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Abstract 

The Hidden Markov Model (HMM) is a statistical model for analysing 

time series data where the observational data ( ) ( ...,,, 21 XXX T =  

)TX  depends on unobservable states ( ) ( )....,,, 21 T
T CCCC =  HMM 

is used in such fields as speech recognition and bioinformatics, and 
has recently gained popularity in life science as well. In HMM, we 
need to estimate the parameters, and constructing their confidential 
interval involves some difficulties. To solve this problem, we propose 
a bootstrapping method to construct confidential intervals and apply it 
to earthquake data. When applying this method, we need to choose an 
appropriate number of states, hence we calculated each AIC score, and 
then made comparisons. 



Yosuke Inaba and Etsuo Miyaoka 98 

1. Introduction 

The Hidden Markov Model (HMM) is a statistical model for analysing 

time series data where the observational data ( ) ( )T
T XXXX ...,,, 21=  

depends on unobservable states ( ) ( )....,,, 21 T
T CCCC =  HMM is used in 

such areas as speech recognition and bioinformatics, and has recently gained 
popularity in life science as well. In analysis of HMM, we need to estimate 
the parameters, and there exists a strong tool for estimating, that is, the 
Baum-Welch algorithm [3]. The Baum-Welch algorithm is an EM algorithm 
for HMM. Durbin et al. applied the Baum-Welch algorithm to biological 
sequence analysis [2]. Constructing confidential intervals involves some 
difficulties. In the maximum likelihood estimation, the estimated parameter 
usually has asymptotic normality, and as such, Konishi et al. described 
methods that use the Fisher information matrix [4]. However, in HMM, this 
method cannot be applied because HMM is not a regular model, and its 
estimated parameters do not have asymptotic normality [3]. To solve this 
problem, we proposed a bootstrapping method to construct confidential 
intervals and apply it to earthquake data. When applying HMM, we need a 
criterion to model comparison, and we use AIC [5] to compare model fitness 
for each number of states. 

2. Definition 

2.1. Markov chain 

Let ( ) { }{ }N∈|∈= tmCt
t ...,,1C  be a discrete sequence of random 

variables. ( )tC  is called a Markov chain when it satisfies the following: 

( ( ) ) ( )tt
t

t CCC |=| ++ 11 PrPr C  for any t in .N  

The parameter for the Markov chain ( )iCjC stsij =|==γ +Pr:  is called 

the transition probability. A Markov chain is termed homogenous when ijγ  

is independent of s. In matrix notation, 

( ) :: ijγ=Γ  transition probability matrix. 
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The first element of the sequence is special, because it does not have an 
adjacent element. As such, we have to define an initial distribution δ  as 

( ) ( ) ( ){ } ( ) .1,1...,,1:,Pr...,,2Pr,1Pr: 111 =′===== 1δ1δ mCCC  In particular, 

if ,δδΓ =  the Markov chain is deemed stationary. 

2.2. Poisson distribution 

A discrete random variable X is Poisson distribution for 0>λ  when its 

probability function is given by ( ) .!k
ekXp

k λ−λ==  Note that the Poisson 

distribution has the reproductive property: 

( ) ( ) ( ).~~,~ μ+λ+⇒μλ PoissonYXPoissonYPoissonX  

2.3. HMM 

Let ( )tC  be a parameter process and ( )tX  be the output. We call 

{ ( ) ( )}tt XC ,  an HMM if it satisfies the following: 

( ( ) ) ( ),PrPr 1
1

−
− |=| tt

t
t CCC C  

( ( ) ( ) ) ( ).Pr,Pr 1
tt

tt
t CXX |=| − CX  

The parameters for HMM are: 

( ) :...,,: 1 mλλ=λ  state-dependent distribution parameter. 

( ) :: ijγ=Γ  transition probability matrix. 

( ) :...,,: 1 mδδ=δ  initial distribution. 

2.4. Likelihood function for HMM 

In the case of discrete observations, for ,...,,2,1 mm =  

( ) ( ).Pr: iCxXxp tti =|==  

We define ip  to be the probability density function of tX  if the Markov 

chain is in state i at time t. 
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In matrix notation 

( )
( )

( )
.:

1

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

xp

xp
x

m

P  

The likelihood function TL  is then defined as follows: 

( ( ) ( ) ) ( ( ) ( ) ( ) ( ) )∑
=

=|====
m

ccc

TTTTTT
T

T

cCxXxXL
1...,,, 21

.PrPr:  

2.5. Forward and backward probabilities 

We define vector ,tα  for ,...,,2,1 Tt =  as 

( ) ( ) ( ) ( ) { }....,,1: 321 Ttxxxx t ∈= ΓPΓPΓPδPα t  

The elements of tα  are referred to as forward probabilities. 

Then, the following holds: 

( ),1 ttt xΓPαα −=  

( ) ( ( ) ( ) ).,Pr jCj t
tt

t ===α xX  

We define the backward probabilities in the same way: 

( ) ( ) ( ) { }.1...,,1: 21 −∈′= ++ Ttxxx Ttt 1ΓPΓPΓPβt  

Then, the following holds: 

( ) ( ( ) ( ) ).11 iCxXi t
T

t
T

tt =|==β ++P  

In particular, for { },...,,1 Tt ∈  

( ) ( ) ( ( ) ( ) ),, iCxXii t
TT

tt ===βα P  

( ( ) ( ) ) ,T
TT LxX === Pβα tt  

( ( ) ( ) ) ( ) ( ) ,Ttt
TT

t LjjxXjC βα==|=P  

( ( )
( ) ) ( ) ( ) ( ) ., 11 TttkjktT

T
tt LkxpjxXkCjC βγα==|== −−P  
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3. Baum-Welch Algorithm 

3.1. Parameter estimation 

Baum-Welch algorithm is an EM algorithm for HMM that treats hidden 
states as missing data. To employ the EM algorithm, we define the following 
functions. Let Tccc ...,,, 21  be the sequence of states. Then, we have 

( )
( )
( )

( )
⎩
⎨
⎧ =

≠
=

= ,...,,2,1
0
1

Tt
jc
jc

tu
t

t
j  

( )
( )
( )

( )
⎩
⎨
⎧ =

≠≠
==

=
−

− ....,,3,2
or0
and1

1

1 Tt
kcjc
kcjc

tv
tt

tt
jk  

We also define the complete data log likelihood (CDLL) as follows: 

( ) ( ( ( ) ( ) ))pcXp ,,,Prlog:,, γδγδ |= TTCDLL  

( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
γδ= ∏ ∏

= =
−

T

t

T

t
tcccc xp ttt

2 1
,11log  

( ) ( ) ( ( ))∑ ∑
= =

+γ+δ=
−

T

t

T

t
tcccc xp ttt

2 2
, .logloglog 11  

The EM algorithm, in general, is an iterative method for performing 
maximum likelihood estimation. The algorithm for HMMs proceeds as 
follows: 

• E step. Replace all quantities ( )tv jk  and ( )tu j  by their conditional 

expectations given observations ( )Tx  (and given current parameter 
estimates): 

( ) ( ( ) ( ) ) ( ) ( ) ,Prˆ Ttt
TT

tj LjjjCtu βα==|== xX  

( ) ( ( ) ( ) )TT
ttjk kjtv xXCC =|=== − ,Prˆ 1  

( ) ( ) ( ) .1 Tttkjkt Lkxpj βγα= −  
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• M step. Having replaced ( )tv jk  and ( )tu j  by ( )tv jkˆ  and ( ),ˆ tu j  

maximize CDLL with respect to three sets of parameters: ,, γδ  and p. 

3.2. Standard error and confidential interval 

Although the point estimates are easy to compute, exact interval 
estimates are not available. It is known that, in the context of maximum 
likelihood estimation, when data volume is big enough, maximum likelihood 
estimators can be normal and efficient under some regulatory conditions [4]. 
However, this might not work in some situations, for example, when some 
parameters are on or near the boundary of their parameter process. We 
propose a bootstrapping method to solve this problem. 

4. Bootstrapping Method 

We apply the following bootstrapping method. Roughly speaking, the 
idea of a parametric bootstrap is to assess the properties of model Θ  by using 

those of a model with parameters .Θ̂  The following steps are performed to 

estimate the variance-covariance matrix of .Θ̂  

1. Fit the model, that is, compute .Θ  

2. Generate a sample ( )TX  using the parameters estimated above. 

3. Fit the model again by the sample. 

4. Repeat steps 2-3 2000 times. 

5. Calculate the 5% and 95% percentile points for the parameters. 

5. Application 

In this section, we apply the above method to the series of annual count 
of major earthquakes (i.e., magnitude 7 or greater for years 1900-2006, 
which is downloaded from the National Earthquake Information Center 
(NEIC) site (http://earthquake.usgs.gov/data)). The data is shown in Figure 1. 
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First, we have to choose an appropriate number of states m, and we 
therefore compare AIC scores [3]: 

.2log2AIC pL +−=  

Result is shown in Table 1. 3=m  minimizes the score, and so we choose 
.3=m  Then, we estimate the HMM parameters using the Baum-Welch 

algorithm, and then estimate the confidence intervals. The result is shown in 
Figure 1. 

 

Figure 1. Major earthquakes (magnitude 7 or greater). 

Table 1. AIC scores 

m –log L AIC 

1 391.919 785.838 

2 341.879 693.757 

3 328.527 679.055 

4 327.359 692.717 

5 327.071 712.141 

6 324.575 731.150 
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Table 2. Confidence intervals 

 Baum-Welch 

parameter est 90% conf.  S.E. 

1λ  13.133 11.807 14.584 0.995 

2λ  19.713 17.779 21.417 1.177 

3λ  29.709 25.079 33.651 2.86 

11γ  0.939 0.727 0.981 0.119 

12γ  0.032 0 0.177 0.092 

13γ  0.028 0 0.155 0.088 

21γ  0.04 0 0.167 0.073 

22γ  0.906 0.699 0.97 0.116 

23γ  0.053 0 0.197 0.089 

31γ  0 0 0.04 0.055 

32γ  0.19 0.055 0.736 0.211 

33γ  0.809 0.221 0.932 0.214 

6. Conclusion 

We construct confidence intervals for HMM parameters estimated using 
an EM algorithm. We compare them to existing parameters and confirm their 
applicability. 
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