of ,~H  it follows that c is a hamiltonian fuzzy 

coloring and so ( ) .4~
=Hhc  Hence ( ) .4~

≤Hhc  Because no two of the vertices 

t, w, x and y are connected by a hamiltonian fuzzy path, these vertices must 

be assigned distinct colors and so ( ) .4~
≥Hhc  Thus ( ) .4~

=Hhc  

Theorem 3.1. For every integer ,3≥n  ( ) ( ) .121, 2
1 +−=− nnKhc  

Proof. Since ( ) ,22,1 =Khc  we may assume that .4≥n  

Let ,~
1,1 −= nKG  where ( ) { }nvvvGV ...,,,~

21=  and nv  is the central 

vertex. Define the coloring c of G~  by ( ) 1=nvc  and 

( ) ( ) ( ) ( )311 −−+−= ninvc i   for .11 −≤≤ ni  
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Then c is a hamiltonian fuzzy coloring of G~  and 

( ) ( ) ( ) ( ) ( ) ( ) ( ) .12321~ 2
1 +−=−−+−==≤ − nnnnvcchcGhc n  

It remains to show that ( ) ( ) .12~ 2 +−≥ nGhc  

Let c be a hamiltonian fuzzy coloring of G~  such that ( ) ( ).~Ghcchc =  

Because G~  contains no hamiltonian fuzzy path, c assigns distinct colors to 

the vertices of .~G  We may assume that 

( ) ( ) ( ).121 −<<< nvcvvc "  

We now consider three cases, depending on the assigned to the central vertex 
.nv  

Case 1. ( ) .1=nvc  Since 

( ) 1,1 =nvvD  and ( ) 2, 1 =+ii vvD   for .21 −≤≤ ni  

It follows that 

( ) ( ) ( ) ( ) ( ) 123221 2
1 +−=−−+−+≥− nnnnvc n  

and so ( ) ( ) ( ) ( ) .12~ 2
1 +−≥== − nvcchcGhc n  

Case 2. ( ) ( ).chcvhc n =  Thus, in this case, 

( ) ( ) ( ) ( ).1 121 nn vcvcvvc <<<<= −"  

Hence 

( ) ( ) ( ) ( ) ( ) 122321 2 +−=−+−−+≥ nnnnvc n  

and so 

( ) ( ) ( ) ( ) .12~ 2 +−≥== nvcchcGhc n  

Case 3. ( ) ( ) ( )1+<< jnj vcvcvc  for some integer j with .2−≤≤ nji  

Thus ( ) 11 =vc  and ( ) ( ).1 chcvc n =−  In this case, 
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( ) ( ) ( ),311 −−+≥ njvc j  

( ) ( ) ( ),2−+≥ nvcvc jn  

( ) ( ) ( ),21 −+≥+ nvcvc nj  and 

( ) ( ) ( ) ( )[ ]( ).31111 −+−−+≥ +− njnvcvc jn  

Therefore, 

( ) ( ) ( ) ( ) ( ) ( )32223111 −−−+−+−−+≥− njnnnjvc n  

( ) ( )2332 −+−= nn  

( ) 22 2 +−= n  

( ) 12 2 +−> n  

and so ( ) ( ) ( ) ( ) .12~ 2
1 +−>ν== − ncchcGhc n  

Hence in any case, ( ) ( ) 12~ 2 +−≥ nGhc  and so ( ) ( ) .12~ 2 +−= nGhc  

 ~ 

Theorem 3.2. For every integer ,3≥n  ( ) .2~
−= nChc n  

Proof. Since we noted that ( ) 2~
−= nChc n  for ,5,4,3=n  we may 

assume that .6≥n  

Let ( ).,...,,,~
121 vvvvC nn =  Because the vertex coloring c of nC~  defined 

by ( ) ( ) ,121 == vcvc  ( ) ( ) ,21 −==− nvcvc nn  and ( ) 1−= ivc i  for ≤≤ i3  

2−n  is a hamiltonian fuzzy coloring, it follows that ( ) .2~
−≤ nChc n  

Assume to the contrary that ( ) 2~
−< nChc n  for some integer .6≥n  

Then there exists a hamiltonian ( )3−n -coloring c of .~
nC  We consider two 

cases, according to whether n is odd or n is even. 

Case 1. n is odd. 
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Then 12 += kn  for some integer .3≥k  Hence there exists a hamiltonian 

( )22 −k -coloring c of .~
nC  

Let { }1...,,2,1 −= kA  and { }.22...,,1, −+= kkkB  

For every vertex u of ,~
nC  there are two vertices v of nC~  such that 

( )vuD ,  is minimum (and ( )vud ,  is maximum), namely ( ) ( )vudvuD ,, =  

.11 +=+ k  

For ,ivu =  these two vertices v are kiv +  and 1++kiv  (where the addition 

in ki +  and 1++ ki  is performed modulo n). 

Since c is a hamiltonian fuzzy coloring, ( ) ( ) ( ) =−≥−+ 1, nvcucvuD  

2k. Because ( ) ,1, += kvuD  it follows that ( ) ( ) .1−≥− kvcuc  Therefore, 

if ( ) ,Auc ∈  then the colors of these two vertices v with this property must 

belong to B. 

In particular, if ( ) ,Avc i ∈  then ( ) .Bvc ki ∈+  Suppose that there are a 

vertices of nC~  whose colors belong to A and b vertices of nC~  whose colors 

belong to B. Then .ab ≥  However, if ( ) ,Bvc i ∈  then ( ) ,Avc ki ∈+  implying 

that ba ≥  and so .ba =  Since nba =+  and n is odd, this is impossible. 

Case 2. n is even. 

Then kn 2=  for some integer .3≥k  Hence there exists a hamiltonian 

( )32 −k -coloring c of .~
nC  

For every vertex u of ,~
nC  there is a unique vertex v of nC~  for which 

( )vuD ,  is minimum (and ( )vud ,  is maximum), namely ( ) ( )vudvuD ,, =  

.k=  For ,ivu =  this vertex v is kiv +  (where the addition in ki +  is 

performed modulo n). 

Since c is a hamiltonian fuzzy coloring, ( ) ( ) ( ) 1, −≥−+ nvcucvuD  

.12 −= k  Because ( ) ,, kvuD =  it follows that ( ) ( ) .1−≥− kvcuc  This 

implies, however, that if ( ) ,1−= kuc  then there is no color that can be 
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assigned to v to satisfy this requirement. Hence no vertex of nC~  can be 

assigned the color 1−k  by c. 

Let { }2...,,2,1 −= kA  and { }.32...,,1, −+= kkkB  

Thus .2−== kBA  If ( ) ,Avc i ∈  then ( ) .Bvc ki ∈+  Also, if ( )ivc  

,B∈  then ( ) .Avc ki ∈+  Hence there are k vertices of nC~  assigned color from 

A and k vertices of nC~  assigned color from B. 

Consider two adjacent vertices of ,~
nC  one of which is assigned a color 

from A and other is assigned a color from B. We may assume that ( ) Avc ∈1  

and ( ) .2 Bvc ∈  Then ( ) .1 Bvc k ∈+  Since ( ) ,1, 12 +=+ kvvD k  it follows that 

( ) ( ) .212 −≥− + kvcvc k  Because ( ) ( ) ,, 12 Bvcvc k ∈+  this implies that one 

of ( )2vc  and ( )1+kvc  is at least .22 −k  This is a contradiction. ~ 

Proposition 3.3. If H~  is a spanning connected subgraph of a fuzzy 

graph ,~G  then ( ) ( ).~~ HhcGhc ≤  

Proof. Suppose that the order of H~  is n. Let c be a hamiltonian fuzzy 

coloring of H~  such that ( ) ( ).~Hhcchc ≤  Then ( ) ( ) ( ) ≥−+ vcucvuDH ,~  

1−n  for every two distinct vertices u and v of .~H  

Since ( ) ( )vuDvuD HG ,, ~~ ≥  for every two distinct vertices u and v of H~  

(and of ),~G  it follows that ( ) ( ) ( ) 1,~ −≥−+ nvcucvuDG  and so c is a 

hamiltonian fuzzy coloring of G~  as well. 

Hence ( ) ( ) ( ).~~ HhcchcGhc =≤  ~ 

Combining Theorem 3.2 and Proposition 3.3, we have the following 
corollary. 

Corollary 3.4. If G~  is a hamiltonian fuzzy graph of order ,3≥n  then 

( ) .2~
−≤ nGhc  
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The following result gives the hamiltonian chromatic number of a related 
class of fuzzy graphs. 

Proposition 3.5. Let H~  be a hamiltonian fuzzy graph of order 1−n  

.3≥  If G~  is a fuzzy graph obtained by adding a pendant edge to ,~H  then 

( ) .1~
−= nGhc  

Proof. Suppose that ( )1121 ,...,,,~ vvvvC nn −=  is a hamiltonian fuzzy 

cycle of H~  and nvv1  is the pendent edge of .~G  Let c be a hamiltonian fuzzy 

coloring of .~G  Since ( ) 2,~ −≤ nvuDG  for every two distinct vertices u         

and v of ,~C  no two vertices of C~  can be assigned the same color by c. 

Consequently, ( ) 1−≥ nchc  and so ( ) .1~
−≥ nGhc  

Now define a coloring c′  of G~  by 

( )
⎩
⎨
⎧

=−
−≤≤

=′
.if1

,11if
nin

nii
vc i  

We claim that c′  is a hamiltonian fuzzy coloring of .~G  First let jv  and kv  be 

two vertices of ,~C  where .11 −≤<≤ nkj  Then ( ) ( ) jkvcvc kj −=′−′  

and 

( ) ( ) ( ){ }.1,max, jknjkvvD kj −−−−=  

In either case, ( ) kjnvvD kj −+−≥ 1,  and so 

( ) ( ) ( ) .1, −≥′−′+ nvcvcvvD kjkj  

For ( ) ( ) ,1,11 jnvcvcnj nj −−=′−′−≤≤  while 

( ) { }1,max, +−≥ jnjvvD nj  

and so ( ) ., jvvD nj ≥  Therefore, 

( ) ( ) ( ) .1, −≥′−′+ nvcvcvvD njnj  
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Hence, as claimed, c′  is a hamiltonian fuzzy coloring of G~  and so ( )Ghc ~  

( ) ( ) .1−=′=′≤ nvcch n  ~ 

Theorem 3.6. For every connected fuzzy graph G~  of order ,2≥n  

( ) ( ) .12~ 2 +−≤ nGhc  

Proof. First, if G~  contains a vertex of degree ,1−n  then G~  contains the 

star 1,1 −nK  as a spanning fuzzy subgraph. Since ( ) ( ) ,12 2
1,1 +−=− nKhc n  

it follows by Proposition 3.3 that ( ) ( ) .12~ 2 +−≤ nGhc  

Hence we may assume that G~  contains a spanning fuzzy tree T~  that is 

not a star and so its complement CT~  contains a hamiltonian fuzzy path =P~  

{ }....,,, 21 nvvv  Thus ( )TEvv ii
~

1 ∉+  for 11 −≤≤ ni  and so ( )1~ +iiT vvD  

.2≥  Define a vertex coloring c of T~  by 

( ) ( ) ( ) ( )322 −−+−= ninvc i   for .1 ni ≤≤  

Hence 

( ) ( ) ( ) ( ) ( ) ( ) .2322 2−=−−+−== nnnnvcchc n  

Therefore, for integers i and j with ,1 nji ≤<≤  

( ) ( ) ( ) ( ).3−−=− nijvcvc ji  

If ,1+= ij  then 

( ) ( ) ( ) ( ) .132, −=−+≥−+ nnvcvcvvD jiji  

While if ,2+≥ ij  then 

( ) ( ) ( ) ( ) .152321, −≥−=−+≥−+ nnnvcvcvvD jiji  

Thus c is a hamiltonian fuzzy coloring of .~T  Therefore, 

( ) ( ) ( ) ( ) ( ) ( ) ,122~~ 22 +−<−==≤≤ nnvcchcThcGhc n  

which completes the proof. ~ 
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Theorem 3.6 shows how large the hamiltonian chromatic number of a 

fuzzy graph G~  of order n can be. If G~  is hamiltonian however, then by 
Corollary 3.4 its hamiltonian chromatic number cannot exceed .2−n  

Moreover, if the hamiltonian chromatic number is small relative to n, then G~  
must contain cycles of relatively large length. 

The concept of hamiltonian colorings of graph was introduced in [9], 
hamiltonian chromatic numbers of several well known graphs were 
established, including complete bipartite graphs, cycles, and Petersen graph. 

To be sure, if G~  is a non-hamiltonian fuzzy graph of order ,3≥n  then G~  
is not hamiltonian-connected. Since for every pair u, v of adjacent vertices, 

G~  does not contain a hamiltonian vu −  path. On the other hand, if u and v 

are nonadjacent vertices of ,~G  then G~  may contain a hamiltonian vu −  

path. For such a fuzzy graph then, ( ) 2, −≤ nvuD  if u and v are adjacent 

and ( ) 1, −≤ nvuD  if u and v are not adjacent. We define a connected fuzzy 

graph G~  of order 3≥n  to be semi-hamiltonian-connected if 

( ) ( )
( )⎩

⎨
⎧

∉−
∈−

=
.~if1
,~if2,

GEuvn
GEuvnvuD  

Now, let c be a hamiltonian fuzzy coloring of a semi-hamiltonian-

connected fuzzy graph G~  order .3≥n  Then ( ) ( ) ( ) 1, −≥+− nvuDvcuc  

for every pair u, v of distinct vertices of .~G  Hence if u and v are adjacent, 
then ( ) ( ) ;1≥− vcuc  while if u and v are not adjacent vertices, then 

( ) ( ) .0≥− vcuc  That is, two vertices must be assigned distinct colors if the 

vertices are adjacent and may be assigned the same color if they are not 
adjacent. In other words, every hamiltonian fuzzy coloring of a semi-

hamiltonian-connected fuzzy graph G~  of order 3≥n  is an ordinary 

coloring of G~  and so ( ) ( ).~~ GGhc fχ=  Thus we have the following. 

Proposition 3.7. If G~  is a semi-hamiltonian-connected fuzzy graph of 

order ,3≥n  then ( ) ( ).~~ GGhc fχ=  
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The fuzzy graph 3P  and the Petersen graph are semi-hamiltonian-

connected and so their hamiltonian chromatic number equals their chromatic 
number, which is 2 and 3, respectively. Whether there are other semi-

hamiltonian-connected fuzzy graphs is not known. If G~  is a connected non-

hamiltonian fuzzy graph of order 3≥n  such that G~  has a hamiltonian vu −  

path for every pair u, v of nonadjacent vertices, then G~  need not be semi-
hamiltonian-connected. 

For example, for ,11 −−≤≤ mnm  the fuzzy graph += 1
~ KG  

( )1−−mnm KK ∪  has this property but is not semi-hamiltonian-connected. 

On the other hand, the fuzzy graph ,~
, rrKG =  2≥r  with ,2rn =  has the 

property that if 

( )
( )

( )⎪⎩

⎪
⎨
⎧

∉−

∈−
=

.~if2

,~if1
,

GEuvn

GEuvn
vuD  

Thus, two vertices of rrKG ,
~
=  must be assigned distinct colors in any 

hamiltonian fuzzy coloring if they are not adjacent and may be assigned the 

same color if they are adjacent, that is, ( ) ( ) .~~ rGGhc f =χ=  The fuzzy graph, 

and ,2,, ≥rK rr  have the property that the number, ( )vuD ,  have two distinct 

values, one if u and v are adjacent and another if u and v are not adjacent. For 

each of these fuzzy graphs G~  of order n, one of the values of ( )vuD ,  is 

1−n  and the other is .2−n  

4. On the Circumference of Fuzzy Graphs Having Many Vertices 
with Prescribed Colors 

Let c be a hamiltonian fuzzy coloring of a connected fuzzy graph .~G  For 

integers i and j with ( ),1 chcji ≤≤≤  we define ( ) { ( ) :~,; GVujicV ∈=  

( ) }.juci ≤≤  

Let U be a set of vertices of .~G  If ,2≥U  then we define ( )Ucdis ;  
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( ) ( ){ },min vcuc −=  where the minimum is taken over all distinct pairs u, v 

of vertices in U. If ,1≤U  we define ( ) ( ).; chcUcdis =  If ( ),,; jicVU =  

then we write ( ) ( ).,;; jicdisUcdis =  

More simply, we write 

( ) ( )jicVjiV ,;, =  

( ) ( )UcdisUdis ;=  and 

( ) ( )jicdisjidis ,;, =  

if the hamiltonian fuzzy coloring c under discussion is clear. 

5. Circumference 

The length of a longest cycle in a connected fuzzy graph is called the 

circumference of G~  and is denoted by ( ).~Gcir  

If G~  is a fuzzy tree, then we write ( ) .0~
=Gcir  For a hamiltonian fuzzy 

coloring of a connected fuzzy graph G~  of order n, we now show that if the 
sets ( )jiV ,  are sufficiently large (as a function of n and )),,( jidis  then 

( )Gcir ~  is large as well. First, we present a lemma. 

Lemma 5.1. Let G~  be a connected fuzzy graph of order ,3≥n  let c be 

a hamiltonian fuzzy coloring of ,~G  and let k be an integer with ≤≤ k0  

.3−n  Assume that ( ) .~ knGcir −<  Then ( )kiiV +,  is an independent set 

in G~  for every i with ( ) .1 kchci −≤≤  

Proof. Let i be an integer with ( ) .1 kchci −≤≤  

Since ( ) ,~ knGcir −<  it follows that ( ) 2, −−≤ knvuD  for every pair 

u, v of adjacent vertices of .~G  Since c is a hamiltonian fuzzy coloring of .~G  

It follows that ( ) ( ) 1+≥− kvcuc  for every pair u, v of adjacent 

vertices of .~G  
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Moreover, ( ) ( ) kvcuc ≤′−′  for each pair ,u′  v′  of vertices in 

( )., kiiV +  

Therefore, ( )kiiV +,  is an independent set in .~G  ~ 

Theorem 5.2. Let G~  be a connected fuzzy graph of order ,3≥n  let c be 

a hamiltonian fuzzy coloring of ,~G  and let i, j be a pair of integers with 

( )chcji ≤≤≤1  and .3−≤− nij  

If ( ) ( ) ,2
2,, ++

≥
jidisnjiV  then ( ) ( ).~ ijnGcir −−≥  

Proof. Assume that ( ) ( ) .1~
−−−≤ ijnGcir  

If ( ) ,1, ≤jiV  then ( ) ( )( ) ,2
2,, ++

<
jidisnjiV  a contradiction. 

Hence we may assume that ( ) .2, ≥jiV  

Since ( ) ( ),~ ijnGcir −−<  by Lemma 5.1, the set ( )jiV ,  is an 

independent set in .~G  

Now, let ( ) ( ).,~ jiVGVW −=  

Since ( ) ,2, ≥jiV  there exist distinct vertices x and y in ( )jiV ,  with 

( ) ( ) ( )jidisycxc ,=−  and so ( ) ( ).,1, jidisnyxD −−≥  

Hence there exists an yx −  path P~  containing at least ( )jidisn ,−  

vertices of .~G  

On the other hand, since ( )jiV ,  is independent in ,~G  the vertices x and 

y are in ( ),, jiV  and P~  contains at most W  vertices that are not in ( ),, jiV  

it follows that P~  contains at most 1+W  vertices of ( )., jiV  

Consequently, P~  contains at most 12 +W  vertices. Thus ( )jidisn ,−  

,12 +≤ W  which implies that 
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 ( ) ( )( ) ,2
2,, ++

<
jidisnjiV  a contradiction. ~ 

Corollary 5.3. Let G~  be a connected fuzzy graph of order .3≥n  If 

there exists a hamiltonian fuzzy coloring of G~  such that at least ( ) 22+n  

vertices of G~  are colored the same, then G~  is hamiltonian. 

Proof. Let c be a hamiltonian fuzzy coloring of G~  such that at least 

( ) 22+n  vertices of G~  are colored the same, say i. Then 

( ) ( ) .2
2,

2
2, ++
=+≥

iidisnniiV  

It then follows from Theorem 5.2 that ( ) nGcir ≥
~  and so G~  is hamiltonian. 

 ~ 

To see that Corollary 5.3 cannot be improved, consider the fuzzy graph 

,~
1, += rrkG  where ,2≥r  with partite sets 1V  and 2V  such that rV =1  

and .12 += rV  Then G~  has order 12 += rn  and 

( ) ( )
⎪
⎩

⎪
⎨

⎧

∈

∈−

∈−

=

.,if2
,~if12

,,if22
,

2

1

Vvur
GEuvr

Vvur
vuD  

Observe that a coloring c is a hamiltonian fuzzy coloring of G~  if and only if 

( ) ( ) ( )
⎪
⎩

⎪
⎨

⎧

∈

∈

∈

≥−

.,if0
,~if1

,,if2

2

1

Vvu
GEuv

Vvu
vcuc  

Let { }....,,, 211 rvvvV =  Define a hamiltonian fuzzy coloring c of G~  by 

( ) 1=uc  for all 2Vu ∈  and ( ) ivc i 2=  for .1 ri ≤≤  

The exactly ( ) 211 +=+ nr  vertices of G~  are colored the same, but G~  

is not hamiltonian. 
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Corollary 5.4. Let G~  be a connected fuzzy graph of order .4≥n  If there 

exist a hamiltonian fuzzy coloring c of G~  and an integer i with ( )chci ≤≤1  

such that at least ( ) 22+n  vertices of G~  are colored i or ,1+i  then ( )Gcir ~  

.1−≥ n  

Proof. If there exist a hamiltonian fuzzy coloring c of G~  and an integer i 

with ( )chci ≤≤1  such that at least ( ) 22+n  vertices of G~  are colored i or 

,1+i  then ( ) ( ){ }22,3max1, +≥+ niiV  and therefore, ( ) .01, =+iidis  

It then follows from Theorem 5.2 that ( ) .1~
−≥ nGcir  ~ 

We now present another lower bound for the circumference of a 
connected fuzzy graph. 

Theorem 5.5. Let G~  be a connected fuzzy graph of order 3≥n  and let 
k be an integer such that .30 −≤≤ nk  If there exists a hamiltonian fuzzy 

coloring c of G~  such that 

(a) The set ( )1,1 +kV  and ( ) ( )( )chckchcV ,−  from a partition of ( ),~GV  

and 

(b) There exists ( ) ( ) ( )( ){ }chckchcVkVU ,,1,1 −+∈  such that 2≥U  

and 

 ( ) ,2
UdisnU −≤  (2) 

then ( ) .~ knGcir −≥  

Proof. Let ( ) .~ UGVW −=  We wish to prove that ( ) .~ knGcir −≥  

Assume to the contrary that ( ) .~ knGcir −<  By Lemma 5.1, the sets U 

and W are independent in .~G  Since U and W are disjoint and ( ) ,~ WVGV ∪=  

it follows that G~  is a bipartite fuzzy graph with partite sets U and W. 

Since ,2≥U  there exist two distinct vertices Uvu ∈,  such that 

( ) ( ) ( )Udisvcuc =−  and so ( ) ( ).1, UdisnvuD −−≥  
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Thus G~  contains a vu −  path P~  of length at least ( )Udisn −− 1  and 

so at most ( )Udis  vertices of G~  do not belong to .~P  

Since G~  is bipartite with partite sets U and W and ,, Uvu ∈  there exists 

an integer j with Uj ≤≤2  such that P~  contains exactly j vertices of U 

and exactly 1−j  vertices of W. Thus ( ).1212 UdisnjU −≥−≥−  

This means that ( )( ) ,21 UdisnU −+≥  which contradicts (2). 

Therefore, ( ) .~ knGcir −≥  ~ 

6. On the Circumference and Color Sequences of Fuzzy Graph 

For a hamiltonian fuzzy coloring c of a connected fuzzy graph ,~G  let C 

be the set of all colors assigned to the vertices of ,~G  that is =C  

{ ( ) ( )}.~: Gvvc ∈  If { },...,,, 21 pccc=C  where ( ),21 chcccc p =<<< "  

then ( ) ( )pccccSeq ...,,, 21=  is called the color sequence of c. Similarly, as 

in [8], a set { }vuS ,=  of two distinct vertices of G~  is called c-pair if 

( ) ( ).vcuc =  We define ( ) ( ) ( ).vcucSc ==  A set { }vuS ,=  of two distinct 

vertices of G~  is called c-semipair if ( ) ( ) .1≤− vcuc  For integers a and b 

with ,ba ≤  the integer interval [ ]ba"  is defined as { }.: bxaZx ≤≤∈  

Theorem 6.1. For a connected fuzzy graph G~  of order 4≥n  and an 

integer k with ,30 −≤≤ nk  let c be a hamiltonian fuzzy coloring of G~  

with ( ) ( ),...,,, 21 pccccSeq =  where ,2≥p  such that 

 [ ] [ ].11 pp ckckcc "∪" −+⊆C  (3) 

If at least one of the tree conditions 

(a) ;0=k  

(b) kckcp +≤− 1  and [ ]kckcp +− 1"∩C  is nonempty; 
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(c) there exist c-semipairs S and ,S′  at least one of which is a c-pair, 

such that the colors of the vertices of S are at most kc +1  and the colors of 

the vertices of S′  are at least ,kcp −  is satisfied, then ( ) .~ knGcir −≥  

Proof. We may assume, without loss of generality, that .11 =c  Since 

,2≥p  it follows that .1>pc  Define ( ),1,11 += kVV  ( ),,2 pp ckcVV −=  

( ),1,11 VW =  ( )., ppp ccW =  

Thus 1W  and 2W  are nonempty, as are 1V  and .2V  Moreover, if (a) holds, 

then 11 WV =  and .22 WV =  More generally, ii VW ⊆  for 2,1=i  and 21 VV ∪  

( )GV ~
=  by (3). 

We wish to prove that ( ) .~ knGcir −≥  

Assume to the contrary that ( ) .~ knGcir −<  By Lemma 5.1, 1V  and 2V  

are independent sets in .~G  Since ( ),~
21 GVVV =∪  it follows that 21 VV ∩  is 

a set of isolated vertices of .~G  However, since G~  is a nontrivial connected 

fuzzy graph G~  has no isolated vertices and so .21 ∅=VV ∩  

Thus condition (b) does not hold, implying that at least one of conditions 

(a) and (c) holds. Since ( )GV ~  is partitioned into the independent sets 1V  and 

,2V  it follows that G~  is a bipartite fuzzy graph with partite sets 1V  and .2V  

Because ,4≥n  it follows that if (a) holds, then 21 ≥W  or 22 ≥W  

and so either 1V  or 2V  contains a c-pair. 

On the other hand, if (c) holds, then 1V  or 2V  contains a c-pair. 

In either case, at least once of 1V  and 2V  contains a c-pair. Let { }ji,  

{ }2,1=  such that jV  contains a c-pair, say { }., yx  

Since c is a hamiltonian fuzzy coloring, ( ) 1, −= nyxD  and so there 

exists a hamiltonian yx −  path in .~G  Since jVyx ∈,  and G~  is a bipartite 
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fuzzy graph with partite sets iV  and ,jV  we have ,1+= ij VV  which 

implies that ( ) 3, −≤′′ nyxD  for every pair yx ′′,  of distinct vertices in .iV  

Thus iV  contains no c-pair. Since ,4≥n  it follows that .2≥iV  

Therefore, ii WV ≠  and (a) does not hold. Hence (c) holds. 

Consequently, iV  contains a c-semipair, say { }., ∗∗ yx  Since 

( ) ( ) ,1≤− ∗∗ ycxc  we have ( ) ,2, −≥∗∗ nyxD  which is a contradiction. 
 ~ 

Let G~  be a connected fuzzy graph of order ,4≥n  let k be an integer with 

,30 −≤≤ nk  and let c be a hamiltonian fuzzy coloring of .~G  Now, suppose 

that the sets ( )1,11 += kVV  and ( ) ( )( )chckchcVV ,2 −=  from a partition 

of ( ),~GV  where, say .21 VV ≥  Thus .21 nV ≥  Suppose that we wish 

to apply Theorem 6.1 to such a fuzzy graph .~G  If the set 1V  contains a c-pair, 

so that ( ) ,01,1 =+kdis  and ( ) ,221 +≥ nV  then ( ) knGcir −≥
~  by 

Theorem 5.2. If, on the other hand, 1V  does not contain a c-pair but contains 

a c-semipair, so that 1≥k  and ( ) 11,1 =+kdis  and ( ) ,231 +≥ nV  then 

( ) knGcir −≥
~  by Theorem 5.2. Hence to apply Theorem 6.1 to a fuzzy 

graph G~  satisfying the conditions described above, we need only deal with 
the situation where ( ) .222 1 +≤≤ nVn  

We have already noted that if some hamiltonian fuzzy coloring assigns 

the same color, namely 1, to every vertex in a connected fuzzy graph G~  of 

order ,3≥n  then G~  is a hamiltonian-connected. By Theorem 6.1(a), if there 
exists a hamiltonian fuzzy coloring that assigns one of two colors to every 

vertex of ,~G  then G~  is hamiltonian. 

Corollary 6.2. Let G~  be a connected fuzzy graph of order .4≥n  If 

there exists a hamiltonian fuzzy coloring c of G~  such that ( ) 1=cSeq  or 

( ) ( )rcSeq ,1=  for some ,2≥r  then G~  is a hamiltonian. 
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The following theorem and corollary are due to Bondy and Chvatal [2]. 

Closure 6.3. The fuzzy graph obtained from G~  by recursively joining 
pairs of nonadjacent vertices whose degree sum is at least n (in the resulting 
fuzzy graph at each stage) until no such pair remains. 

Theorem 6.4. A fuzzy graph is hamiltonian if and only if its closure is 
hamiltonian. 

Corollary 6.5. If the closure of a fuzzy graph G~  of order at least 3 is 

complete, then G~  is a hamiltonian. 

Thus Corollary 6.5 gives a sufficient condition for a fuzzy graph to be 

hamiltonian. Let 0
~G  be a hamiltonian-connected fuzzy graph of a even order 

.62 ≥= kn  Then 0
~G  contains a hamiltonian fuzzy cycle ...,,,,, 2211 vuvu  

.,, 1uvu kk  We construct a new fuzzy graph G~  from 0
~G  and k pairwise a 

vertex-disjoint complete fuzzy graphs of order ,3≥l  which we denote by 

kFFF ...,,, 21  by indentifying an edge of iF  with the edge iivu  for each 

( ).1 kii ≤≤  The fuzzy graph G~  has order kl but it is not hamiltonian-

connected, as there is no hamiltonian ii vu −  path for any ( ).1 kii ≤≤  On 

the other hand, there is a hamiltonian fuzzy coloring of G~  with two colors, 

namely, assign ( )kiui ≤≤1  the color 1−l  and assign all other vertices of G~  

the color 1. By the remark above, G~  is a hamiltonian. We now consider the 

Bondy and Chvatal closure of this fuzzy graph .~G  Let ( ) { }iii vuFVx ,−∈  

( )ki ≤≤1  and ( )iFVy ∉  be nonadjacent vertices in .~G  Then 1~ −= lxdigG  

and ( ) ( ) .1112~ −−+−≤ lkydigG  So 

( ) ( ) ( ) kllkkllkydigxdig GG <−−−=−+≤+ 22422~~  

which implies that no vertex in ( ) { }iii vuFV ,−  can be adjacent to a vertex 

in ( )iFV  in the formation of the closure of .~G  Thus the closure of G~  is not 
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complete and, even though Corollary 6.2 shows that G~  is hamiltonian, 
Corollary 6.5 does not. 

The closure of the complete bipartite fuzzy graph ,, rrK  2>r  is 

complete, however, therefore, by Corollary 6.5, ,, rrK  is hamiltonian. On the 

other hand, there is no hamiltonian fuzzy coloring of rrK ,  that assigns one 

of two colors to each of its vertices. Hence rrK ,  cannot to show to be 

hamiltonian with the aid of Corollary 6.2. Therefore, Corollaries 6.2 and 6.5 
are independent. 

The next result gives a sufficient condition for a connected fuzzy graph 
of order 5≥n  to contain a cycle of length 1−n  or n. 

Corollary 6.6. Let G~  be a connected fuzzy graph of order .5≥n  If there 

exists a hamiltonian fuzzy coloring c of G~  with ( ) 4≥chc  satisfying one of 

the following conditions: 

(1) ( ) ( ) ( )( );,1,2,1 chcchccSeq −=  

(2) ( ) ( ) ( )( )chcchccSeq ,1,1 −=  and there exists a c-pair S with ( )Sc  

;1=  

(3) ( ) ( )( )chccSeq ,2,1=  and there exists a c-pair S with ( ) ( );chcSc =  

then ( ) .1~
−≥ nGcir  

The following result shows that, in general, the hamiltonian chromatic 
number of a fuzzy graph and the circumference cannot both be small. 

Theorem 6.7. If G~  be a connected fuzzy graph of order 4≥n  with ≤2  

( ) ,1~
−≤ nGhc  then ( ) ( ) .2~~

+≥+ nGhcGcir  

Proof. Let c be a minimum hamiltonian coloring of G~  with color set C. 

Then 1 and ( )chc  belong to C, and ( ) ( ).~Ghcchc =  

If ( ){ },,1 chc=C  then ( ) nGcir =
~  by Corollary 6.2 and therefore, ( )Gcir ~  
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( ).~2 Ghcn −+≥  So we may assume that ( ){ }.,1 chc≠C  Then ( ) 12 −≤ chc  

and the set ( )[ ]12 −chc"∩C  is nonempty. It then follows from Theorem 

6.1(b) that ( ) ( )GhcnGcir ~2~
−+≥  again. ~ 

On consequence of Theorem 6.7, we have the following: 

Corollary 6.8. Let G~  be a connected fuzzy graph of order .4≥n  If 

( ) ,2~
=Ghc  then G~  is hamiltonian. If ( ) ,3~

=Ghc  then ( ) .1~
−≥ nGcir  

The inequality of Theorem 6.7 is also sharp for ( ) 3~
=Ghc  since the 

Petersen fuzzy graph has hamiltonian chromatic number 3, order 10, and 

circumference 9, Figure 6.1 (every two nonadjacent vertices of P~  are 

circumference while no two adjacent of P~  connected by a path of length 9 
but are connected by a path of length 8). 

 

Figure 6.1 
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