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Abstract 

In this paper, we study the asymptotic behavior of the normalized 
weight sequence of a single-layer perceptron. If the perceptron is used 
for the classification of two infinite populations that cannot be linearly 
separated, then the weights do not converge but under certain 
conditions approach a steady state. Assuming that the input vectors     
are two-dimensional and normally distributed, we will show that the 
normalized perceptron weight process is geometrically ergodic. 

1. Introduction 

Neural networks have been applied successfully in classification 
problems. The simplest type of neural network is the single-layer perceptron, 
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invented in 1962 by Rosenblatt [4] to classify image patterns. Perceptrons 
can learn by example and training. After each classification, the perceptron is 
told the correct answer. There exists a simple learning algorithm for finite 
classification problems that guarantee a correct solution given that a solution 
exists. Specifically, when the input vectors of the single-layer perceptron        
can be linearly separated into two categories, this network can be trained      
to correctly classify these input vectors after a finite number of 
misclassifications. The separable case is well understood but rare; in most 
practical classification problems, the linearly separability assumption is not 
satisfied. Therefore, in this paper, we focus on the case where the input 
vectors are not linearly separable. 

The single-layer perceptron is an artificial neural network composed of        
k input units, where information from the environment is sent in, and one 
processing unit, which is the output of the system. Each input neuron i 
synapses onto the output neuron and a weight ( )iw  is assigned to this 

connection. These weights are considered adjustable and will be changed          
by the system in response to experience (the “learning” of the network). 

Suppose that an input vector ( ) ( ) ( )( ) kRkxxxx ∈= ...,,2,1  is presented to 

the network. The input neuron i sends the activity ( )ix  to the output neuron 

which is scaled by the weight ( ).iw  If we define the weight vector =w  

( ) ( ) ( )( ) ,...,,2,1 kRkwww ∈  then the output neuron of the single-layer 

perceptron produces the output ( ) { },1 θ≥⋅= xww xY  i.e., ( ) 1=xYw  if the inner 

product ( ) ( )[ ]∑
=

=⋅
k

i
ixiwxw

1
 is greater than or equal to a threshold θ, and 

( ) 0=xYw  otherwise. Formally, we may add an additional input element 

always set equal to −1, so that the input ( ) ( ) ( )( )kxxx ...,,2,1  is replaced by 

( ) ( ) ( )( )....,,2,1,1 kxxx−  The corresponding weight setting will be ( )., wθ  

This means we can assume with no loss of generality that there is no 
threshold, and that the output of the single-layer perceptron is ( ) =xYw  

{ }.1 0≥⋅xw  
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Let the set of pairs ( ){ }1,, ≥ntx nn  be taken from a space kR⊆Γ  

{ }.1,0×  The goal of the single-layer perceptron is, given the value of the 

input vector ,nx  to learn the value of the corresponding ,nt  which is the 

desired output of the network. We say that the input vector nx  is classified 

correctly by the network (with weight vector w) if its observed output 
( )nw xY  equals the desired output .nt  The perceptron algorithm, introduced 

by Rosenblatt [4], in which the network adjusts its weight vector to try to 
learn the classification is the following: 

( ( )) ,11 nnwnnn xxYtww n−−η+= −  (1.1) 

where ,1≥n  η  is a fixed positive parameter (called the learning rate), and 

0w  is the initial arbitrary weight vector in .kR  In the nth iteration, the input 

vector k
n Rx ∈  is presented to the network which has weight setting .1−nw  

If the vector nx  is classified correctly (i.e.,  if ( ) ),1 nnw txY n =
−

 then there is 

no need to change the weight setting and algorithm (1.1) gives .1−= nn ww  

In case ( ) 01 =
− nw xY n  but ,1=nt  the algorithm gives ,1 nnn xww η+= −  

so nw  is closer to the direction of ,nx  yielding a larger inner product.           

A similar situation holds if ( ) 11 =
− nw xY n  but .0=nt  This process of 

adjustments of the weights results in the “training” of the neural network. 
The single-layer perceptron is “learning” itself so that it can correctly classify 
the input vectors. 

Now suppose that the space Γ  is finite. Also, suppose that Γ  is linearly 

separable, i.e., there exists a vector { }0\kRw ∈∗  such that 

0≥⋅∗ xw  for all ( ) ,1, Γ∈x  

0<⋅∗ xw  for all ( ) .0, Γ∈x  

Then the Perceptron Convergence Theorem (Rosenblatt [4]) states that, after 
a finite number of misclassifications, every input vector will be correctly 
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classified. In other words, if there exists a weight vector ∗w  that can linearly 
separate the input vectors, then the perceptron algorithm will converge to 
such a vector after a finite number of weight adjustments. 

Most natural classification problems, however, are not linearly separable 
(i.e., in two-group classification problems, the “positive examples” cannot be 
separated from the “negative examples” by a hyperplane (a linear subspace in 

kR  of dimension .))1−k  Minsky and Papert [8] showed that in these cases 

the perceptron learning rule (1.1) will perform infinitely many changes of the 
weight vector, and the perceptron algorithm will not converge. Learning will 
never reach a point where all vectors are classified properly. The most 
famous example of the perceptron’s inability to solve problems with linearly 
non-separable vectors is the Boolean exclusive-or problem. There have been 
several studies of the performance of the perceptron learning algorithm, or 
variants of it, in non-separable classification problems, see, for instance, 
Bershad and Shynk [9], Cortes and Vapnik [2], Freund and Schapire [16], 
Gallant [14], Roychowdhury et al. [15], Shynk and Bershad [6] and Yang     
et al. [5]. 

The Perceptron Cycling Theorem (Minsky and Papert [8]) states that for 
finite non-separable classification problems the perceptron weight sequence 
{ }0, ≥nwn  stays in a uniformly bounded region and does not diverge to 

infinity. The first reported proof of this theorem is by Efron [1]. In the 
present paper, we want to study the behavior of the single-layer perceptron 
weight algorithm (1.1) for infinite non-separable classification problems. If 
the input vectors { }1, ≥nxn  form an independent identically distributed 

(i.i.d.) sequence, then the weight process is a Markov chain with stationary 
transition probabilities. In the next section, we will give sufficient conditions 
under which the perceptron weight process is ergodic. 

2. Sufficient Conditions for Ergodicity of the Perceptron Weight Process 

In this section, we want to study the weight sequence generated by the 
perceptron algorithm (1.1) in case the input vectors are not linearly separable. 



Geometric Ergodicity of the Normalized Perceptron Algorithm … 41 

We assume that the input-teacher pairs are realizations of an i.i.d. sequence 

of random variables ( )nn TX ,  taken from an infinite space { }.1,0×⊆Φ kR  

If kRW ∈0  is an arbitrary vector, then the perceptron algorithm 

( { })01 11 ≥⋅− −
−η+= nn XWnnnn TXWW  (2.1) 

defines a Markov process with stationary transition probabilities. The 
conditional probability distribution of nW  given the values of { ...,,0W  

}12, −− nn WW  just depends on the value of ( =|∈− 01 : WAWPW nn  

) ( ),,...,, 11220 wWAWPwWwWw nnnnn =|∈=== −−−−  and these one-

step transition probabilities are independent of the time variable ( ∈nWPn :  

) ( ) ( )AwPwWAWPwWA n ,011 ==|∈==| −  for all positive integers n. 

To simplify (2.1), we transform an input-teacher pair ( )nn TX ,  with 

0=nT  to ( )1,nX−  and we leave ( )nn TX ,  unchanged in case .1=nT  If 

we denote the new pair by ( ),1,nZ  then we get nn XZ −=  in case 0=nT  

and hence equation (2.1) becomes: 

{ }.1 01 1 ≤⋅− −
η+= nn ZWnnn ZWW  (2.2) 

In the other case, i.e., when ,1=nT  we get nn XZ =  and hence equation 

(2.1) becomes { }.1 01 1 <⋅− −
η+= nn ZWnnn ZWW  As we will assume later on 

that hyperplanes have Z-measure zero, this recursion might also be written as 
(2.2). Note that equation (2.2) defines the Markov process { }0, ≥nWn  

naturally as a random dynamical system with iteration map ( ) += wwgZ  

{ }.1 0≤⋅η ZwZ  

Observe that the transformed input vectors { }1, ≥nZn  form an i.i.d. 

sequence, defined on an infinite space .kR⊆Ψ  Let ν be the induced 

probability measure of .1Z  In what follows, we will denote by Z a generic 

random variable with distribution ν. Define for the vector { }0\kRw ∈  the 
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( )1−k -dimensional hyperplane { }.0: =⋅∈= ZwRZH k
w  In this paper, 

we assume that the measure ν satisfies the following: 

( ) ( ) ( ) 00: ==⋅∈=∈=ν ZwRZPHZPH k
ww  for all { }.0\kRw ∈  (2.3) 

This assumption assures that ( )wgw Z→  is continuous in distribution - at 

least for all w not equal to the zero vector in ,kR  which is why we have to 

restrict the state space to { }.0\kR  Note that, since wH  has Lebesgue 

measure zero in kR  for all { },0\kRw ∈  assumption (2.3) is satisfied if the 

measure ν is absolutely continuous with respect to Lebesgue measure λ on 
kR  ( .,i.e ( ) ( ) ).0implies0: ==λ⊂∀ AvARA k  

For { }0\kRw ∈  and ,kRA ⊂  we denote by 

( ) ( )wWAWPAwP nn =|∈= −1,  

the transition kernel associated with perceptron algorithm (2.2). Observe that 

( ) ( { } ).1:, 0 AZwRZPAwP Zw
k ∈η+∈= ≤⋅  For { },0\kRw ∈  ,kRA ⊂  

and n a positive integer, we let ( )AwPn ,  denote the n-step transition 

probabilities: ( ) ( ),, 0 wWAWPAwP n
n =|∈=  where ( ) ( ).,,1 AwPAwP =  

Definition 2.1. A Markov chain { }0, ≥nWn  on a state space Χ is 

ergodic if there exists a unique stationary distribution µ such that 

( ) ( )AAwPn µ→,  as ,∞→n  for any measurable set XA ⊂  and any 

initial value .Xw ∈  

Ergodicity says that ( )⋅,wPn  converges to µ in total variation for each 

.Xw ∈  The main result of this section gives mild conditions for the 
perceptron weight sequence { },0, ≥nWn  defined by (2.2), to be ergodic. 

Burton et al. [12] showed that assumption (2.3) implies that the perceptron 
weight sequence is a weak Feller chain, i.e., the map ( )AwPw ,  is lower 
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semicontinuous for any open set A, or equivalently, the map w  

( ) ( )∫ dywPyh ,  is continuous for any bounded continuous function ( )⋅h  on 

the state space. Venema [13] further showed that assumption (2.3) also 
implies that the transition law ( ){ }⋅,wP  is strongly continuous, i.e., for all 

Borel measurable ( )AwPRA k ,:⊂  is a continuous function in w. This 

form of continuity is sometimes expressed by calling { }0, ≥nWn  strongly 

Feller. 

If we define for { }0\kRw ∈  the half-space { },0: ≤⋅∈= ZwRZC k
w  

then, in addition to assumption (2.3), we further assume that 

( ) ( ) ( ) 00: >≤⋅∈=∈=ν ZwRZPCZPC k
ww  for all { }.0\kRw ∈  (2.4) 

Assumption (2.4) is equivalent to non-separability of the classification 

problem, since it says that no vector { }0\kRw ∈  correctly classifies, and is 

thus crucial for the analysis. If we let ⋅  denote the Euclidian norm in ,kR  

then we finally assume that for input vector :k
n RZ ∈  

( ) ( )∫ ∞<ν= kRn zdzZE .  (2.5) 

Under assumptions (2.3), (2.4) and (2.5), Venema [13] proved that, for 
the perceptron weight sequence { }0, ≥nWn  generated by equation (2.2), 

there exists a compact set ,kRK ⊂  with Lebesgue measure ( ) ,0>λ K  

which satisfies that 

• ∞<<∃ c0  such that ( ) cwWWWE nnn −≤=|− −− 11  for all 

.Kw ∉  

• ∞<<∃ B0  such that ( ) BwWWWE nnn ≤=|− −− 11  for all 

.Kw ∈  

The existence of this compact set K, together with the strong continuity 
of ( ){ },, ⋅wP  implies that the conditions of Theorem 5.1 in Tweedie [11]     
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are satisfied. These conditions are sufficient conditions for our Markov 
process { }0, ≥nWn  to be ergodic. Therefore, as stated in Venema [13], the 

following conclusion can be drawn: 

Theorem 2.2. Define the perceptron weight sequence in =n
k WR :  

{ }01 11 ≤⋅− −
η+ nn ZWnn ZW  for ...,,2,1=n  with kRW ∈0  arbitrary and 

0>η  fixed. Suppose that the input vectors { }1, ≥nZn  form an i.i.d. 

sequence, defined on an infinite space ,kR⊆Ψ  with ( ) .∞<nZE  Assume 

that { } [ ( ) 00::0\ ==⋅∈∈∀ ZwRZPRw kk  and ( )0: ≤⋅∈ ZwRZP k  

].0>  Then the Markov process { }0, ≥nWn  is ergodic. 

A key conclusion from Theorem 2.2 is the existence of a unique 

stationary distribution µ such that ( ) ( ) ( ) ( )
 µ=µ∈∀ ∫ wdAwPARBA k ,:  

and ( ) ( )AwWAWP n µ→=|∈ 0  as ∞→n  for any .
∈ kRw  By 

applying a result in Tweedie [10], we get the following corollary, as a 
consequence of Theorem 2.2. 

Corollary 2.3. Assume that the conditions in Theorem 2.2 hold. Then, as 

,∞→N  we have: ( ) ( )∑
=

µ→
N

n

san AAwPN
1

..
,1  for any ( ) ., kk RwRBA ∈∈  

Actually, a result in Pollard and Tweedie [3] allows us to replace this 
corollary by the following stronger statement: 

Corollary 2.4. Assume that the conditions in Theorem 2.2 hold. Then for 

any initial distribution ν on kR  we have: 

( ) ( ) ( ) 0,1

1
→⋅µ−ν⋅∫∑

= TV

N

n

n wdwPN  as ,∞→N  

where TV⋅  denotes the total variation norm. 
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A special application, where the conditions in Theorem 2.2 are satisfied, 
is the case where the input vectors { }1, ≥nZn  are normally distributed. We 

will study this case in the next section. We will show that, under the 

assumption that the input vectors are in 2R  and normally distributed, the 
normalized perceptron algorithm is geometrically ergodic. 

3. Geometric Ergodicity of the Normalized Perceptron Weight Process 

Consider again the standard perceptron algorithm += −1nn WW  

{ }.1 01 ≤⋅−
η nn ZWnZ  In Section 2, we saw sufficient conditions for this weight 

process to be ergodic in the non-separable case. We are now interested in 
non-separable cases where the weight process is geometrically ergodic, that 

is the convergence of the n-step transition probability ( )AwPn ,  to its limit 

( )Aµ  is geometrically fast. 

Definition 3.1. A Markov chain { }0, ≥nWn  on a state space Χ is 

geometrically ergodic if there exist a unique stationary distribution µ and      

a number ( )1,0∈β  such that ( ) ( ) n
Aw

n MAAwP β≤µ− ,,  for all 

measurable sets ,, XwXA ∈⊂  and ( AwMn ,1≥  denotes a finite positive 

constant depending on w and ).A  

One example where the conditions in Theorem 2.2 are satisfied is the 
case where the input vectors are normally distributed. So, applying this 
theorem, we conclude that in the Gaussian case our weight process is 
ergodic. We will see in this section that a slightly modified weight process is 
geometrically ergodic in the two-dimensional Gaussian case. 

From now on, assume ,2=k  i.e., the input vectors { }1, ≥nZn  and the 

weights { }0, ≥nWn  are vectors in .2R  The aim of perceptron learning is to 

find a weight vector w so that the classification procedure ( ) { }01 ≥⋅= xww xY  

minimizes the misclassification probability. In other words, the perceptron 
algorithm attempts to construct a vector w such that the separation line 
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{ }0: =⋅ wxx  results in a minimal number of classification errors. In the 

separable case, we concluded from the Perceptron Convergence Theorem 

that ,∗→ wWn  where the line { }0: =⋅ ∗wxx  is such that we do not make 

any classification errors. In the construction of the optimal separation line, 
the length of the vector w is of no importance. We are only interested in the 
angle that w makes with the x-axis, because this angle determines the 
direction of the separation line. It does not matter for the separation line if we 
make our vector w longer or shorter to a vector with the same direction      
and with length 1. Therefore, without loss of generality, we can restrict to       
the case where 1=w  for our weight vectors. So, from now on, we will 

work on the unit circle { },1:21 =∈= uRuS  a compact set, instead of 

the space .2R  

We observed that the perceptron output only depends on the direction of 
the weight vector, and not on its length. Thus if we replace w by ,ww      

we get the same classifications. This motivates the following normalized 
perceptron algorithm: 

{ }

{ }01

01

1

1
1
1

≤⋅−

≤⋅−

−

−
η+
η+

=
nn

nn

ZWnn

ZWnn
n ZW

ZW
W  (3.1) 

for ...,,2,1=n  where 0W  is an arbitrary vector in .1S  This modified 

perceptron algorithm was originally proposed by Burton et al. [12]. 
Compared to the standard perceptron algorithm (2.2), the angle between nW  

and the x-axis stays the same but the length of nW  becomes 1. The separation 

line { }0: =⋅ nWxx  does not change. We will study the resulting weight 

sequence again under the assumption that { }1, ≥nZn  forms an i.i.d. 

sequence ( ).innow 2R  The Markov chain { }0, ≥nWn  generated by (3.1) 

has the compact state space .1S  We will show that this weight process is 
geometrically ergodic when the two-dimensional input vectors are normally 
distributed. 
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Definition 3.2. Let 1S
F  be the collection of Borel sets on .1S  A function 

[ ]1,0: 1
1 →×

S
FSq  is called a stochastic transition function if it satisfies 

the following properties: 

(1) ( )⋅,wq  determines, for a fixed ,1Sw ∈  a probability measure on 

.1S
F  

(2) ( )Aq ,⋅  determines, for a fixed ,1S
FA ∈  a 1S

F -measurable function. 

The n-step transition probabilities are examples of stochastic transition 
functions, and they are calculated in the following inductive way: 

• ( ) ( ) ( ).,, 1
1 wWAWPAwPAwP kk =|∈== +  

• ( ) ( ) ( ) ( )∫ αα==|∈= ++
+

1 ,,,, 1
1

S
n

knk
n dwPAPwWAWPAwP  for 

....,2,1=n  

The probability that nW  belongs to the set A is then calculated as follows: 

( ) ( ) ( )∫ αα=∈ 1 ,,
S

n
n dpAPAWP  for ,1≥n  where ( ) ( ).0 AWPAp ∈=  

Note that when this probability does not depend on n, the { }nW -process is 

called strictly stationary and ( )⋅p  a stationary or invariant probability 

distribution. 

For all 1Sw ∈  and ,1≥n  ( )⋅,wPn  is a measure on 1S
F  and therefore 

by the Lebesgue decomposition it has an absolutely continuous and a 

singular component with respect to Lebesgue measure ϕ on ,1S  i.e., we can 

write ( ) ( )( ) ( ) ( )( )∫ ∆+αϕα=
A

nnn AwdwpAwP ,,, 0  with for all :1Sw ∈  

( )( )⋅,0 wp n  a 1S
F -measurable function and ( )( )⋅∆ ,wn  a measure on .1S

F  The 

following lemma can be found in Doob [7]: 
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Lemma 3.3. Let { }0, ≥nWn  be a Markov process on a space Ω with     

n-step transition probabilities ( ) ( )., wWAWPAwP knk
n =|∈= +  Define 

( )( )⋅⋅,1
0p  to be the absolute continuous component of ( )⋅⋅,1P  with respect to 

Lebesgue measure on Ω. Suppose ( )1,0∈δ∃  such that ( )( ) ,,1
0 δ≥αwp  

., Ω∈α∀w  Then there exists a unique stationary probability distribution 

( )⋅µ  such that ( ) ( ) ( ) 11, −δ−≤µ− nn AAwP  for all ,1≥n  ,Ω∈w  and 

.Ω∈ FA  

Can we apply this lemma to the weight process generated by the 
normalized perceptron algorithm (3.1)? For this, we have to determine 
whether the condition in Lemma 3.3 holds for this process. In the proof of 
the next theorem, we will show that this is indeed the case when the two-
dimensional input vectors are normally distributed. 

Theorem 3.4. Suppose that the Markov process { }0, ≥nWn  on 1S  is 

generated by the algorithm { }

{ }01

01

1

1
1
1

≤⋅−

≤⋅−

−

−
η+
η+

=
nn

nn

ZWnn

ZWnn
n ZW

ZW
W  for =n  

...,,2,1  where 0W  is an arbitrary vector in 1S  and 0>η  is fixed. Let the 

input vectors { }1, ≥nZn  in 2R  be normally ( )IN ,2 µ  distributed. Then 

{ }0, ≥nWn  is geometrically ergodic. 

Proof. Let ( ) ,,, 1
1

21 S
FASwww ∈∈=  and let ( ) ( ∈= +nk

n WPAwP ,  

)wWA k =|  denote the n-step transition probability for the Markov process, 

with ( ) ( ).,, 1 AwPAwP =  Let 2RZn ∈  denote the nth input vector 

presented to the network. Define the function: 

( ) { }

{ }
.1

1
,

0

0

≤⋅

≤⋅
η+
η+

=
n

n

Zwn

Zwn
n Zw

Zw
Zwf  (3.2) 
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Then we have:  

( ) ( ) ( )( ),,, 111 wWAZWfPwWAWPAwP nnnnn =|∈==|∈= −−−  

and because nZ  is independent of 1−nW  we get that 

( ) ( )( ).,, AZwfPAwP n ∈=  (3.3) 

From Definition 3.2, it follows that ( ) wZwf n =,  with probability 

( ),0>⋅=∗
nZwPp  and ( )

n
n

n Zw
ZwZwf

η+
η+

=,  with probability .1 ∗− p  

We will try to find the distribution of .
n
n

Zw
Zw

η+
η+  Define the random 

variable .nn ZwY η+=  Since we assume that ( ),,~ 2 INZn µ  we have 

( )IwNYn
2

2 ,~ ηηµ+  and therefore the density of nY  is ( ) =yp  

( ) ( )
.2

1 22
1 ηµ−−ηµ−−
η

−

πη

wywy T

e  The random variable 
n
n

Y
Y  is a point on 

,1S  with coordinates ( ).sin,cos θθ  Define the density of ( )θθ sin,cos  on 
1S  by the density of θ on [ ].2,0 π  

Let ( ) 2
21, Ryy ∈  be the coordinates of nY  and consider the function: 

( ) ,arctan,,:
1
22

2
2
121 





 





+→ y

yyyyyh  or: ( ) ( ).,sin,cos: θ→θθ rrrh  

Define ( )θq  to be the density function of .arctan
1
2 




=θ y

y  We are trying     

to calculate ( ).θq  First calculate the density function of ( ) =θ,r  

.arctan,
1
22

2
2
1 





 





+ y

yyy  Denote this function by ( )., θrs  Then: 

( ) ( )( )θ=θ ,, 21, rprs yyh  

( )( ( )) ( )θ⋅θ= −
− ,det, 121

1
, rJacrhp

hyy  
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( )( ) .sin,cos21, rrrp yy ⋅θθ=  

So we get that 

( )
( )( )Twrwrwrwr

errs
221122112 sin,cossin,cos

2
1

2,
ηµ−−θηµ−−θηµ−−θηµ−−θ

η

−

πη
=θ  

and the density function of 
n
n

Y
Y  is ( ) ( )∫

∞
θ=θ

0
., drrsq  

Because ( )⋅⋅,p  is a normal density function, we have: ( ) ⋅=θ rrs ,  

( ) [ ].2,0,0,0sin,cos π∈θ∀>∀>θθ rrrp  Therefore: 

( ) ( ) [ ]∫
∞

π∈θ∀>θ=θ
0

.2,0,0, drrsq  (3.4) 

Also, ( )θq  is a continuous function because: 

• ( )θ→ ,rsr  is integrable over [ )∞,0  for all [ ],2,0 π∈θ  since ( )θ,rs  

( ),sin,cos, θθ⋅= rrpr  with ( )⋅⋅,p  a normal density function. 

• ( )θ→θ ,rs  is continuous for almost all [ ),,0 ∞∈r  since ( )θcos  and 

( )θsin  are continuous functions, so ( ) ( )( ) =+θ+θ→ hrhrph sin,coslim 0  

( )θθ sin,cos rrp  because ( )⋅⋅,p  is a normal density function, so it is 

continuous in both variables. 

• There exists a function ( )rg  integrable, non-negative, and independent 

of θ such that ( ) ( ) [ ].2,0,0,, π∈θ∀>∀≤θ rrgrs  Intuitively, it is clear 

that such a function ( )rg  exists, because if ,∞→r  then ( )θθ sin,cos rrp  

[ ]π∈θ∀→ 2,0,0  and so ( ) [ ].2,0,0, π∈θ∀→θrs  However, it is hard to 

determine such a function explicitly. 

Now we can apply the lemma, an application of the dominated 
convergence theorem, which states that the three upper conditions imply that 

( ) ( )∫
∞

θ=θ
0

, drrsq  is continuous on [ ].2,0 π  The continuity of ( )θq  and 
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(3.4) now implies that 

10 0 <δ<∃  such that ( ) [ ].2,0,0 π∈θ∀δ>θq  (3.5) 

We can conclude from (3.2) and (3.3) that 

( ) ( ) ( )wWAWPAwPAwP nn =|∈== −1
1 ,,  

( )




 ≤





 ∈

η+
η+

= 0n
n
n wZAZw

ZwP ∩  

( ) ( )( ).0>∈+ nwZAwP ∩  

Since the vectors nZ  and wWn =−1  are independent, we get: 

( ) ( )00,1 ≤




 ≤|∈

η+
η+

= nn
n
n wZPwZAZw

ZwPAwP  

( ) ( )0>∈+ nwZPAwP  

( ) ( ).01 AwPpwZAZw
ZwPp n

n
n ∈+





 ≤|∈

η+
η+

−= ∗∗  

Because ( )21, www =  is a fixed vector in ,1S  we can write the following: 

( ) ( ) ( ) ( ) ( )∫ δ+θθ−= ∗
≤θ+θ

∗
A wrwrw ApdqpAwP ,11, 0sincos

1
21  

with ( )Awδ  denoting the Dirac measure of w on .1SA ⊂  

Now define ( )( ) ( ) ( ) ( ),11, 0sincos
1

0 21 ≤θ+θ
∗ θ−=α rwrwqpwp  where 

( )., θ=α r  Further, define ( )( ) ( ),,1 ApAw wδ=∆ ∗  then we observe that 

( ) ( )( ) ( ) ( )( )∫ ∆+αϕα=
A

AwdwpAwP ,,,, 11
0

1  with ϕ the Lebesgue measure 

on .1S  From (3.5), we can conclude that 

( )( ) ( ) ( ) ( )0sincos
1

0 2111, ≤θ+θ
∗ θ−=α rwrwqpwp  

( ) .,,1 1
0 Swp ∈α∀δ−> ∗  
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Let ( ) .1 0δ−=δ ∗p  Then 10 <δ<  and we have shown that, in the case 

of two-dimensional Gaussian input vectors, the normalized perceptron 

weight sequence results in an absolutely continuous component ( )( )α,1
0 wp  

of its one-step transition probabilities, for which there exists a ( )1,0∈δ  

such that ( )( ) .,,, 11
0 Swwp ∈α∀δ≥α  Hence, we can apply Lemma 3.3       

and conclude that there exists a unique stationary probability distribution 

( )⋅µ  such that ( ) ( ) ( ) 11, −δ−≤µ− nn AAwP  for all ,1≥n  ,1Sw ∈  and 

.1S
FA ∈  If we take ( )1,01 ∈δ−=β  and ,

1
1
δ−

=M  then we have 

shown that ( ) ( ) nn MAAwP β≤µ−,  for all measurable sets ,1SA ⊂  

,1Sw ∈  and .1≥n  Therefore, { }0, ≥nWn  is geometrically ergodic.  

4. Conclusions and Future Research 

In this paper, we gave certain conditions under which the weight process 
generated by the standard perceptron algorithm is ergodic in infinite non-
separable classification problems. Further, we proved that a slightly modified 
weight sequence is geometrically ergodic in the two-dimensional Gaussian 
case. In a future paper, we will present simulations that illustrate our main 
result, Theorem 3.4. We first considered the standard perceptron algorithm 

( ( ) { })01 11 ≥⋅− −
−η+= nn XWnnnn XtXWW  

and we let the input vectors X with ( ) 1=Xt  be ( )( )IaN ,0,2 -distributed 

and the vectors X with ( ) 0=Xt  be ( )( )IaN ,0,2 − -distributed, with .0>a  

The optimal separation line, which results in a minimum number of expected 
classification errors, is the y-axis. Our main interest is the size of =ϕn  

( ) ( )( ),12arctan nn WW  the angle between the weight nW  and the x-axis. This 

is because the separation line { }0: =⋅ nWxx  is only depending on the angle 

nϕ  and not on the length of the vector .nW  The optimal angle is in our case 
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0. Our simulations showed that, using different values of the learning rate η 
and different initial vectors ,0W  the angle initially approaches the optimal 

angle 0, but after a certain number of iterations the weights get stuck in a 
small neighborhood of the origin and the process is oscillating under the 
influence of the discontinuity point ( ).0,0  The angle is fluctuating and does 

not stay in a neighborhood of 0. 

Next, we considered the normalized perceptron algorithm 

( ( ) { })
( ( ) { })01

01

1

1
1
1

≥⋅−

≥⋅−

−

−
−η+
−η+

=
nn

nn

XWnnn

XWnnn
n XtXW

XtXW
W  

and again we let the input vectors X with ( ) 1=Xt  be ( )( )IaN ,0,2 -

distributed and the vectors X with ( ) 0=Xt  be ( )( )IaN ,0,2 − -distributed, 

with .0>a  The optimal weight vector is ( ),0,1  because for this vector the 

separation line is the y-axis and the input vectors with positive x-coordinate 
are classified to be 1, and the vectors with negative x-coordinate to be 0. 
Using the results from Theorem 3.4, we know that the conditional 
distribution of ,nW  given the value of ,0W  converges to the invariant 

distribution .ηµ=µ  Assume that ( ).0,10 =W  This is no restriction because 

in using the algorithm we could, after one step, end up in any other point on 
the circle with positive probability. The simulations showed that, for 
different values of η, the weights live in a small neighborhood of the 
asymptotically stable equilibrium point ( )0,1  on the circle, and the 

corresponding separation lines in a neighborhood of the y-axis. This is an 

illustration of the advantage of not working in ,2R  but on the circle .1S  

Now, if the function ηµ→η  is continuous, then this would imply that 

,0µ→µη  if .0→η  We have ( )0,1
0 δ=µ  because if ,0=η  then after 

applying the algorithm the weights stay to be ( ).0,1  So, if ηµ→η  is 

continuous, then we have convergence of the weight vectors to the optimal 
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vector ( ),0,1  if we let 0→η  (as, for instance, in simulated annealing 

schedules). The question remains whether this assumption of continuity is 

true. We conjecture that the distribution of ηµ  converges to the distribution 

concentrated at the optimal weight vector ( ).0,1  This is actually supported 

by computer simulations, but we have not been able (yet) to find a rigorous 
proof. 
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