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Abstract 

The stability of unidirectional propagation of long waves on a viscous 
liquid, in a channel of finite depth H, satisfying the viscous 
counterpart of Korteweg-de Vries (KdV) equation whose solutions 
represent solitary waves, is explored. It is shown that the solutions of 
such solitary waves on a viscous liquid are stable. The proof, given 
here, depends on two nonlinear functionals which are invariant in time 
for the solutions. It is further shown that the viscous KdV equation 
possesses a variational principle. Also, considered here are two 
nonlinear invariants for the regularized equation, namely, the viscous 
Benjamin, Bona and Mahony (BBM) equation which has smoother 
mathematical properties. It has been proved that, in the absence of 
viscosity, both KdV and BBM equations share the same two nonlinear 
invariants, but in the presence of viscosity, these two equations have 
different nonlinear invariants. 
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1. Introduction 

In 1844, Russell [1] first observed a new form of water wave which is 
now commonly known as solitary waves. In his paper [1], he remarked that 
the waves individually appear to be stable. He stated that when a solitary 
wave propagates along a uniform canal, it displays a remarkable property of 
permanence. This, of course, immediately gives an observer a great degree of 
confidence that these waves are stable. Since Russell’s initial observation, 
there have been many experiments performed that show, beyond any doubt, 
that solitary waves in water are indeed stable. Benjamin [2] was amongst the 
first researchers that established, with some degree of analytical rigor, that 
solitary waves are stable. He commented that ‘... a rigorous demonstration 
would be exceedingly difficult owing to the complications of the exact 
nonlinear problems’. 

Benjamin [2] demonstrated that solitary wave of the Korteweg-de Vries 
(KdV) equation, which in 1895 was originally derived by Korteweg and de 
Vries [3] as an approximation for long water waves of small but finite 
amplitude, are stable. His stability criterion, for KdV equations, hinged on 
two nonlinear functionals which he showed are invariant with time. The KdV 
equation he considered is 

 ,0=+++ xxxxxt uuuuu  (1.1) 

where for water wave problems is nondimensionalized according to =u  

,23 Hη  Hxx ∗= 6  and ( ) ,6 21 ∗= tHgt  where η is the vertical 

displacement of the free surface, H is the undisturbed water depth and ∗∗ tx ,  

are dimensional distance and time, respectively. Benjamin [2] considered 
nonperiod solution of (1.1) defined for ,∞<<∞− x  0≥t  and found 

solitary-wave solutions by considering 

( )xu Φ=   with  ( )tCxx +−= 1  

which represents a steadily traveling wave of speed .1 C+  Next, by assuming 
that the function ( )xΦ  and its second derivative vanish as ,±∞→x  he 

obtained the following ordering differential equation upon substitution of 
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( )xΦ  into (1.1) which integrated at once to yield 

 .2
1 2 Φ=Φ+Φ ′′ C  (1.2) 

It is well known that if 0>C  (1.2) admits the solution 

 ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+=Φ axCC 2

1
2

2
1sech3  (1.3) 

which vanishes at infinity, with a being a constant. 

The main purpose of this paper is to establish the stability of the viscous 
counterpart of the KdV equation, namely, 

 xxxxxxxt uuuuuu ν=+++  (1.4) 

for where .0>ν  However, as was noted by Benjamin [2], in order to 
establish solitary-wave solution, Φ, arising in the similar manner to that of 
equation (1.2), (see the proof of Theorem 2 below) it is necessary to obtain 
solutions u of (1.4) that in some definite sense are initially close to Φ. This 
task can only be achieved if the existence and regularity of the viscous KdV 
equation can be established for all values of .0>ν  This in turn implies that 
solutions of (1.4) must be guaranteed to exist for the chosen class of initial 
waveforms, having smoothness properties that can be used in the stability 
analysis. One possible path for assuming the regularity of solutions is to 

consider the ∞C  solutions which converge to zero, together with all their 
derivatives, as .±∞→x  However, this is too restricted an assumption and 
the general applicability of the stability criterion will be subject. 

As in Benjamin [2], we notice that there exists a stronger mathematical 
foundation with regard to the Benjamin, Bona and Mahony [4], commonly 
referred to as the BBM equation, 

 0=−++ xxtxxt uuuuu  (1.5) 

which is a rational alternative to equation (1.1) for a long-wave and having 
almost the same solitary-wave solutions as that of (1.3). Benjamin et al. [4] 
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showed that solutions of (1.5) have, in general, better smoothness properties 
compare with (1.1). Similarly, Sajjadi and Smith [5] showed the same 
properties hold for the viscous counterpart of equation (1.5), namely 

 xxxxtxxt uuuuuu ν=−++  (1.6) 

for .0>ν  

In this paper, we therefore establish the stability and invariants of 
equation (1.6) subject to the initial wave form ( ) ( ),0, xGxu =  such that 

( ) ( ),2
2 RR WCG ′∈ ∩  for .0, ≥∞<<∞− tx  

2. Variational Principle 

In Benjamin’s stability theory [2] use was made of the nonlinear 
functionals which he showed to be invariant with time. He followed the work 
of Miura et al. [6] who had shown, for Korteweg-de Vries equation, there are 

infinitely many ∞C  solutions exist that, together with all their derivatives, 
vanish as .±∞→x  Apparently the two invariants used in his study were first 
noticed in 1877 by Boussinesq [7]. 

Multiplying equation (1.4) by 2u, we may cast it in the form 

( ) ( ) ( ) .0123
2 2322 =⎥⎦

⎤
⎢⎣
⎡ ν−−ν−+++

x
xxxxt uuuuuuu  

Assuming the terms in the square brackets all vanish as ,±∞→x  then it is 
easy to see that 

∫
∞

∞−
= 02dxudt

d  

and hence 

( ) ∫
∞

∞−
== .const2dxuuV  

Next, consider the identity ,02 2 =− HuHu xx  where 

.0=ν−+++≡ xxxxxxxt uuuuuuH  
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This equation may be re-arranged in the following form: 

t
x uu ⎟

⎠
⎞⎜

⎝
⎛ − 32

3
1  

( ) .02214
1

3
1 222243 =⎥⎦

⎤
⎢⎣
⎡ ν−−+−+ν++−−+

x
xxxxxxxxxxx uuuuuuuuuuu  

Once again, assuming the group of terms in the square brackets vanish as 
,±∞→x  we arrive at the conclusion that 

( ) ∫
∞

∞−
=⎟

⎠
⎞⎜

⎝
⎛ −= .const3

1 32 dxuuuM x  

Thus, the conditional variational problem 

0=δM   for V fixed 

is interestingly enough the same as that of Benjamin [2] and can be solved by 
the viscous solitary wave Φ. This means that, the Euler-Lagrange equation 
for this problem is simply the viscous solitary-wave equation (1.7), where the 
speed of propagation c relative to critical velocity appears as the Lagrange 
multiplier. 

Note that, similar to Benjamin’s investigation [2], the statement made in 
the previous paragraph is the same principle originally proposed by Lax [8], 
Lemma 1.2 on page 475 of his paper, extended to include the viscous 
dissipative term on the right-hand side of equation (1.6). Thus, ( )uE  and 

( )uI  are two nonlinear functionals with, ,IE ≠  and ( )uI  that are invariants 

for the viscous KdV equation, then the variational problem 

0=δE   for I fixed 

can be solved for the viscous solitary wave. This means that Φ will satisfy 
the Euler-Lagrange equation 

( ) ( )Φ∇=Φ∇ IE C  

provided the multiplier C  is suitably chosen, as we shall demonstrate this 
for viscous solitary waves in an open channel (see Section 3). 
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The above principle implies that if u is close to Φ and if ( )ΦM  is the 

absolute minimum for given ( ) ( ),Φ= VuV  such that 

( ) ( ) ( ) 0, ≥Φ−=ΦΔ MuMuM  

then both ( )uV  and ( )ΦΔ ,uM  will be independent of time. This means that 

if initially a solution is close to Φ, then its solution will be subject to the 
constraint that the positive functional ( )ΦΔ ,uM  remains the same small 

value as that was initially given. 

3. Variational Principle for Viscous Solitary Waves in an Open Channel 

To demonstrate the forgoing theory, we shall now focus our attention to 
the classical problem of a solitary wave [9, Section 252] but extended to a 
case of viscous liquids. 

We first note that solitary waves of permanent form do exist for a wide 
range of amplitudes but not exceeding the maximum value which is about 0.8 
times the depth of the undisturbed liquid. 

Following the recent work of Sajjadi [10] on viscous potential flows for 
water waves we will consider the propagation of a solitary wave on a viscous 
liquid in an open-channel. Referring to Figure 1, and take the ( )yx, -

coordinates as shown, we shall assume the free surface is represented by 
( ),, txy η=  such that η takes the value H asymptotically for .±∞→x  We 

shall further assume the motion is started from rest and is irrotational, such 
that ,0=×∇ u  and thus the velocity vector may be expressed in terms of a 

velocity potential ( ),,, tyxΦ  such that ( ).,, tyxu Φ∇=  Therefore, the 

motion satisfies Laplaces equation ,02 =Φ∇  and we shall assume further 

that 0→Φ∇  for .±∞→x  The boundary conditions are, at the bottom of 

the channel 

 0=Φ y   at .0=y  (3.1) 

At the free surface, the kinematic and dynamic conditions are given, 
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respectively, 

 0=Φ−ηΦ+η yxxt   at η=y  (3.2) 

and 

 ( ) 022
1 2 =Φν−+η+Φ∇+Φ yyt Hg   at ,η=y  (3.3) 

where ν is the kinematic viscosity of the liquid and g is the acceleration due 
to gravity. The last term in (3.3) arises from the fact that for incompressible 
viscous potential flows the viscous contribution to the stress does not always 
vanish [10, 11]. 

 

Figure 1. Schematic diagram of a solitary wave on a viscous liquid. 

For a solitary wave propagating with velocity c we have xct ∂∂−≡∂∂  

and surface boundary conditions (3.2) and (3.3) reduce to 

 xyxx cη=Φ−ηΦ   at η=y  (3.4) 

and 

 ( ) xyy cHg Φ=Φν−−η+Φ∇ 22
1 2   at .η=y  (3.5) 

Following Benjamin [2], we assert the total energy for an arbitrary motion 
that vanishes sufficiently rapidly is ±∞→x  is given by 

 { } ( ) .2
1

2
1

0
222∫ ∫ ∫

∞

∞−

η ∞

∞−
−η+Φν−Φ∇= dxHgdydxE y  (3.6) 
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Note that the first integral in (3.6) represents the total kinetic energy and the 
second integral is the potential energy relative to the state of the liquid at rest. 
Furthermore, the total horizontal momentum (or the impulse of the motion 
[2]) maybe expressed as 

 ( )∫ ∫ ∫
∞

∞−

η ∞

∞−
ηηΦ−=Φ=

0
.,, dxtxdydxI xx  (3.7) 

Proposition 1. The variational principle for a solitary wave on a viscous 
liquid is given by 

0=δE   for V fixed, 

where δE represents the first variation of the integral E which arises from 
weak variations of both dependent variables Φ and η. 

Proof. Applying the Greens theorem and making use of (3.1) and noting 

that ,02 =Φ∇  we obtain from (3.6), 

( ) ( ) ( )∫
∞

∞− ⎥⎦
⎤

⎢⎣
⎡ δη

⎭⎬
⎫

⎩⎨
⎧ Φν−−η+Φ∇+ΦδηΦ−Φ=δ ,22

1 2 dxHgE syyssxxy  

 (3.8) 

where the subscript s denotes evaluation at the free surface. In a similar 
manner, from (3.7), we get 

 { ( ) }∫
∞

∞−
δηΦ+Φδη−=δ .dxI sxsx  (3.9) 

Now, for E to be stationary subject to the condition that I remains 
constant then from (3.8) and (3.9), we have 

 ( )xxxy c η−=ηΦ−Φ  (3.10) 

and 

 ( ) ( ) ( ) ,22
1 2

sxsyys cHg Φ=Φν−−η+Φ∇  (3.11) 

where c, the Lagrange multiplier, is a constant. We see at once that (3.10) 
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and (3.11) are exactly the surface kinematic and dynamic boundary 
conditions to be satisfied for a solitary wave propagating with speed c on a 
viscous liquid. This completes the proof of the proposition. ~ 

4. Principles of Stability 

We shall now consider the stability of equation (1.6) subject to the initial 
condition ( ) ( ).0, xGxu =  In order to establish the stability of viscous 

solitary wave solution Φ, we need to consider the aggregate of solutions u of 
equation (1.6) which are initially close enough to Φ. 

The concept of stability was originally established by Lyapunov [12]. He 
stated that the stability of the particular motion ( ){ }tCx +−Φ 1  needs to be 

compared with a general class of motions ( )txuu ,=  which will evolve 

from the imposed initial conditions that is close to the initial condition for Φ. 
This suggests that the purpose of stability if u at 0=t  is made to be close to 
Φ initially, then u will remain close for all .0>t  

To prove the stability of equation (1.6), we first state two lemmas 
followed by two theorems, which when they are proved, the principle of 
stability will be established. 

Lemma 1. For equation (1.6) the functionals 

 ( ) ( )∫
∞+

∞−
+= dxuuuE x

22  (4.1) 

and 

 ( ) ∫
∞+

∞−
⎟
⎠
⎞⎜

⎝
⎛ ν++= dxuuuuF x

232
2
1

3
1  (4.2) 

are invariant in time. 

Lemma 2. For a solution u of the partial differential equation (1.1) and 
their corresponding invariants, from Theorems 1 and 2, the following 
inequalities: 
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uu
2

1sup ≤  

and 

 ( ) ( )uEuuF ⎟
⎠
⎞⎜

⎝
⎛ ν++≤ 2

1sup3
11  (4.3) 

hold. 

Theorem 1. For equation (1.6), the invariant functionals (4.1) and (4.2) 
exist, well defined, and bounded. 

Theorem 2. Solutions of equation (1.6) are stable given that the initial 

wave form ( ) ( ) [ ( )],0, 1
2

2 RR WCxGxu ×∈=  where stability is with        

respect to the considered metrics ( ) ( ) ( )xxuudI Φ−=Φ,  and =IId  

( ) ( ) ,inf xxu Φ−ξ−ξ  where R∈ξ  and u  is the expected norm of the 

Sobolev space ( )R1
2W  namely 

( )∫
∞+

∞−
+= .2

122 dxuuu x  

Proof of Lemma 1. We begin by taking equation (1.6) and multiplying it 
through by 2u. Thus, we obtain 

 ( ) .02223
2 23222 =ν+⎟

⎠
⎞⎜

⎝
⎛ −−+++ x

x
xxttx uvuuuuuuuu  (4.4) 

Integrating (4.4) with respect to x and noting, using the prior assumption on u 
and ,xu  that all of the terms in the middle bracket vanish as ±∞→x  we 

obtain 

( ) ∫∫
∞+

∞−

∞+

∞−
=ν+⎥⎦

⎤
⎢⎣
⎡ + .02 222 dxudxuudt

d
xx  

Since the term 22 xuν  is positive definite, it follows that 
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∫ ∫∫
∞+

∞−

∞+

∞−

∞+

∞−
⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛≤ ,2 dxudxudxu xxx  

however it is clear that, using the assumption that the solution ( )txu ,  

vanishes at ,±∞→x  that ∫
∞+

∞−
dxux  vanishes. Hence, we obtain 

( ) .022 =⎥⎦
⎤

⎢⎣
⎡ +∫

∞+

∞−
dxuudt

d
x  

This yields the result that states 

( ) ( )∫
∞+

∞−
+= dxuuuE x

22  

is invariant in time, and this completes the proof of establishing for the first 
invariant ( ).uE  

To prove the second invariant (4.2), we first define 

( ) ( )∫
∞+

∞−
=ω dstsutx t ,,  

which allows equation (1.6) to be rewritten as 

.02
1 2 =ν−⎟

⎠
⎞⎜

⎝
⎛ ++ω−ω xx

x
xxxx uuu  

Multiply through by ω and integrating with respect to x we obtain 

 ∫
∞+

∞−
=⎥⎦

⎤
⎢⎣
⎡ νω−⎟

⎠
⎞⎜

⎝
⎛ +ω+ωω−ωω .02

1 2 dxuuu xx
x

xxxx  (4.5) 

The first term in the integrand can be written as [ ]x
2

2
1 ω  and thus we may 

argue that since u and xxxtu ω=  vanishes as ±∞→x  so must ω. Hence, 

equation (4.5) becomes 

∫
∞+

∞−
=⎥⎦

⎤
⎢⎣
⎡ νω−⎟

⎠
⎞⎜

⎝
⎛ +ω+ωω− .02

1 2 dxuuu xx
x

xxx  
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Similarly the second term in the integrand of the integral (4.5), i.e. 
,xxxωω  also vanishes as .±∞→x  Therefore, an integration by parts gives 

∫
∞+

∞−
=νω−⎟

⎠
⎞⎜

⎝
⎛ +ω .02

1 2 dxuuu xx
x

 

A second integration by parts then yields 

 ∫
∞+

∞−
=νω+⎟

⎠
⎞⎜

⎝
⎛ +ω .02

1 2 dxuuu xxx  (4.6) 

But since tx u=ω  equation (4.6) becomes 

∫
∞+

∞−
=⎟

⎠
⎞⎜

⎝
⎛ ν++ 02

1 2 dxuuuu tx  

which may be cast as 

.02
1

3
1

2
1 232 =⎥⎦

⎤
⎢⎣
⎡

⎟
⎠
⎞⎜

⎝
⎛ ν++∫

∞+

∞−
dxuuudt

d
x  

Hence we obtain 

 ( ) ∫
∞+

∞−
⎟
⎠
⎞⎜

⎝
⎛ ν++= dxuuuuF x

232
2
1

3
1  (4.7) 

is invariant in time. 

Proof of Lemma 2. Before proving the individual inequalities, we recall 
that from Parseval’s theorem we may rewrite our norm as 

 ( ) ,ˆ12
1 22∫

∞+

∞−
ωω+

π
= duu  (4.8) 

where the usual Fourier transform notation is utilized for .û  

Proof. (i) Firstly, it is clear that 

∫
∞+

∞−
ω

π
≤ ,ˆ

2
1sup duu  
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and secondly, by a simple algebraic modification and making use of the 
Cauchy-Schwartz inequality it follows that 

∫ ∫
∞+

∞−

∞+

∞−
ω

ω+

ω+=ω dudu 2

2

1
1ˆˆ  

( ) .
1

1ˆ1 2
22

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ω

ω+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ωω+≤ ∫∫

∞+

∞−

∞+

∞−
ddu  

Using a standard inverse trigonometric substitution, it can be shown that the 
value for the last integral is equal to π, hence we obtain 

 ( ) .ˆ1sup 22∫
∞+

∞−
ωω+π≤ duu  (4.9) 

Thus, from (4.8) and (4.9) it follows that 

uu
2

1sup ≤  

and this completes the proof of establishing the first identity. 

(ii) Using the definition of the invariants (4.1) and (4.2), we can see at 
once that 

( ) ∫
∞+

∞−
⎟
⎠
⎞⎜

⎝
⎛ ν++= dxuuuuF x

232
2
1

3
1  

∫ ∫
∞+

∞−

∞+

∞−
ν+⎟

⎠
⎞⎜

⎝
⎛ += dxudxuu x

232
2
1

3
1  

∫ ∫
∞+

∞−

∞+

∞−
⎟
⎠
⎞⎜

⎝
⎛ ν+⎟

⎠
⎞⎜

⎝
⎛ +≤ dxudxuu x

22
2
1sup3

11  

( ) ( )∫ ∫
∞+

∞−

∞+

∞−
⎟
⎠
⎞⎜

⎝
⎛ +ν++⎟

⎠
⎞⎜

⎝
⎛ +≤ dxuudxuuu xx

2222
2
1sup3

11  

( ).2
1sup3

11 uEu ⎟
⎠
⎞⎜

⎝
⎛ ν++=  
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Hence, this completes the proof of the second inequality by showing that 

 ( ) ( ).2
1sup3

11 uEuuF ⎟
⎠
⎞⎜

⎝
⎛ ν++≤  (4.10) 

Proof of Theorem 1. We recall that the existence theory for ( )uE  for 

the initial waveform ( ) ( ) [ ( )]RR 1
2

20, WCxGxu ×∈=  has already been 

established [5]. Moreover in [5], it was proved that as ±∞→x  that ( )uE  

exists and is equal to ( ) .2
2,1GGE =  

Now, applying the inequalities from Lemma 1 the existence of ( )uF  

becomes apparent. Thus, it follows that if 

( ) ,∞<uE  

(which was previously shown [5]), then 

 .
2

1sup uu ≤  (4.11) 

The inequality (4.11) shows that usup  is bounded on ,R  and thus from 

(4.10) we obtain 

( ) ( ).2
1sup3

11 uEuuF ⎟
⎠
⎞⎜

⎝
⎛ ν++≤  

Hence, from (4.10) and (4.11) the existence and boundness of ( )uF  is 

proved, and this completes the proof of Theorem 1. 

Proof of Theorem 2. We now focus our attention to the class of viscous 
solitary-wave solutions which may be obtained by making the following 
change of variables 

( ),xu Φ=  

where 

( ) .1 tcxx +−=  
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This, of course, represents a wave traveling with velocity .1 c+  Making the 
assumption that ( )xΦ  and second derivative of Φ vanish at infinity then 

substituting the above chain of variables into (1.6) and integrating once we 
obtain 

 ( ) .2212 2 Φ′ν=Φ+Φ−Φ ′′+ cc  (4.12) 

We refer to the above equation, whose solution vanishes at infinity, as the 
viscous solitary-wave solution. 

We note that, according to the Lyapunov definition [4], Φ is stable with 
respect to two different metrics Id  and IId  provided the following condition 

holds. That is to say, given any small number 0>ε  then there exists a 
corresponding number 0>δε  such that the initial condition 

 ( )[ ] ., 0 ε= δ≤Φ tI ud  (4.13) 

This then ensures that 

( ) ε≤Φ,udII  

for all ,0≥t  where Φ is the viscous solitary-wave solution and u is any 
bounded solution to (1.6). 

We remark that utilizing the above definition directly to prove stability is 
rather impractical. A better approach is to follow Benjamin et al. [4] that if 
we could obtain a functional ( )Φ,uI  which is invariant with time, where u is 

any solution to (1.6) and Φ is the viscous solitary-wave solution introduced 
above, then (4.13) will be satisfied if some finite values α and β exist such 
that, when ( ) AudI ≤Φ,  at ,0=t  then 

 ( )[ ] ( )Φ≥Φα ,, 2 uIudI  (4.13A) 

and 

( )[ ] ( ).,, 2 Φ≤Φβ uIudII  
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Hence, to prove the stability we simply need to establish the above 
inequalities, namely to obtain upper and lower bounds for the invariant 

functional. It is worth noting that by taking εαβ=δε  we can prove that 

there exists an alternative equivalence definition of stability to that stated 
above. 

However, before proceeding with this approach, we note that we may 
assume for each 0≥t  the solution u of (1.6) is a function of x, which is an 

element of the Sobolev functional space ( ),1
2 RW  so is the viscous solitary- 

wave solution Φ. Thus, we next define the difference Φ−= uh  and note 

that this function belonging to ( )R1
2W  are amongst the class of functions that 

are square integratable (i.e. in )2L  with derivatives that are also square 

integratable. Hence, we use the norm 

( ) .2
1

22
⎥⎦
⎤

⎢⎣
⎡ ′+= ∫

∞+

∞−
dxfff  

Now to establish stability we take the two previously established 
invariants ( )uE  and ( )uF  and write ,hu +Φ=  with further assumption 

that ( ) ( ),Φ= EuE  and compute the variations 

( ) ( ) ( )∫
∞+

∞−
+Φ++Φ=Φ−+Φ=Δ dxhhhhEhEE xxx

22 22  

and 

( ) ( )Φ−+Φ=Δ FhFF  

∫
∞+

∞−
⎟
⎠
⎞⎜

⎝
⎛ +Φ++Φ+Φ++Φ= .2

1
3
12 23222

xxx vhhvhhhhh  

However, since 0=ΔE  it follows that FECF Δ+Δ=Δ  and thus, we 
compute 
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( )∫
∞+

∞−
+Φ++Φ−=Δ+Δ− dxhhhhCFEC xxx

22 22  

∫
∞+

∞−
⎟
⎠
⎞⎜

⎝
⎛ ν+Φν++Φ+Φ++Φ+ dxhhhhhhh xxx

23222
2
1

3
12  

( ) ( )∫
∞+

∞− ⎢⎣
⎡ Φ−Φν+Φ+Φ−Φ= xxx chch 222 2  

( ) .3
1

2
11 322 dxhchch x ⎥⎦

⎤+⎟
⎠
⎞⎜

⎝
⎛ −ν+Φ+−+  (4.14) 

Next integration by parts, we get 

{[( ( ) )] ( ) }∫
∞+

∞−
Φν+Φ+Φ+Φ−− dxhcc xxx212 2  

[ ( ) ] ( )∫ ∫
∞+

∞−

∞+

∞−
Φν+Φ−+Φ+Φ−Φ+= .2212 2 dxhhhdxcc xxxxxx  

Since Φ satisfies (4.12) the integrals reduce to 

( )∫ ∫
∞+

∞−

∞+

∞−
Φν+Φ−=Φν dxhhhdx xxxxxx 2  

∫
∞+

∞−
Φ−= .2 hdxxx  

Hence, (4.14) can be rewritten in the following form: 

( )∫ ∫ ∫
∞+

∞−

∞+

∞−

∞+

∞−
Φ−+⎥⎦

⎤
⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ ν++Φ++=Δ .23

1
2
111 322 hdxdxhdxhchF xxx  

Thus, 

,3
1 32

1 ∫
∞+

∞−
+α≤Δ dxhhF  

where ⎟
⎠
⎞⎜

⎝
⎛ +++=α vAc 2

11,1max1  with A being an upper bound on .Φ  
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Next, using (4.3) we obtain that 

.
23

2
2

1
hAhF +α≤Δ  

Finally, choosing ( )231 A+α=α  and recalling that ( ) Φ−=Φ uudI ,  

h=  it becomes clear that we have satisfied the upper bound for α which 

is required for first inequality in (4.13A) with ( ) ., hudI =Φ  Moreover, 

following a similar development in [2], but with modifications in the 
algebraic development, a lower bound for β which is required for the second 
inequality in (4.13A) can also be obtained. 

Thus, we have satisfied (4.13A) which in turn implies that (4.13) holds. 
Hence we have proved that solutions u of (1.6) are stable with respect to 
viscous solitary-wave solution Φ and also with respect to the given metrics 

Id  and .IId  

5. Concluding Remarks 

In this paper, we have established that the viscous solitary-wave solution 
of equation (1.1) is stable. Stability is proved for constant viscosity-like 
coefficient 0>ν  such that ,R∈ν  and further, if the initial perturbations 
for a given viscous solitary wave are small, then the solution will remain 
permanently close in shape as it evolves in time. 

In our analysis here, we have also discovered the two invariants ( )uV  

and ( ),uM  given by 

( ) ∫
∞

∞−
== .const2dxuuV  

and 

( ) ∫
∞

∞−
=⎟

⎠
⎞⎜

⎝
⎛ −= const.3

1 32 dxuuuM x  

are the same for the regular Korteweg-de Vries equation (1.1) and its viscous 
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counterpart, i.e., equation (1.4). However, it should be made clear here that 
although both BBM and KdV equations (without the viscous term included) 
have the same two nonlinear invariants, but their viscous counterpart of both 
equations do have different invariants. 

It is interesting to note that any small change in the wave speed will 
eventually yield to large changes in the position of the wave. Perhaps the 
conjecture which was made by Gardner et al. [13] and was examined in great 
detail by Lax [8] can be extended to the viscous counterpart of Kortewig-de 
Vries equation (1.1). That is to construct an eigenvalue problem similar to 

 .06
1 =ζ⎟

⎠
⎞⎜

⎝
⎛ λ++ζ ′′ u  (5.1) 

With R∈ζ  and bounded as ,±∞→x  and show if ( )txu ,  is the solution of 

the viscous Korteweg-de Vries, with 1ν  which vanishes as ,±∞→x  

then any discrete negative eigenvalue λ remains constant as t varies 
parametrically. 

Using a different approach to that of Lax [8], we may solve equation 

(5.1) for the case where .sech2xu =  The solution that vanishes as ±∞→x  
may be expressed as 

( ) ( )[ ] ( )[ ],tanhtanh 21 xQbxPbx μ
ϑ

μ
ϑ +=ζ  

where μ
ϑP  and μ

ϑQ  are associated Legendre functions of the first and the 

second kind, respectively, 1b  and 2b  are arbitrary constants, and 

( ).356
1, −=ϑλ=μ i  

As λ−=μ  we can see at once that ,0<λ  which implies that t must vary 

parametrically. 

The conditions that 0→ζ  as ±∞→x  give the following set of 

homogeneous equations (secular equations) for determining λ, namely 
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( ) ( ) ,011 21 =+ μ
ϑ

μ
ϑ QbPb  

( ) ( ) .011 21 =−+− μ
ϑ

μ
ϑ QbPb  

In depth exploration of the eigenvalues, λ, satisfying the above set of 
equations is beyond the scope of this paper, and we will not pursue this any 
further here. 
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