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Abstract

In this paper, we define hamiltonian chromatic number of fuzzy graph,
hamiltonian connected and semi-hamiltonian-connected fuzzy graph.
Further we introduce a hamiltonian fuzzy coloring of a connected

fuzzy graph G of order n is an assignment c of color (positive integer)
to the vertices of G such that D(u, v) + | c(u)—c(v)| = n—1forevery
two distinct vertices u and v of G, where D(u, v) is the length of the
longest u —v path in G. The circumference cir(é) of a fuzzy graph

G is the length of a longest cycle in G. Color sequences of fuzzy
graphs provide some interesting theorems, corollaries, propositions as
discussed here.
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1. Introduction

Fuzzy graph theory is now finding numerous applications modern
science and technology especially in the fields of information theory, neural
network, expert systems and cluster analysis, medical diagnosis, etc.
Bhattacharya [1] has established some connectivity concepts regarding fuzzy
cut nodes and fuzzy bridges. Rosenfeld [21] has obtained the fuzzy
analogues of several basic graph theoretic concepts like bridges, paths,
cycles, trees, and connectedness and established some of the properties. The
concepts of decomposition of graphs into hamiltonian cycles, hamiltonian
paths decomposition of regular graphs was introduced by Markstrom [13].
Hamiltonian fuzzy path and hamiltonian fuzzy cycle of graphs was
introduced by Nirmala and Vijaya [20].

For a connected graph G of order n and diameter d and an integer k with
1<k <d, aradio k-coloring of is defined in [3] as an assignment ¢ of colors

(positive integers) to the vertices of G such that d(u, v) +|c(u)—c(v)| =
1+ k for every two distinct vertices u and v of G. The value rc,(c) of a
radio k-coloring ¢ of G is the maximum color assigned to a vertex of G;
while the radio k-chromatic number rc, (G) of G is min{rc,(c)} over all
radio k-colorings ¢ of G is a minimum radio k-coloring if rc,(c) = rc, (G).

These concepts were inspired by the so-called channel assignment problem,
where channels are assigned to FM radio stations according to the distances
between the stations (and some other factors as well).

Since rc¢y(G) is the chromatic number %(G), radio k-colorings provide a

generalization of ordinary colorings of graphs. The radio d-chromatic
number was studied in [3, 4] and also called the radio number. Radio
d-colorings are also referred to as radio labelings since no two vertices can
be covered the same in a radio d-coloring. Thus, in a radio labeling of a
connected graph of diameter d, the labels (colors) assigned to adjacent
vertices must differ by at least d, the labels assigned to two vertices whose
distance is 2 must differ by at least d — 1, and so on, up to the vertices whose

distance is d, that is, antipodal vertices, whose labels are only required to be
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different. A radio (d — 1) -coloring is less restrictive in that colors assigned to
two vertices whose distance is i, where 1 < i < d, are only required to differ
by at least d —i. In particular, antipodal vertices can be colored in same. For
this reason, radio (d —1) -colorings are also called radio antipodal colorings
or, more simply, antipodal colorings. Antipodal colorings of graphs were
studied in [5, 6], where rcy_1(G) was written as ac(G).

Radio k-coloring of paths were studied in [7] for all possible values of k.
In the case of an antipodal coloring of the path B, of order n >3 (and

diameter n —1), only the end-vertices of P, are permitted to be colored the
same since the only pair of antipodal vertices in B, are its two end-vertices.
Of course, the two end-vertices of B, are connected by a hamiltonian path.
As mentioned earlier, if u and v are any two distinct vertices of B, and
d(u, v) =i, then |c(u) —c(v)| = n—1-i. Since B, is a tree, not only is i
the length of a shortest u —v path in R,, itis, in fact, the length of any
u —v pathin B, since every two vertices are connected by a unique path. In
particular, the length of a longest u — v path in B, isias well.

Hamiltonian colorings were studied in [8-10] for an arbitrary connected
graph G. While radio k-colorings of graphs G of order n concern the
distances d(u, v) between pairs u, v of distinct vertices of G and therefore

paths of smallest length, much of the work concerning paths and cycles deals
with those of greatest length. For distinct vertices u and v, let D(u, v) denote

the length of a longest u — v path. Of course, if G is a tree, then D(u, v) =

d(u, v) for every pair u, v of distinct vertices of G.

In this paper, we focus on the hamiltonian fuzzy coloring of graphs by
taking fuzzy graph. In Section 2, we review the basic definition of fuzzy
graphs. In Section 3, we introduce the hamiltonian fuzzy coloring,
hamiltonian connected and semi-hamiltonian-connected fuzzy graph,
hamiltonian chromatic number of a fuzzy graph and using some related
theorems, corollaries, propositions, in Section 4, on the circumference of
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fuzzy graphs having many vertices with prescribed colors, in Section 5,
circumference of the definition and related to lemma, some theorems,
corollaries and finally in Section 6, on the circumference and color sequences
of fuzzy graph using the theorems, definition of closure, and corollaries.

2. Preliminary Definitions

The following basic definitions are taken from [11-20]. A fuzzy graph
G = (o, n) is a pair of functions ¢:V —[0,1] and u:V xV — [0, 1],
where for all u, v eV, we have u(u, v) < o(u) A o(v). The fuzzy graph
H = (z, p) is called a fuzzy subgraph of G = (o, n) if t(u) < o(u) for all
ueV and p(uv) < p(uv) forall uv e V. A fuzzy graph H = (x, p) is said
to be a spanning fuzzy subgraph of G = (o, u) if t(u) < o(u) for all u. In
this case the two graphs have same fuzzy node set; they differ only is the arc
weights. A fuzzy graph G = (o, ) is a complete fuzzy graph if p(u, v) =

o(u) A o(v) forall u, v e c*. The complement of a fuzzy graph G = (o, )

C

is a fuzzy graph G© = (%, u®), where © = s and p®(u, v) = s(u) A

o(v) — u(u, v) for all u, v in V. Two vertices u and v in G is called adjacent

if (%) min{o(u), o(v)} < p(u, v). The edge uv of G is called strong if u and

v are adjacent, otherwise it is called walk. Two nodes u and v are said to be
neighbors if u(u, v) > 0. Two edges v;v; and v;vj are said to be incident
if 2min{u(viv;), u(vjv )} < o(vj) for j=1,2, .., |v|, 1<i, k <[v] Let
G = (o, n) be a fuzzy graph and t be any fuzzy subset of o, i.e., t(u) <
o(u) for all u. Then the fuzzy subgraph of G = (o, u) induced by t is the
maximal fuzzy subgraph of G = (o, ) that has fuzzy node set . Evidently,
this is just the fuzzy graph (t, p), where p(u, v) = t(u) A ©(v) A u(u, v) for
all u,veV. Let G = (o, u) be a fuzzy graph. The degree of vertex u is
dg(u) = > p(uv). Since p(uv) > 0 for uv € E and p(uv) =0 for uv ¢ E,

u=v
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i.e, equivalent to dg(u)= > p(uv). Minimum degree of G =3(G)=

uvekE

A{d(v)|v e V}. Maximum degree of G = A(G) = v{d(v)|v € V}. The order
and size of a fuzzy graph, G = (V, o, n) are defined O(G) = ) o(v) and

veV

S(G)= > u(u, v). Let G be a graph with vertex set V(G) and edge set

uv=E

E(G). Vertex coloring of G is a mapping C :V(G) - N with N is a set of
natural numbers such that C(x) = C(y) if (x, y) € E(G). Given an integer
k, a coloring of G is a mapping C :V(G) — {1, 2, ..., k} such that C(x) #
C(y) if (x, y) € E(G). A family T = {yq, v, ..., y¢} Of fuzzy sets on V is
called a k-fuzzy coloring of G= VvV, o, p)if

(@ VI' = o,
(b) vinvj=0
(c) For every strong edge xy of G, min{y;(x), yj(y)} =0 1 <i <k).

The minimum number k for which there exists a k-fuzzy coloring is called
the fuzzy chromatic number of G, denoted as Xf (G). A fuzzy graph is said

to be connected fuzzy graph if there is at least one path between every pair of
vertices in fuzzy graph. A path P of length n is a sequence of distinct nodes
Ug, Ug, ..., Uy such that p(uj_q, uj) > 0,i =1 2, .., n is called a fuzzy path
and the degree of membership of a weakest arc is defined as its strength. If
Up = Uy and n > 3, then P is called a cycle and cycle P is called a fuzzy
cycle (f-cycles) if it contains more than one weakest arc. A fuzzy cycle of
length n is denoted by C,. Two nodes of a fuzzy graph are said to be fuzzy
independent if there is no strong arc between them. A subset S of V is said to
be a fuzzy independent set of G if any two nodes of S are fuzzy independent.
A fuzzy graph G : (o, p) is fuzzy bipartite if it has a spanning fuzzy

subgraph H : (1, ©) which is bipartite where for all edges (u, v) not in

H : (1, n), weight of (u, v) in G is strictly less than the strength of pair
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(u,v) in H, ie, p(u, v) < (u,v). A fuzzy graph G : (o, n) is fuzzy
bipartite then the node set V can be partitioned into nonempty sets V; and V,
such that V; and V, are fuzzy independent sets. These V4 and V, are called
fuzzy bipartition of V. Thus every strong arc of G : (o, 1) has one end in V;
and the other end in V,. The size of a fuzzy bipartite graph is defined to be

the sum of the weights of all strong arcs of it. A fuzzy bipartite graph
G : (o, n) with fuzzy bipartition (Vq, V,) is said to be complete fuzzy

bipartite graph if for each node of V;, every node of V5 is a strong neighbor.
A connected fuzzy graph G : (o, p) is called a fuzzy tree if it has a spanning

fuzzy subgraph F : (o, ©) which is a tree, where for all arcs (u, v) not in F,

i.e., u(u, v) < u”(u, v). Equivalently, there is a path in F between u and v
whose strength exceeds u(u, v). Fuzzy spanning tree is a fuzzy tree which
covers all the vertices of a fuzzy graph, note that fuzzy trees has no circuits
and it is fine to have vertices with degree higher than two. A fuzzy graph
G : (o, n) be a fuzzy path P covers all the vertices of G exactly once then
the path is called hamiltonian fuzzy path. A fuzzy graph G : (o, p) be a fuzzy

cycle C covers all the vertices of G exactly once expect the end vertices then
the cycles is called hamiltonian fuzzy cycle. Fuzzy hamiltonian circuit in a
connected fuzzy graph is defined as a closed walk that traverses every vertex
of G exactly once, except the starting vertex at which that walk also
terminates.

3. Hamiltonian Fuzzy Coloring

The distance d(u, v) from a vertex u to a vertex v in a connected fuzzy

graph G is minimum of the lengths of the u — v paths in G Au-v path of
length d(u, v) is called a u — v geodesic. The distance d(u, v) by following

four properties in a connected fuzzy graph G:

(1) d(u, v) >0 for every two vertices u and v of G;
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(2) d(u,v)=0 ifandonlyif u =v;
(3) d(u,v)=d(v,u) forall u, ve V(é) (the symmetric property);
(4) d(u, w) <d(u, v)+d(v, w) for all u,v,w ev(é) (the triangle
inequality).

Since d satisfies the four properties, d is a metric on V(G) and (V(G), d) is

a metric space. Since d is symmetric, we can speak of the distance between
two vertices u and v rather than the distance from u to v. The eccentricity of a

vertex v in a connected fuzzy graph G is the distance between vertex v is
ecc(v) = max{d(v, w) : w  V}. The radius of G is rad(é) = min{ecc(v) :

v eV} and the diameter G is diam(G) = max{ecc(v) : v € V}.

A vertex v with ecc(v) = rad(G) is called a central vertex of G. A vertex
v with ecc(v) = diam(é) is called a peripheral vertex of G. Two vertices u
tovof G with d(u, v) = diam(é) are antipodal vertices of G. Necessarily,
if u and v are antipodal vertices in é, then each of u and v is a peripheral
vertex. The girth of a fuzzy graph G with cycle is the length of a smallest
cycle in a connected fuzzy graph G. The detour distance D(u, v) from a

vertex u to v in G is the length of a longest u —v path in G. Thus
D(u,u)=0 and if u#v, then 1< D(u,v)<n-1. A u-v path of the
length D(u, v) is calleda u —v detour. If D(u, v) = n —1, then G contains
a spanning u —v path. The fuzzy graph K ; is called star. The fuzzy graph
Ks,t has order s +1t and size st. A tree containing exactly two vertices that
are not leaves (which are necessarily adjacent) is called a double star. Thus a
double star is a tree of diameter 3.

If fuzzy graph G has a spanning cycle z, then G is called hamiltonian
fuzzy graph. A fuzzy graph G is a hamiltonian connected, if for every pair u,

v of vertices of G, there is a hamiltonian u — v path in G. Necessarily, every
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hamiltonian connected fuzzy graph of order 3 or more is hamiltonian but the
converse is not true. The cubic fuzzy graph (31 = C3 x ko is hamiltonian
connected fuzzy graph, while the cubic fuzzy graph 52 =Cyxky = 6 is not
hamiltonian connected fuzzy graph. The graph 62 contains no hamiltonian
u—v path. A connected fuzzy graph G of order n >3 is called semi-

hamiltonian connected fuzzy graph if

n-2 ifuve E(é),

D(u, v) = {n ~1 if uv ¢ E(G).

Moreover, semi-hamiltonian-connected fuzzy graphs, a vertex coloring ¢
is a hamiltonian fuzzy coloring if and only if ¢ is a proper coloring. If fuzzy

graph G hasa spanning cycle z, then G is called hamiltonian fuzzy graph. A

hamiltonian fuzzy coloring of a connected fuzzy graph G of order n is a
vertex coloring ¢ such that D(u, v)+|c(u)—c(v)| = n—1 for every two

distinct vertices u and v of G. The hamiltonian chromatic number of a fuzzy
graph G is denoted by hc(é). The smallest value among all hamiltonian

fuzzy colorings of G.

A hamiltonian fuzzy coloring c of a connected fuzzy graph G of order n

is a function ¢ :V(G) — N for which
|c(u)—c(v)|+ D(u, v) = n-1. €))

For every pair u, v of distinct vertices of G. If ¢ is hamiltonian fuzzy
coloring of a connected fuzzy graph G and u and v are two distinct vertices
of G with c(u) = c(v), then G contains a hamiltonian u —v path. For a

hamiltonian fuzzy coloring c, hc(c) denotes the largest color assigned to any
vertex of G; while the hamiltonian chromatic number hc(é) is the minimum
value of hc(c) over all hamiltonian fuzzy colorings ¢ of G. Hence hc(é) =1

if and only if G is hamiltonian-connected. Thus the hamiltonian chromatic
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number of a connected fuzzy graph G can be thought of as a measure of how

close G is to be hamiltonian-connected, namely, the closer hc(é) is to 1,

the closer G is to be hamiltonian-connected. If hc(c) = hc(é), then cis a

minimum hamiltonian fuzzy coloring.

t 0.5

W (0.6)2 300.8)
X
Yy
0.2
* ®7(0.4)
<
(a) (b)

Figure 3.1

Figure 3.1(a) shows a fuzzy graph H of order 5. A vertex coloring c of
H is shown in Figure 3.1(b). Since D(u, v) + | c(u)—c(v)| = 4 for every two
distinct vertices u and v of H, it follows that ¢ is a hamiltonian fuzzy

coloring and so hc(H ) = 4. Hence he(H ) < 4. Because no two of the vertices
t, w, x and y are connected by a hamiltonian fuzzy path, these vertices must
be assigned distinct colors and so hc(H) > 4. Thus he(H) = 4.

Theorem 3.1. For every integer n > 3, hc(K;, n—1)=(n - 2)2 +1.

Proof. Since hc(Kj ») = 2, we may assume that n > 4.

Let G = Ky n-1, Where V(G) = {v, vy, .., vy} and v, is the central
vertex. Define the coloring c of G by c(v,) =1 and

c(vj)=(n-1)+(i-1)(n-3) forl<i<n-1.
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Then c is a hamiltonian fuzzy coloring of G and

he(G) < he(c) = c(vy4) = (N =1)+ (n=2)(n = 3) = (n = 2)® +1.
It remains to show that he(G) = (n — 2)% + 1.

Let ¢ be a hamiltonian fuzzy coloring of G such that he(c) = hc(é).

Because G contains no hamiltonian fuzzy path, c assigns distinct colors to

the vertices of G. We may assume that
c(v) < (v2) < -+ < ¢(Vp_g)-

We now consider three cases, depending on the assigned to the central vertex
Vn-

Case 1. c(vy) = 1. Since
D(vy, V) =1 and D(vj, vj;q) =2 forl<i<n-2.
It follows that
cVpq)=1+(n=2)+(n-2)(n=3)=(n-2)* +1
and so hc(G) = he(c) = c(vy_1) = (n—2) +1.
Case 2. hc(vy) = he(c). Thus, in this case,
1=c(vy) < (vp) < -+ < c(Vh_q1) < c(vp).
Hence
cvy) =1+ (n-2)(n-3)+(n-2)=(n-2)% +1
and so
he(G) = he(c) = c(vy) = (n — 2)? +1.

Case 3. ¢(vj) < c(vy) < c(vj,q) for some integer j with i < j <n-2.

Thus c(v) =1 and c(v,,_1) = he(c). In this case,
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c(vj) 21+ (j-1)(n-3),
c(vn) > c(vj) + (n - 2),
c(vjs1) 2 ¢(vy) + (n - 2), and
c(Vn_1) 2 c(vj,1) +[(n =1) = (j + D](n - 3).
Therefore,
c(Vpg) 21+ (j - -3)+2(n-2)+(n- j-2)(n-3)
= (2n-3)+(n-3)
=(n-2)% +2
>(n-2)7%+1
and so he(G) = he(c) = ¢(vy_g) > (n—2)% +1.

Hence in any case, hc(é) >(n- 2)2 +1 and so hc(é) =(n- 2)2 +1.
O

Theorem 3.2. For every integer n > 3, hc(én) =n-2.

Proof. Since we noted that hc(én) =n-2 for n=3, 4,5 we may
assume that n > 6.

Let 6n = (v, Vo, ..., Vpy, Vq ). Because the vertex coloring c of én defined
by c(vy) =c(vo) =1, c(vy_1) =c(v,)=n—-2,and c(vj) =i—-1for 3<i<
n — 2 is a hamiltonian fuzzy coloring, it follows that hc(én) <n-2

Assume to the contrary that hc(én) < n -2 for some integer n > 6.

Then there exists a hamiltonian (n — 3)-coloring ¢ of (En. We consider two
cases, according to whether n is odd or n is even.

Case 1. nis odd.
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Then n = 2k + 1 for some integer k > 3. Hence there exists a hamiltonian
(2k — 2)-coloring c of én.

Let A={1,2, .., k-1 and B={k, k +1, ..., 2k — 2}.

For every vertex u of én, there are two vertices v of én such that
D(u, v) is minimum (and d(u, v) is maximum), namely D(u, v) = d(u, v)
+1=k+1.

For u = v;, these two vertices v are vj, | and Vj .1 (where the addition
ini+k andi+k+1isperformed modulo n).

Since c is a hamiltonian fuzzy coloring, D(u, v) +|c(u)—c(v)|> n-1=
2k. Because D(u, v) = k +1, it follows that | c(u) —c(v) | = k —1. Therefore,
if c(u) e A, then the colors of these two vertices v with this property must

belong to B.

In particular, if c(vj) e A, then c(vj i) € B. Suppose that there are a
vertices of (En whose colors belong to A and b vertices of (En whose colors
belong to B. Then b > a. However, if c(v;) € B, then c(vj,) € A, implying
that a > b and so a = b. Since a + b = n and n is odd, this is impossible.

Case 2. nis even.

Then n = 2k for some integer k > 3. Hence there exists a hamiltonian
(2k — 3)-coloring c of én.

For every vertex u of én, there is a unique vertex v of én for which
D(u, v) is minimum (and d(u, v) is maximum), namely D(u, v) = d(u, v)
=K. For u=vj, this vertex v is vj x (where the addition in i+k is

performed modulo n).
Since c is a hamiltonian fuzzy coloring, D(u, v) +|c(u) —c(v)|>n-1
= 2k —1. Because D(u, v) =Kk, it follows that | c(u) —c(v)| = k —1. This

implies, however, that if c(u) = k —1, then there is no color that can be
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assigned to v to satisfy this requirement. Hence no vertex of 5n can be
assigned the color k —1 by c.

Let A={1,2 .., k—2}and B =1k, k+1 ..., 2k — 3}.
Thus | A| =|B| =k —2. If c(vj) € A then c(vj,x) € B. Also, if c(vj)
e B, then c(vj, ) € A. Hence there are k vertices of én assigned color from

A and k vertices of 5n assigned color from B.

Consider two adjacent vertices of C~In, one of which is assigned a color
from A and other is assigned a color from B. We may assume that c(v;) € A
and c(vy) € B. Then c(vi 1) € B. Since D(v,, vi41) = k +1, it follows that
|c(vp) — c(vky4q) | = k — 2. Because c(vy), c(vk4q) € B, this implies that one

of c(v,) and c(v,1) is at least 2k — 2. This is a contradiction. O

Proposition 3.3. If H is a spanning connected subgraph of a fuzzy
graph G, then hc(G) < he(H).

Proof. Suppose that the order of H is n. Let ¢ be a hamiltonian fuzzy
coloring of H such that hc(c) < hc(H). Then D (u, v) +|c(u) —c(v)| >
n —1 for every two distinct vertices u and v of H.

Since Dg (u, v) > Dy (u, v) for every two distinct vertices u and v of H
(and of G), it follows that Dg(u, v) +[c(u)—c(v)| >n-1 and so c is a
hamiltonian fuzzy coloring of G as well.

Hence he(G) < he(c) = he(H). O

Combining Theorem 3.2 and Proposition 3.3, we have the following
corollary.

Corollary 3.4. If G is a hamiltonian fuzzy graph of order n > 3, then
he(G) < n-2.
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The following result gives the hamiltonian chromatic number of a related
class of fuzzy graphs.

Proposition 3.5. Let H be a hamiltonian fuzzy graph of order n—1
>3.1f G isa fuzzy graph obtained by adding a pendant edge to H, then
he(G) = n-1.

Proof. Suppose that én = (V1, V2, ..., Vp_1, Vq) is @ hamiltonian fuzzy
cycle of H and vqv,, is the pendent edge of G. Let ¢ be a hamiltonian fuzzy

coloring of G. Since Dg(u, v) <n -2 for every two distinct vertices u

and v of C, no two vertices of C can be assigned the same color by c.

Consequently, hc(c) = n—1 and so he(G) = n —1.

Now define a coloring ¢' of G by

() = i if1<i<n-1
Voln-1 ifi=n

We claim that ¢’ is a hamiltonian fuzzy coloring of G. First let vj and vy be

two vertices of C, where 1< j < k < n—1. Then lc'(vj)—c'(v) =k -]
and

D(vj, v) = max{k — j, (n =1) = (k = j)}.
In either case, D(vj, V) > n -1+ j—k andso
D(vj, vi) +|c'(vj) = c'(v)|[>n-1.
Forl<j<n-1]c(vj)-c(vy)|[=n-1-j, while
D(vj, vq) = max{j, n - j +1}
and so D(vj, vy) > j. Therefore,

D(vj, vp) +| c'(vj) = c'(vy) [ > n-1.
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Hence, as claimed, ¢’ is a hamiltonian fuzzy coloring of G and so hc(é)
<h(c)=c'(vy)=n-1. O

Theorem 3.6. For every connected fuzzy graph G of order n= 2,
he(G) < (n—2)? +1.

Proof. First, if G contains a vertex of degree n —1, then G contains the
star Ky 1 as a spanning fuzzy subgraph. Since hc(Ky p_1) = (n — 2)% +1,
it follows by Proposition 3.3 that he(G) < (n — 2)% + 1.

Hence we may assume that G contains a spanning fuzzy tree T that is

not a star and so its complement TC contains a hamiltonian fuzzy path P =
{(V, Vg, ooy Vo). Thus vivj,y ¢ E(T) for 1<i<n-1 and so D5 (Vivi1)

> 2. Define a vertex coloring c of T by
cvi)=(n=2)+(i—-2)(n-3) forl<i<n.
Hence
he(c) = c(vy) = (= 2)+ (n—2)(n—3) = (n - 2)2.
Therefore, for integersiand jwith 1<i < j <n,
| c(vi) —c(vj)|= (i —)(n-3).
If j=i+1, then
D(vj, vj)+|c(vi)—c(vj) |22+ (n-3)=n-1.

While if j =i+ 2, then

D(vi, vj)+|c(vi)—c(vj)|21+2(n-3)=2n-5>n-1.
Thus c is a hamiltonian fuzzy coloring of T. Therefore,

he(G) < he(T) < he(c) = c(vy) = (n—2)% < (n—2)? +1,

which completes the proof. O
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Theorem 3.6 shows how large the hamiltonian chromatic number of a

fuzzy graph G of order n can be. If G is hamiltonian however, then by
Corollary 3.4 its hamiltonian chromatic number cannot exceed n — 2.

Moreover, if the hamiltonian chromatic number is small relative to n, then G
must contain cycles of relatively large length.

The concept of hamiltonian colorings of graph was introduced in [9],
hamiltonian chromatic numbers of several well known graphs were
established, including complete bipartite graphs, cycles, and Petersen graph.

To be sure, if G is a non-hamiltonian fuzzy graph of order n > 3, then G
is not hamiltonian-connected. Since for every pair u, v of adjacent vertices,
G does not contain a hamiltonian u — v path. On the other hand, if u and v
are nonadjacent vertices of G, then G may contain a hamiltonian u —v
path. For such a fuzzy graph then, D(u, v) < n -2 if u and v are adjacent

and D(u, v) < n -1 if uand v are not adjacent. We define a connected fuzzy
graph G of order n > 3 to be semi-hamiltonian-connected if

D(U, V) = {n _2 if uv e E(CE),
n-1 if uve E(G).

Now, let ¢ be a hamiltonian fuzzy coloring of a semi-hamiltonian-
connected fuzzy graph G order n > 3. Then |c(u)—c(v)|+D(u,v)=n-1
for every pair u, v of distinct vertices of G. Hence if u and v are adjacent,
then |c(u)—c(v)| =1 while if u and v are not adjacent vertices, then
| c(u) —c(v)| = 0. That is, two vertices must be assigned distinct colors if the

vertices are adjacent and may be assigned the same color if they are not
adjacent. In other words, every hamiltonian fuzzy coloring of a semi-

hamiltonian-connected fuzzy graph G of order n>3 is an ordinary

coloring of G and so hc(é) = xf (é). Thus we have the following.

Proposition 3.7. If G is a semi-hamiltonian-connected fuzzy graph of
order n > 3, then hc(é) = xf ((3).
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The fuzzy graph P; and the Petersen graph are semi-hamiltonian-

connected and so their hamiltonian chromatic number equals their chromatic
number, which is 2 and 3, respectively. Whether there are other semi-

hamiltonian-connected fuzzy graphs is not known. If G is a connected non-
hamiltonian fuzzy graph of order n > 3 such that G has a hamiltonian u — v
path for every pair u, v of nonadjacent vertices, then G need not be semi-
hamiltonian-connected.

For example, for 1<m<n-m-1, the fuzzy graph G = Ky +
(Km UK_m-1) has this property but is not semi-hamiltonian-connected.
On the other hand, the fuzzy graph G = K¢ ro r>2 with n=2r, has the
property that if
n-1 ifuve E(é),

B, v) = {n ~2 if weE@).

Thus, two vertices of G = Ky, r must be assigned distinct colors in any
hamiltonian fuzzy coloring if they are not adjacent and may be assigned the
same color if they are adjacent, that is, hc(é) = Xf (5) = r. The fuzzy graph,
and K , r > 2, have the property that the number, D(u, v) have two distinct
values, one if u and v are adjacent and another if u and v are not adjacent. For

each of these fuzzy graphs G of order n, one of the values of D(u, v) is
n —1 and the otheris n — 2.

4. On the Circumference of Fuzzy Graphs Having Many Vertices
with Prescribed Colors

Let ¢ be a hamiltonian fuzzy coloring of a connected fuzzy graph G. For
integers i and j with 1 <i < j < he(c), we define V(c; i, j) = {u e V(G):

i <c(u)<jl.

Let U be a set of vertices of G. If |U | > 2, then we define dis(c; U)
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= min{| c(u) — c(v) |}, where the minimum is taken over all distinct pairs u, v
of vertices in U. If |U | <1, we define dis(c; U) = he(c). If U =V (c; i, j),
then we write dis(c; U) = dis(c; i, j).
More simply, we write
Vi, j)=V(ei j)
dis(U) = dis(c; U) and
dis(i, j) = dis(c; i, j)
if the hamiltonian fuzzy coloring ¢ under discussion is clear.

5. Circumference

The length of a longest cycle in a connected fuzzy graph is called the
circumference of G and is denoted by cir(é).

If G isa fuzzy tree, then we write cir(é) = 0. For a hamiltonian fuzzy

coloring of a connected fuzzy graph G of order n, we now show that if the
sets V(i, j) are sufficiently large (as a function of n and dis(i, j)), then

cir(G) is large as well. First, we present a lemma.

Lemma 5.1. Let G be a connected fuzzy graph of order n > 3, let ¢ be
a hamiltonian fuzzy coloring of G, and let k be an integer with 0 <k <
n—3. Assume that cir(G) < n—k. Then V(i, i + k) is an independent set
in G foreveryiwith 1< i < hc(c) — k.

Proof. Let i be an integer with 1 <'i < hc(c) — k.

Since cir(é) < n -k, it follows that D(u, v) < n—k — 2 for every pair
u, v of adjacent vertices of G. Since c is a hamiltonian fuzzy coloring of G.

It follows that |c(u)—c(v)| >k +1 for every pair u, v of adjacent

vertices of G.
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Moreover, |c(u’)—c(v')| <k for each pair u’, v' of vertices in
V(@i, i +k).

Therefore, V (i, i + k) is an independent set in G. O

Theorem 5.2. Let G be a connected fuzzy graph of order n > 3, let c be

a hamiltonian fuzzy coloring of G, and let i, j be a pair of integers with
1<i<j<he(c)and j—i<n-3.

If V(i j)| > , then ¢ir(G) > n—(j —i).

n + dis(i, j)+ 2
2

Proof. Assume that cir(é) <n-(j-i)-1.

(n +dis(i, j)+2)

5 , a contradiction.

If[V(, j)| <1 then |V(, j)| <

Hence we may assume that |V (i, j)| > 2.

Since cir(G) <n—(j—i), by Lemma 5.1, the set V(i, j) is an
independent set in G.

Now, let W =V(G)-V(i, j).

Since |V(i, j)| = 2, there exist distinct vertices x and y in V (i, j) with
| c(x) —c(y)| = dis(i, j) andso D(x, y) = n—1—dis(i, j).

Hence there exists an x — y path P containing at least n — dis(i, j)
vertices of G.

On the other hand, since V(i, j) is independent in G, the vertices x and
yarein V(i, j), and P contains at most |W | vertices that are not in V (i, j),

it follows that P contains at most |W | + 1 vertices of V (i, j).

Consequently, P contains at most 2/W | +1 vertices. Thus n—dis(i, j)
< 2/W | +1, which implies that
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V(@ j)| < , a contradiction. O

(n+dis(i, j)+2)
2

Corollary 5.3. Let G be a connected fuzzy graph of order n > 3. If

there exists a hamiltonian fuzzy coloring of G such that at least (n + 2)/2

vertices of G are colored the same, then G is hamiltonian.

Proof. Let ¢ be a hamiltonian fuzzy coloring of G such that at least

(n + 2)/2 vertices of G are colored the same, say i. Then

n+2 n+dis(i, i)+2
2 2 '

V(@i i)| =

It then follows from Theorem 5.2 that cir(é) >n andso G is hamiltonian.

O

To see that Corollary 5.3 cannot be improved, consider the fuzzy graph

G =Ky r41, Where r > 2, with partite sets V; and V, such that [V;|=r
and |V, | = r +1. Then G has order n = 2r +1 and
2r—2 if u,veV,
D(u,v)=42r-1 if uv e E(G),
2r if u,vev,.
Observe that a coloring c is a hamiltonian fuzzy coloring of G ifand only if

2 ifuveV,
|c(u)—c(v)|=241 ifuve E(G),
0 ifuveV,.

Let V; = {w, Vo, ..., V, }. Define a hamiltonian fuzzy coloring ¢ of G by

c(u)y=1forall ueV, and c(vj)=2i for1<i<r.

The exactly r +1 = (n +1)/2 vertices of G are colored the same, but G
is not hamiltonian.
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Corollary 5.4. Let G be a connected fuzzy graph of order n > 4. If there
exist a hamiltonian fuzzy coloring ¢ of G and an integer i with 1 < i < he(c)
such that at least (n + 2)/2 vertices of G are colored i or i +1, then cir(é)

>n-1.

Proof. If there exist a hamiltonian fuzzy coloring c of G and an integer i
with 1 <i < he(c) such that at least (n + 2)/2 vertices of G are colored i or
i +1, then |V (i, i +1)| > max{3, (n + 2)/2} and therefore, dis(i, i +1) = 0.

It then follows from Theorem 5.2 that cir(é) >n-1. O

We now present another lower bound for the circumference of a
connected fuzzy graph.

Theorem 5.5. Let G be a connected fuzzy graph of order n > 3 and let
k be an integer such that 0 < k < n — 3. If there exists a hamiltonian fuzzy

coloring c of G such that

(@) The set V(1, k +1) and V (hc(c) — k, he(c)) from a partition of V(é),
and

(b) There exists U e {V (1, k +1), V(hc(c) — k, he(c))} such that |U | > 2

and

[UE @

n —dis(U)
—
then cir(G) > n — k.
Proof. Let W = V(é) —U. We wish to prove that cir(é) >n-k.
Assume to the contrary that cir(é) < n-k. By Lemma 5.1, the sets U
and W are independent in G. Since U and W are disjoint and V(é) =V Uw,
it follows that G is a bipartite fuzzy graph with partite sets U and W.

Since |U|> 2, there exist two distinct vertices u, veU such that
|c(u)—c(v)| =dis(U) andso D(u, v) > n —1-dis(U).
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Thus G contains a u — v path P of length at least n —1— dis(U) and

so at most dis(U ) vertices of G do not belong to P.

Since G is bipartite with partite sets U and W and u, v € U, there exists
an integer j with 2 < j <|U | such that P contains exactly j vertices of U
and exactly j —1 vertices of W. Thus 2U |-1>2j —1> n—dis(U).

This means that |U | > (n +1 - dis(U ))/2, which contradicts (2).

Therefore, cir(é) >n-Kk. O
6. On the Circumference and Color Sequences of Fuzzy Graph

For a hamiltonian fuzzy coloring ¢ of a connected fuzzy graph G, let ¥
be the set of all colors assigned to the vertices of G, that is € =
{c(v):ve (é)}. If € ={cy, Cp, ..., Cp}, Where ¢; < ¢y <--- < ¢y = he(c),
then Seq(c) = (¢, ¢y, ..., cp) is called the color sequence of c. Similarly, as
in [8], a set S = {u, v} of two distinct vertices of G is called c-pair if
c(u) = c(v). We define ¢(S) = c(u) = c(v). Aset S = {u, v} of two distinct
vertices of G is called c-semipair if |c(u) —c(v)| < 1. For integers a and b

with a < b, the integer interval [a---b] is defined as {x € Z : a < x < b}.

Theorem 6.1. For a connected fuzzy graph G of order n > 4 and an

integer k with 0 <k <n -3, let ¢ be a hamiltonian fuzzy coloring of G
with Seq(c) = (¢, €2, ..., Cp), Where p > 2, such that

€ <o ¢+ kU ey —k---cpl @3)

If at least one of the tree conditions
(@) k =0

(b) cp —k <¢ +k and € N[cy —k---cp + k] is nonempty;
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(c) there exist c-semipairs S and S’, at least one of which is a c-pair,
such that the colors of the vertices of S are at most ¢; + k and the colors of

the vertices of S’ are at least cp — k, is satisfied, then cir(é) >n-Kk.

Proof. We may assume, without loss of generality, that ¢; = 1. Since
p > 2, it follows that cp > 1. Define V; =V (1, k +1), Vo =V(cp -k, cp),
Wy =V(L 1), Wy = (cp, Cp).

Thus W; and W, are nonempty, as are V; and V,. Moreover, if (a) holds,
then V; =W, and V, = W,. More generally, W; c V; fori =1, 2 and V; UV,
= V(G) by (3).

We wish to prove that cir(G) > n — k.

Assume to the contrary that cir(G) < n — k. By Lemma 5.1, V; and V,
are independent sets in G. Since ViUV, = V(G), it follows that Vi NVs is

a set of isolated vertices of G. However, since G is a nontrivial connected

fuzzy graph G has no isolated vertices and so ViNVy, =&.

Thus condition (b) does not hold, implying that at least one of conditions
(a) and (c) holds. Since V(é) is partitioned into the independent sets V; and

V,, it follows that G isa bipartite fuzzy graph with partite sets V; and V,.

Because n > 4, it follows that if (a) holds, then |W; | > 2 or |W, | > 2

and so either V; or V, contains a c-pair.
On the other hand, if (c) holds, then V; or V, contains a c-pair.

In either case, at least once of V; and V, contains a c-pair. Let {i, j}

= {1, 2} such that V; contains a c-pair, say {x, y}.

Since c is a hamiltonian fuzzy coloring, D(X, y) =n—1 and so there

exists a hamiltonian x — y path in G. Since x, y €V;j and G isa bipartite
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fuzzy graph with partite sets V; and V;, we have |V; | =[V;|+1 which
implies that D(x', y') < n —3 for every pair x/, y' of distinct vertices in V;.

Thus V; contains no c-pair. Since n > 4, it follows that |V; | > 2.

Therefore, V; # W, and (a) does not hold. Hence (c) holds.

Consequently, V; contains a c-semipair, say {x*,y"}. Since

| e(x*)—c(y")| <1, wehave D(x*, y*) > n -2, which is a contradiction.
O
Let G be a connected fuzzy graph of order n > 4, let k be an integer with
0 < k < n -3, and let ¢ be a hamiltonian fuzzy coloring of G. Now, suppose
that the sets V; =V (L, k +1) and V, =V (hc(c) - k, hc(c)) from a partition
of V(G), where, say |V; | > |V, |. Thus |V; | > n/2. Suppose that we wish
to apply Theorem 6.1 to such a fuzzy graph G. If the set Vj contains a c-pair,
so that dis(l, k +1) =0, and |Vi|=(n+2)/2, then cir(G)=n—k by
Theorem 5.2. If, on the other hand, V; does not contain a c-pair but contains
a c-semipair, so that k > 1 and dis(, k +1) =1 and |V | > (n + 3)/2, then
cir(é) >n -k by Theorem 5.2. Hence to apply Theorem 6.1 to a fuzzy
graph G satisfying the conditions described above, we need only deal with

the situation where n/2 <|V; | < (n + 2)/2.

We have already noted that if some hamiltonian fuzzy coloring assigns
the same color, namely 1, to every vertex in a connected fuzzy graph G of

order n > 3, then G is a hamiltonian-connected. By Theorem 6.1(a), if there
exists a hamiltonian fuzzy coloring that assigns one of two colors to every
vertex of é, then G is hamiltonian.

Corollary 6.2. Let G be a connected fuzzy graph of order n > 4. If

there exists a hamiltonian fuzzy coloring c of G such that Seq(c) =1 or

Seq(c) = (1, r) for some r > 2, then G is a hamiltonian.
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The following theorem and corollary are due to Bondy and Chvatal [2].

Closure 6.3. The fuzzy graph obtained from G by recursively joining
pairs of nonadjacent vertices whose degree sum is at least n (in the resulting
fuzzy graph at each stage) until no such pair remains.

Theorem 6.4. A fuzzy graph is hamiltonian if and only if its closure is
hamiltonian.

Corollary 6.5. If the closure of a fuzzy graph G of order at least 3 is

complete, then G is a hamiltonian.

Thus Corollary 6.5 gives a sufficient condition for a fuzzy graph to be
hamiltonian. Let éo be a hamiltonian-connected fuzzy graph of a even order
n=2k >6. Then 50 contains a hamiltonian fuzzy cycle uq, vy, Uy, vy, ...,

Uy, Vi, U;. We construct a new fuzzy graph G from éo and k pairwise a
vertex-disjoint complete fuzzy graphs of order | > 3, which we denote by
Fi., Fp, ..., Fc by indentifying an edge of F with the edge ujv; for each
i (1<i<k). The fuzzy graph G has order kI but it is not hamiltonian-
connected, as there is no hamiltonian u; —v; path for any i (L<i < k). On

the other hand, there is a hamiltonian fuzzy coloring of G with two colors,

namely, assign u; (1 <i < k) the color | —1 and assign all other vertices of G

the color 1. By the remark above, G is a hamiltonian. We now consider the
Bondy and Chvatal closure of this fuzzy graph G. Let X e V(F)-{uj, vi}

(I<i<k)andy ¢V(F) be nonadjacent vertices in G. Then diggx =1-1
and diggy < (2k -1 +(1-1)-1. So

diggx + diggy < 2k + (21 —4) =kl - (k - 2)(1 - 2) < K

which implies that no vertex in V(F;) — {u;, v;} can be adjacent to a vertex

in V(F) in the formation of the closure of G. Thus the closure of G is not
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complete and, even though Corollary 6.2 shows that G is hamiltonian,
Corollary 6.5 does not.

The closure of the complete bipartite fuzzy graph K, ., r>2 is
complete, however, therefore, by Corollary 6.5, K, |, is hamiltonian. On the
other hand, there is no hamiltonian fuzzy coloring of K,  that assigns one
of two colors to each of its vertices. Hence K, , cannot to show to be

hamiltonian with the aid of Corollary 6.2. Therefore, Corollaries 6.2 and 6.5
are independent.

The next result gives a sufficient condition for a connected fuzzy graph
of order n > 5 to contain a cycle of length n —1 or n.

Corollary 6.6. Let G be a connected fuzzy graph of order n > 5. If there
exists a hamiltonian fuzzy coloring c of G with hc(c) > 4 satisfying one of

the following conditions:
(1) Seq(c) = (4, 2, he(c) -1, he(e));

(2) Seq(c) = (1, he(c) -1, he(c)) and there exists a c-pair S with ¢(S)

(3) Seq(c) = (1, 2, he(c)) and there exists a c-pair S with ¢(S) = hc(c);
then cir(é) >n-1

The following result shows that, in general, the hamiltonian chromatic
number of a fuzzy graph and the circumference cannot both be small.

Theorem 6.7. If G be a connected fuzzy graph of order n > 4 with 2 <
hc(G) < n—1, then cir(G) + he(G) = n + 2.

Proof. Let ¢ be a minimum hamiltonian coloring of G with color set &,
Then 1 and he(c) belong to %, and he(c) = he(G).

If € = {1, hc(c)}, then cir((g) = n by Corollary 6.2 and therefore, cir(é)
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>n+2- hc(é). So we may assume that ¢ = {1, hc(c)}. Then 2 < he(c) -1
and the set & (N [2---hc(c) —1] is nonempty. It then follows from Theorem

6.1(b) that cir(é) >n+2- hc(é) again. O
On consequence of Theorem 6.7, we have the following:

Corollary 6.8. Let G be a connected fuzzy graph of order n > 4. If
hc(G) = 2, then G is hamiltonian. If he(G) = 3, then cir(G) > n—1.

The inequality of Theorem 6.7 is also sharp for hc(é) = 3 since the
Petersen fuzzy graph has hamiltonian chromatic number 3, order 10, and

circumference 9, Figure 6.1 (every two nonadjacent vertices of P are

circumference while no two adjacent of P connected by a path of length 9
but are connected by a path of length 8).

Figure 6.1
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