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Abstract 

We present a wide class of empirical poverty indices including the 
most proposed in the literature. By the modern theory of empirical 
processes indexed by functions, we establish a uniform functional 
central limit theorem for this class of poverty estimators. From this 
result, we derive a generalized Wald-type test for comparing in a 
robust manner two income distributions by using a large spectrum of 
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poverty indices. We conduct a simulation experiment which supports 
well our asymptotic results. The methodology of test is then applied to 
a real data set for analyzing poverty in four areas in Sénégal. 

1. Introduction 

Research on poverty measurement and analysis has been considerably 
developed during the last decades. Several approaches based on the income 
distribution, have been investigated for either estimating the degree of 
poverty in a given population or making comparisons between two different 
populations. An important question is whether one can say, with statistical 
confidence, that a distribution A dominates another distribution B in terms of 
poverty. In other words, one often asks for conditions under which two 
income distributions can be ranked in a non-ambiguous manner by a large 
spectrum of poverty indices. 

There are many authors who were interested in this topic. For instance, 
Atkinson [1], Foster and Shorrocks [5, 6] Dardanoni and Forcina [2], Zheng 
[20], Davidson and Duclos [3] and Davidson and Duclos [4] are well-known 
references. But most of the methods utilized in these papers are based on the 
Lorenz or stochastic dominance curves or some transformations therefrom. In 
this context, testing poverty orderings requires defining a link between these 
curves and poverty indices. 

Conversely, in this paper, we propose a method that deals directly with 
the poverty indices themselves and exploit their covariance structure in   
order to test for robust poverty rankings between two distributions. Our 
methodology provides a unified approach that is both applicable to the 
additively separable poverty measures as well as to the non-additively 
separable ones, as the Sen-like poverty indices. 

To make this approach possible, we deal with a functional representation 
of the poverty indices. Indeed, when G denotes the income distribution 
function of the population of interest, and 0>z  represents the poverty line 
(i.e., the income level which separates the poor from the non poor), then a 
poverty-index can be theoretically defined as: 
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( ) ( ) ( )[ ] ( ) ( )∫=
z

ydGzyfzGyGwfwJ
0

,,,,  (1) 

where w and f are specific bi-variate real functions satisfying some regularity 
conditions due to the normative properties desirable on a poverty-index. In 
fact, w is interpreted as a weighting function, whereas f represents a kernel 
measuring the individual poverty gaps relatively to the threshold z. In other 
words, ( )zyf ,  is the contribution of an individual with income y to the 

global poverty of the population. The choice of these two functions depends 
on the desirable properties that one wish to be satisfied by the poverty-index 
( )., fwJ  Each choice of w and f leads to a particular formula which 

evaluates poverty in some way. Here are some examples of classical poverty 
indices encompassed by (1): 

• The index proposed by Sen [12] can be written in the form (1). It is 
defined as 
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• This index has been generalized by Kakwani [9] into 
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• The measure introduced by Shorrocks [13] is also a modification of the 
Sen index. It is defined as 
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with 

( ) ( )[ ] ( )( )yGzGyGw −= 12,   and  ( ) ., z
yzzyf −=  

• Foster et al. [7] proposed an important class of additively separable 
indices defined as 

( ) ( )∫ ≥α⎟
⎠
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with 
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• Watts [17] has also proposed a measure defined as 
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with 

( ) ( )[ ] ,1, =zGyGw   and  ( ) .log, ⎟
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⎝
⎛= z

yzyf  

For a large survey of the literature on poverty measurement, we refer              
the interested reader to Zheng [19]. Our concern in the present paper is to 
study the asymptotic properties of a class of estimators, say ( ),, fwJn  for 

the functional index ( ),, fwJ  where w and f belong to suitable classes of 

functions. Making use of the modern theory of weak convergence of 
empirical processes indexed by functions, we establish a uniform central 
limit theorem for ,nJ  which represents a wide class of empirical poverty 

measures containing the most currently used in empirical studies. From these 
results, we derive a generalized Wald-type test for establishing a robust 
poverty ordering between two income distributions. 

The remainder of the paper is organized as follows: In Section 2, we 
present our asymptotic results which are the almost sure consistency and a 
functional central limit theorem for the class of estimators .nJ  In Section 3, 
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we describe a Wald-type procedure for testing robust poverty orderings 
between two income distributions by using multiple poverty indices. In 
Section 4, we give a simulation experiment and apply the methodology of 
test to the 1994-senegalese data for analyzing poverty in four different   
areas. Finally, Section 5 concludes the paper, and the Appendix (Section 6) 
contains the simulation results and the proof of Theorem 2.2. 

2. Asymptotic Results 

Let nYY ...,,1  be an independent and identically distributed random 

sample of a random variable Y representing the income of an individual in a 
given population. Our functional ( )fwJ ,  will be defined on the class of 

functions FW ×  such that 

{ [ ] [ ] ,1,01,0: +→×= RwW  w continuous and ( )⋅,uwu  

is }increasing-non  

and 

{ ,: +++ →×= RRRfF  f continuous and ( )⋅,yfy  

                          is }.increasing-non  

To construct an estimator for the functional ( ) ( ) ,,,, FW ×∈fwfwJ  

we denote the empirical distribution function associated with the sample 

nYY ...,,1  by ( ) ( )∑ =
− ≤= n

j jn yYnyG 1
1 ,I  where ( )AI  represents the indicator 

function of a set .R⊂A  

Then, a direct estimator for ( )fwJ ,  is given by 

( ) ( ) ( )[ ] ( ) ( )∫=
z

nnnn ydGzyfzGyGwfwJ
0

,,,,  

which is obtained by simply substituting the empirical distribution function 

nG  for G in (1). Let nnn YY ,,1 ≤≤  denote the order statistics corresponding 

to the sample ....,,1 nYY  Then ( )fwJn ,  can be rewritten as 
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( ) [ ( ) ( )] ( ) ( )∑
=

≤=
n

j
njnjnnjnn zYzYfzGYGwnfwJ

1
,,, .,,1, I  (2) 

Now, we can establish the consistency of ( )fwJn ,  for ( ),, fwJ  for 

any couple ( ) ., FW ×∈fw  Let us introduce some notations. Denote by P 

the common probability law of the ,sYj′  and by nP  its associated empirical 

measure; that is, ∑ =
− δ= n

j Yn jn 1
1 ,P  where yδ  represents the Dirac mass at 

point y. Then, the empirical process associated with the sample nYY ...,,1  is 

defined as ( ).Pn nn −= PG  For any measurable real-valued function ,ϕ  

define 

( ) ( ) ( ) ( )∫ ∑
=

ϕ−=ϕϕ=ϕϕ=ϕ=ϕ
n

j
nnjn PnYnYdPP

1
,,1,: PGPE  

where ”“E  denotes the expectation. 

For any functions ,W∈w  ,F∈f  define the sequence of real-valued 

functions ( ) 1,, ≥nGfw nh  as 

( ) ( ) ( )[ ] ( ) ( ) .0,,,,, ≥≤= yzyzyfzGyGwyh nnGfw n I  

It is clear that ( )yh nGfw ,,  converges almost surely to the real-valued 

function 
( ) ( ) ( )[ ] ( ) ( ),,,,, zyzyfzGyGwyh Gfw ≤= I  

for all ,0≥y  and for any ( ) ., FW ×∈fw  From these notations, one can 

write 

( ) ( )∑
=

==
n

j
GfwnjGfwn nn hYhnfwJ

1
,,,,

1, P  

and 

( ) ( ) ( ) ( )∫
∞

===
0 ,,,,,, ., GfwGfwGfw PhYhydGyhfwJ E  
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Proposition 2.1. For any couple of functions ( ) ,, FW ×∈fw  one has 

with probability 1, 

( ) ( ) .,,, ∞→→ nfwJfwJn  

Proof. Given ( ) ,, WF ×∈fw  one can write 

( ) ( ) [ ] [ ].,, ,,,,,,,, GfwGfwnGfwGfwnn PhhhhfwJfwJ n −+−=− PP  

Then, to prove that ( )fwJn ,  converges almost surely to ( ),, fwJ  we first 

observe that by the strong law of large numbers and the continuity of the 
function w, the sequence of functions ( ) 1,, ≥nGfw nh  converges almost surely 

and uniformly to .,, Gfwh  That is, for large value of n, the supremum norm of 

the quantity GfwGfw hh n ,,,, −  may be bounded up by ,ε  for any .0>ε  It 

follows from this, that [ ]GfwGfwn hh n ,,,, −P  converges almost surely to 0, 

as .∞→n  

Next, since ( ) ( ) ,,,,,, ∞<== fwJYhPh GfwGfw E  the same argument 

of the strong law of large numbers enables us to conclude that 

GfwGfwn Phh ,,,, −P  converges almost surely to 0, as ,∞→n  and hence 

( )fwJn ,  converges almost surely to ( ),, fwJ  for any functions w and f.  

To establish our uniform central limit theorem, we observe that, by 
definition, the function Gfwh ,,  is truncated above z. Then, the monotonicity 

condition in the definition of the classes W  and F  implies that the function 

Gfwh ,,  is bounded on +R  for all ( ) ,, FW ×∈fw  and hence is P-square 

integrable. In the sequel, we also need the following condition: 

(A) W  and F  are pointwise measurable classes of functions. That is, 
they contain each one a countable subclass G  such that for all ,G∈g  there 

exists a sequence { } ,1 G⊂≥mmg  with ( ) ( )ygygm →  for every y. 
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By this condition, one has 

( ) ,sup ,,,,
,

∞<−
∈∈

GfwGfw
fw

Phyh
FW

 for all .0≥y  

Now, we are ready to state our main theorem, where ( )FW ×∞l  denotes the 

set of all real-valued, bounded functions defined on .FW ×  

Theorem 2.2. Let z be a positive real number and ( )yG  be a continuous 

cumulative distribution function. If the functions in W  are differentiable, 
with continuous first-order partial derivatives, and condition (A) holds, then 

the process { ( ) ( )[ ] }FW ∈∈− fwfwJfwJn n ,:,,  converges weakly in 

( )FW ×∞l  to a zero-mean Gaussian process with covariance function 

defined, for any ( ) ( ) ,~,~,, FW ×∈fwfw  as 

[( ) ( )]fwfw ~,~;,Σ  

( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ( )∫=
z

ydGzyfzGyGwzyfzGyGw
0

,~,~,,  

( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ( ) ( )∫ ∫−
z z

ydGzyfzGyGwydGzyfzGyGw
0 0

,~,~,,  

( ) ( ) ( ) ( ) ( )[ ] ( ) ( )∫ ∫ −∧+
z z

ydGxdGyGxGyGxGyxa
0 0 1 ,  

( )[ ] ( ) ( ) ( ) ( )∫ ∫−+
z z

ydGxdGyGyxazG
0 0 2 ,1  

( )[ ] ( ) ( ) ( ) ( )∫ ∫−+
z z

ydGxdGxGyxazG
0 0 3 ,1  

( ) ( )[ ] ( ) ( ) ( )∫ ∫−+
z z

ydGxdGyxazGzG
0 0 4 ,,1  

where 

( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( ),,~,
~

,,,1 zyfzGyGu
wzxfzGxGu

wyxa
∂
∂

∂
∂=  
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( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( ),,~,
~

,,,2 zyfzGyGv
wzxfzGxGu

wyxa
∂
∂

∂
∂=  

( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( ),,~,
~

,,,3 zyfzGyGu
wzxfzGxGv
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∂
∂

∂
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( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( ).,~,
~

,,,4 zyfzGyGv
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wyxa
∂
∂

∂
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Proof. We only give a sketch here. The proof itself is postponed to              
the last section. For any couple of functions ( ) ,, FW ×∈fw  one can 

decompose 

( ) ( )[ ] ( )GfwGfwnn hhfwJfwJn n ,,,,,, −=− G  

( ) ( ),,,, fwh nGfwn WG ++  (3) 

where ( ) ( )., ,,,, GfwGfwn PhPhnfw n −=W  Now, it remains to study the 

asymptotic behavior of the three terms in the right-hand side of (3). 
Beginning with the second term, one shows that the class of functions 

{ ( ) }FWH ∈∈= fwyhy GfwGz ,:,,,  is P-Donsker, which readily 

implies that the empirical process { ( ) }FW ∈∈ fwh Gfwn ,:,,G  converges 

weakly in ( )Gzl ,H∞  to a zero-mean Gaussian process ,G  with an          

explicit covariance function. Next, one proves that the first term 
( )GfwGfwn hh n ,,,, −G  tends in probability to zero, uniformly in ,FW ×  

as n tends to infinity. Finally, making use of the functional delta-method, we 

establish that the third term ( )fwn ,W  converges weakly in ( )FW ×∞l           

to a centered Gaussian limit process ,W  with a well-defined covariance 
structure too. We complete the proof by showing that the joint process 
( )nn WG ,  converges in distribution to a Gaussian limit process ( )WG,  

which, by the continuous mapping theorem, implies that the process 
( )nn WG +  converges weakly to .WG +  Now, observe that the cross 

covariance of the two processes nG  and nW  is nil. Indeed, for any ( ) ∈fw,  

,FW ×  one has 
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( ( ) ( )) ( ) ⎟
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( ( ) ( ))∑
=

=
n

j
GfwjGfw YhYh n

1
,,,, ,cov E  

.0=  

By combining this and the asymptotic gaussianity of the process ( ),, nn WG  

we can infer that the processes nG  and nW  are asymptotically independent 

and hence, the covariance kernel Σ  is obtained by adding the covariance 

functions of the two processes.  

Remark 1. An immediate consequence of Theorem 2.2 is the 
convergence of the finite marginal distributions of the process ( )fwJn ,  

suitably normalized and centered. That is, for any integer 2≥d                     
and for any functions ( ) ( ) ,,...,,, 11 FW ×∈dd fwfw  the vector 

( ) ( )( )ddnn fwJfwJ ,...,,, 11  is asymptotically Gaussian, with covariance 

matrix ( ) ,,1, dlklk ≤≤Σ=Σ  where ( ) ( )[ ].,;,, llkklk fwfwΣ=Σ  Further the 

matrix Σ  can be consistently estimated, allowing us to undertake non-
parametric statistical inference. Indeed, for any ,,1 dlk ≤≤  a natural 

estimator of lk ,Σ  is 
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( )∑∑
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,,32 ,11  
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⎠
⎞⎜
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⎛ −+

q

i

q

j
njni YYa

nn
q

n
q

1 1
,,42 ,,11  (4) 

where q is the number of poor (individuals whose incomes are less than z) in 
the sample, 4,3,2,1, =rar  are real-valued functions defined in Theorem 

2.2, and nnn YY ,,1 ≤≤  are the order statistics associated with the sample 

....,,1 nYY  

3. Testing Procedure 

Instead of working separately with single poverty indices or considering 
a particular class of poverty measures like the additive indices or the          
non-additive ones, our approach consider an arbitrary poverty-index vector 

( ),...,,1 dJJJ =  ,∗∈ Nd  and check for whether a poverty ranking can          

be established between two distributions by using simultaneously all 
components of J. Let A and B denote two income population distributions, 

AJ  and BJ  represent respectively their corresponding poverty-index 

vectors. There are several ways for testing poverty orderings. For instance, 
Kaur et al. [10] and Howes [8] utilized an approach which is based on a         
t-ratio statistic. While Davidson and Duclos [4] developed an empirical 
likelihood approach which computes the test statistic as the difference 
between the unconstrained and the constrained empirical likelihood 
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functions. But it turns that all these procedures depend on a finite grid of 
points and do not make use of the covariance structure of the different points 
in the grid. As a result, they are lacking in power relative to tests that deal 
with this covariance structure. In this paper, we follow the latter idea, and 
make use of the asymptotic covariance function of the poverty indices given 
in Theorem 2.2 to establish a robust poverty ranking between two 
independent distributions. We shall employ the generalized Wald method, 
described for instance in Kodde and Palm [11] and Wolak [18], and applied 
in Zheng [21] for testing poverty dominance. Namely, we focus on the 
following two testing problems: 

BA JJH =:0  versus BA JJH ≥:1  

and 

BA JJH ≥:0  versus ,:1 BA JJH ≥/  

where the notation BA JJ ≥  means that each component of AJ  is greater or 

equal to the corresponding component for ,BJ  with at least one strict 

inequality. That is distribution B dominates distribution A. 

Assume that two independent samples of size An  and Bn  are, 

respectively, drawn from the populations A and B. Denote by AĴ  and BĴ   

the estimators of the theoretical poverty-index vectors AJ  and BJ  from 

these samples. By Theorem 2.2, AĴ  and BĴ  are asymptotically normally 

distributed. That is, for An  and Bn  large enough, 

( ) ( )AAAA NJJn Σ− ,0~ˆ  

and 

( ) ( ).,0~ˆ BBBB NJJn Σ−  

Let .ˆˆˆ BA JJJ −=Δ  Then ĴΔ  is asymptotically normally distributed with 

zero-mean and covariance matrix Σ  which, by independence of the two 
samples, decomposes into 
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.11
B

B
A

A nn Σ+Σ=Σ  

This suggests considering as an estimator of ,Σ  the random matrix 

.ˆ1ˆ1ˆ B
B

A
A nn Σ+Σ=Σ  

The crucial step for the generalized Wald method is the computation of 
the following quadratic problem: 

( ) ( ).ˆˆˆmin 1
0

vJvJ
v

−ΔΣ′−Δ −

≥
 

Indeed, if v~  is a solution of this quadratic problem, then the test statistics 
are given by 

( ) ( ) ( ) ( ),~ˆˆ~ˆˆˆˆ 11 vJvJJJT −ΔΣ′−Δ−ΔΣ′Δ= −−  

for the null hypothesis of equivalence ( )BA JJH =:0  against the alternative 

of dominance ( ),:1 BA JJH ≥  and 

( ) ( ),~ˆˆ~ˆ 1 vJvJS −ΔΣ′−Δ= −  

for the null hypothesis of dominance ( )BA JJH ≥:0  against the general 

alternative of nondominance ( ).:1 BA JJH ≥/  

It has been proved (see, e.g., Kodde and Palm [11], Wolak [18) that, 
under ,0H  these statistics are, each one, asymptotically distributed as a 

weighted sum of 2χ  variables, with degree of freedom ....,,0 ddf =  To 

conclude the test, we must compare the observed values for the statistic T or 
S to the lower and upper bounds lq  and uq  for the critical value of the test, 

given a significance level .10 <α<  A table for these lower and upper 
bounds is available in Kodde and Palm [11]. lq  is obtained, with a degree of 

freedom ,1=df  and satisfies 

( ( ) ).12
1 2

lq≥χ=α P  
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While ,uq  solves the general equation, with a degree of freedom ,ddf =  

i.e., 

( ( ) ) ( ( ) ).2
112

1 22
uu qdqd ≥χ+≥−χ=α PP  

Finally, the decision rule is the same for the two tests. If the value of T 
(or S ) is less than ,lq  we do not reject .0H  If the value of T (or S ) is greater 

than ,uq  we reject .0H  If the value of T (or S) is between lq  and ,uq  the 

test is inconclusive and Monte Carlo simulations are needed to complete the 
inference (see, e.g., Wolak [18]). 

4. Applications 

4.1. Simulation experiment 

Since our theoretical results hold only asymptotically, it is important to 
know the minimum sample size from which they are applicable. We are 
particularly concerned with the asymptotic normality. For this we generate, 
using R software, random data sets from three classical distribution models: 
Exponential, Pareto and Uniform ( ).1,0  We also consider four well-known 

poverty indices: the FGT measures with parameters ,2,1=α  the Sen index 

and the Shorrocks one’s. For each of these poverty indices represented by J, 
we denote inJ ,  its estimate from the ith generated sample, and compute the 

p-value ( )ip  of the normality test for this sample i, 

( ( ))
( )

,ˆ,12 ,
,, σ

−
=Φ−=

JJn
zzp in

inini  

where Φ  is the standard normal distribution and 21
,ˆ kkΣ=σ  is extracted from 

the covariance matrix .Σ  After 1000=B  replications, we report the mean  
p-value for each index and for different sample sizes, ,50=n  100, 200, 500, 

1000. The poverty line z is fixed as an α -quantile to keep in the range of the 



Robust Ordering of Two Income Distributions … 217 

generated data. For lack of space, we shall only present the results for three 
values of α : 0.2, 0.5, 0.8. The results are shown in Tables 2, 3, 4 in the 
Appendix, where all the p-values are largely greater than the nominal level  
of 5%. That is, our poverty-index estimators are asymptotically Gaussian. 
Further, this property is true for relatively small sample of size 50=n  or 
100. We also have satisfactory results for higher sample sizes of order 

500=n  or 1000. 

4.2. Illustration with real data sets 

Now we apply our results to analyzing poverty in Senegal. We use 
income data sets available in ESAM 1 database which is a Living Standard 
Survey on households conducted by the “Agence Nationale de la Statistique 
et de la Démographie (ANSD)” in 1994. The data consist of a sample of 

3278=n  households for all over the country of Senegal, with a weight 
allocated to each area. For lack of space, we restrict our analysis on four 
areas (or regions): Dakar (DK), Ziguinchor (ZG), Saint-Louis (SL) and 
Kolda (KD). Considering the income per capita as a measure of well-being, 
we compare these four areas using the generalized Wald test described in 
Section 3. The poverty line was fixed at 143080=z  FCFA at that period, 
corresponding to an income of US $1 per day, for each individual. 

To implement the test, we consider 4=d  classical poverty indices 
among the most currently used in practice: the two Foster-Greer-Thorbecke 
measures for 2,1=α  (FGT(1), FGT(2)), the Sen index (SEN) and the 

Shorrocks index (SHO). We define the vector 

( ) ( )( ),,,2,1 SHOSENFGTFGTJ =  

which is estimated by  

( ( ) ( ) )ˆ 1 , 2 , , ,J FGT FGT SEN SHO=  

where each component is calculated from random samples drawn, 
respectively, from the four areas, via the general formula (2) in Section 2. 
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For any pair of areas, we compute the two statistics ( ) ( ) −ΔΣ′Δ= − JJT ˆˆˆ 1  

( ) ( ),~ˆˆ~ˆ 1 vJvJ −ΔΣ′−Δ −  and ( ) ( ),~ˆˆ~ˆ 1 vJvJS −ΔΣ′−Δ= −  and report the 

results in Table 1 below. The vector v~  was obtained by applying the 
command constrOptim of R software. 

Table 1. Values of the statistics T and S for any pair of areas 

Areas T S 

(DK, ZG) 19.41 47.32 

(DK, SL) 52.80 95.26 

(DK, KD) 85.85 194.43

(ZG, SL) 11.58 0.76 

(ZG, KD) 32.91 24.19 

(SL, KD) 17.10 21.25 

Each line in Table 1 corresponds to a pair of areas and contains two 
value statistics. The first statistic T is for the null hypothesis that the two 
areas are equivalent in terms of poverty. While the second statistic S is for 
the null hypothesis that the second area dominates the first. Comparing these 
values with the lower bound 706.2=lq  and the upper bound 761.8=uq  

obtained by choosing a significance level %5=α  (see, e.g., Kodde and 
Palm [11]), we observe that Kolda is dominated by all the other three regions 
because the null hypothesis is rejected for each test. That is, Kolda is the 
poorest area. We can also say that Dakar dominates the other regions, as the 
values of two statistics lead to rejection of the null hypotheses. Finally, we 
can conclude by the following ordering: Dakar dominates Ziguinchor, which 
dominates Saint-Louis. Kolda is at the bottom. 

5. Conclusion 

In the present paper, we have established a uniform central limit theorem 
for a large class of empirical poverty indices containing the most proposed  
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in the literature. From this result, we have constructed a Wald-type test for 
establishing a robust poverty ordering between two independent populations. 
The test was also applied to four areas in Sénégal for comparing their poverty 
levels. 

Nevertheless, our methodology applies only to two independent 
populations and does not take into account the dependence of the data, as it is 
the case of the panel data. This issue will be handled in a forthcoming paper. 

6. Appendix 

6.1. Simulation results 

Table 2. Simulation results for exponential distribution of parameter 1=λ  

 50 100 200 500 1000 
 

              n 
Index      

 FGT(1) 0.51 0.43 0.48 0.48 0.48 
2.0=α  FGT(2) 0.43 0.46 0.53 0.48 0.46 

 SEN 0.53 0.51 0.57 0.60 0.55 
 SHO 0.46 0.41 0.46 0.49 0.47 
 FGT(1) 0.52 0.46 0.53 0.48 0.49 

5.0=α  FGT(2) 0.46 0.46 0.48 0.47 0.59 
 SEN 0.57 0.63 0.63 0.56 0.60 
 SHO 0.53 0.57 0.57 0.54 0.58 
 FGT(1) 0.49 0.50 0.46 0.49 0.50 

8.0=α  FGT(2) 0.52 0.43 0.53 0.51 0.56 
 SEN 0.65 0.68 0.67 0.67 0.66 
 SHO 0.72 0.71 0.74 0.73 0.70 
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Table 3. Simulation results for uniform ( )1,0  distribution 

 50 100 200 500 1000 
 

               n 
Index      

 FGT(1) 0.46 0.47 0.46 0.48 0.49 
2.0=α  FGT(2) 0.49 0.50 0.51 0.46 0.48 

 SEN 0.54 0.60 0.58 0.58 0.57 
 SHO 0.55 0.52 0.54 0.52 0.56 
 FGT(1) 0.52 0.51 0.53 0.47 0.51 

5.0=α  FGT(2) 0.43 0.50 0.54 0.49 0.53 
 SEN 0.64 0.57 0.62 0.60 0.60 
 SHO 0.57 0.62 0.61 0.60 0.60 
 FGT(1) 0.52 0.52 0.50 0.50 0.48 

8.0=α  FGT(2) 0.48 0.48 0.45 0.47 0.51 
 SEN 0.66 0.69 0.68 0.67 0.68 
 SHO 0.68 0.73 0.69 0.68 0.68 

Table 4. Simulation results for Pareto distribution with parameters 3.0=γ  

and 1=c  
 50 100 200 500 1000 
 

               n 
Index      

 FGT(1) 0.50 0.50 0.52 0.48 0.49 
2.0=α  FGT(2) 0.48 0.51 0.48 0.52 0.48 

 SEN 0.27 0.28 0.25 0.26 0.27 
 SHO 0.34 0.35 0.37 0.30 0.29 
 FGT(1) 0.47 0.49 0.49 0.49 0.51 

5.0=α  FGT(2) 0.46 0.51 0.50 0.54 0.53 
 SEN 0.37 0.34 0.34 0.33 0.34 
 SHO 0.23 0.20 0.21 0.26 0.27 
 FGT(1) 0.48 0.49 0.48 0.50 0.60 

8.0=α  FGT(2) 0.52 0.50 0.51 0.50 0.50 
 SEN 0.11 0.15 0.18 0.16 0.14 
 SHO 0.22 0.18 0.22 0.23 0.27 
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6.2. Proof of Theorem 2.2 

First, recall the definition of the classes of functions W  and F  

[ ] [ ]{ ,1,01,0: +→×= RwW  w continuous, and ( )⋅,uwu  

                        is },increasing-non  

,:{ +++ →×= RRRfF  f continuous, and ( )⋅,yfy  

                       is }.increasing-non  

Next, introduce the class of functions 

[ ]{ }.increasing1,0: →= RkK  

For 0>z  fixed, ,W∈w  ,F∈f  K∈k  define the real-valued function 

( ) ( ) ( )[ ] ( ) ( ),,,,, zyzyfzkykwyh kfw <= I  for all +∈ Ry  

and let zH  be the class of functions defined as 

{ ( ) }.,,:,, KFWH ∈∈∈= kfwyhy kfwz  

According to the sketch given at the end of the statement of Theorem 
2.2, we split the proof into four parts. In the first, we establish the Donsker 
property for the class ,zH  and derive from this, that the empirical process 

{ ( ) }FW ∈∈ fwh Gfwn ,:,,G  converges weakly to a limit Gaussian process 

( ).,, GfwhG  In the second, we show that 

 
( )

( ) ,,0sup ,,,,
,

∞→→−
×∈

nhh pGfwGfwn
fw

nG
FW

 (5) 

where ”“ p→  denotes the convergence in probability. In the third part, we 

prove the weak convergence of the process ( )fwn ,W  to a zero-mean 

Gaussian process ( )fw,W  in ( ).FW ×∞l  Finally, in the last part, we prove 

that the joint process ( )nn WG ,  converges weakly to ( )WG,  which is a 

zero-mean Gaussian process. 
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6.3. Part I 

Recall that P is the common probability law of the jY ′ s and G stands for 

its cumulative distribution function. We have to prove that the class of 
functions zH  is P-Donsker. This will be done if we prove that the bracketing 

integral 

[ ] ( )( ) [ ] ( )( )∫
∞

εε=∞
0 22 ,,log,, dPLNPLJ zz HH  

is finite, where [ ]( )⋅N  denotes the bracketing number. Before proving this, 

observe that the elements of zH  are continuous and increasing functions, 

bounded on +R  by ( ) ( )[ ] ( ),,0,0 zfzkkw  for every ( ) .,, KFW ××∈kfw  

By assumption (A), the classes of functions W  and F  are pointwise 
measurable. Further, Lemma 2.2 of [14] entails that the δ -entropy, relatively 
to the supremum norm, of the class of increasing functions K  is finite         
for any .0>δ  That is, the class K  is totally bounded relatively to the 
supremum norm, and hence is pointwise measurable. This enables us to take 
the supremum over the set KFW ××  as equal to the supremum over a 
countable subset .0 KFWG ××⊂  Since for 0>z  fixed, the quantity 

( ) ( )[ ] ( )zfzkkw ,0,0  is finite for any ( ) ,,, KFW ××∈kfw  we may 

define the constant function 

( )
( )

( ) ( )[ ] ( ) ,,,0,0sup
,,

+
××∈

∈∀= RyzfzkkwyH
kfw KFW

 

as an envelope function for the class .zH  Then zH  is uniformly bounded by 

( ),yH  and we may assume without loss of generality that ( ) .1≡yH  Thus, 

zH  is a subset of the class of monotone functions defined on R  with values 

in [ ].1,0  It follows from [15, Theorem 2.7.5, p. 159] that for all ,0>ε  

 [ ] ( )( ) ,,,log 1
2

−ε<ε CPLN zH  (6) 

where C is a positive constant. 
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From the fact that the elements of zH  take their values in [ ],1,0  for 

1>ε  the number of ε -brackets needed to cover zH  is just 1. Then 

[ ] ( )( )PLJ z 2,, H∞  would be finite if 

[ ] ( )( )∫ ∞<εε
1

0 2 .,,log dPLN zH  

Now, integrating both sides of (6), one obtains 

[ ] ( )( )∫ ∫ ∞<=εε<εε −1

0

1

0
21

2 .2,,log CdCdPLN zH  

That is, [ ] ( )( )PLJ z 2,, H∞  is finite and the class zH  is P-Donsker. In 

particular, for Gk =  (the distribution function associated with the 
probability law P), the class zH  restricts to 

{ },,:,,, FWH ∈∈= fwh GfwGz  

which may be identified to .FW ×  Since zGz HH ⊂,  is P-Donsker, so is 

the class .FW ×  Then it follows that the empirical process { ( ) :,, Gfwn hG  

}FW ∈∈ fw ,  converges weakly in ( )Gzl ,H∞  to a tight limit process ,G  

which is a zero-mean Gaussian process with covariance function defined, for 

all ( )fw,  and ( ),~,~ fw  by 

( ( ) ( ))GfwGfw hh ,~,~,, ,cov GG  

GfwGfwGfwGfw PhPhhPh ,~,~,,,~,~,, −=  

( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ( )∫=
z

ydGzyfzGyGwzyfzGyGw
0

,~,~,,  

 ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ( ) ( )∫ ∫−
z z

ydGzyfzGyGwydGzyfzGyGw
0 0

.,~,~,,  

6.4. Part II 

For establishing (5), we first remark that for any ( ) ,, FW ×∈fw  the 
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functions Gfwh ,,  and nGfwh ,,  are elements of ,zH  which is shown to be 

P-Donsker according to the preview part. Since Gfwh ,,  and nGfwh ,,  are 

bounded, they are in ( ) ( ).22 GLPL =  Now, one has 

[ ( ) ( )] ( )∫
∞

−
0

2
,,,, ydGyhyh GfwGfw n  

[ ( ) ( )]2,,,,sup yhyh GfwGfw
zy

n −≤
≤

 

( ) ( )( ) ( ) ( )( ) ( )zyfzGyGwzGyGw nn
zy

,,,sup 22−≤
≤

 

( ) ( ) ( )( ) ( ) ( )( ) ,,,sup,0 22 zGyGwzGyGwzf nn
zy

−≤
≤

 

which tends almost surely to 0, as ,∞→n  by continuity of the function w 
and the fact that the empirical distribution function ( )yGn  converges   

almost surely to ( )yG  for all .R∈y  Thus, as n tends to infinity, 

[ ( ) ( )] ( )∫
∞

−
0

2
,,,, ydGyhyh GfwGfw n  converges almost surely and hence            

in probability to zero. It follows from Lemma 19.24 of [16] that 
( ) ,0,,,, pGfwGfwn hh n →−G  ∞→n  which, by the continuous mapping 

theorem, implies that 

( )
( ) .,0sup ,,,,

,
∞→→−

×∈
nhh pGfwGfwn

fw
nG

FW
 

This establishes the second part of our proof. 

6.5. Part III 

For any given functions ( ) ,, FW ×∈fw  we define on the class =K  

[ ]{ }increasing,1,0: →Rk  the following operator: 

( ) ( ) ( )[ ] ( ) ( )∫ ==φφ
z

kfwfwfw PhydPzyfzkykwkk
0 ,,,, .,,:  
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Recall that ( )bau ,ξ
∂
∂  and ( )bav ,ξ

∂
∂  are the partial derivatives of a 

differentiable function ( )vu,ξ  with respect to its first and second arguments, 

taken at ( ) ( ).,, bavu =  Let  

{ }.continuous, kk KK ∈=′  

For all ,K∈k  and K∈ts  such that K∈+ ttsk  and ,K′∈→ sst  as 

,0→t  one has by a first-order Taylor expansion of w, for some functions ζ  

and π  defined on ,R  with values in ( ):1,0  

( ) ( )
t

ktsk fwtfw ,, φ−+φ
 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )∫ ζ+π+
∂
∂=

z
ttt ydGzyfzsttzkysttykwuys

0
,,  

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )∫ ζ+π+
∂
∂+

z
ttt ydGzyfzsttzkysttykwvzs

0
,,  

.: tt III +=  

Now, we have to show that as ,0→t  

( ) ( ) ( )[ ] ( ) ( )∫ ∂
∂=→

z
t ydGzyfzkykwuysII

0
,,,  

( ) ( ) ( )[ ] ( ) ( )∫ ∂
∂=→

z
t ydGzyfzkykwvzsIIII

0
.,,  

We only establish the first result as the other can be handled with the 
same techniques. By assumption (A) the function w and its first-order partial 
derivatives are bounded on ( ]z,0  and one has: 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]zsttzkysttykwuysII ttt
zy

t ζ+π+
∂
∂≤−

≤
,sup  

 ( ) ( ) ( )[ ] ( ) ( )∫∂
∂−

z
ydGzyfzkykwuys

0
.,,  
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Adding and subtracting appropriate terms and observing that both k and s 
are bounded by 1, one has: 

( ) ( )ysysII t
zy

t −≤−
≤

sup  

( ) ( ) ( ) ( ) ( ) ( )[ ] ( )
⎭⎬
⎫

⎩⎨
⎧ ζ+π+
∂
∂×

≤
zyfzsttzkysttykwu tt

zy
,,sup  

( ) ( ) ( ) ( ) ( ) ( )[ ]
⎩⎨
⎧ ζ+π+
∂
∂+

≤
zsttzkysttykwu tt

zy
,sup  

( ) ( )[ ] ( ) .,,
⎭⎬
⎫

∂
∂− zyfzkykwu  

The fact that ,sst →  as 0→t  entails that ( ) ( ) ,0→− ysyst  as 

.0→t  Consequently, the first term in the right-hand side of the above 
inequality tends to 0, as t tends to 0. The second term also tends to 0, as t 
goes to 0. This is due to the continuity of w and its first-order partial 
derivatives. It results from above that, φ  is Hadamard-differentiable at 

,K∈k  tangentially to ,K′  with derivative [ ],, kfwφ′  given for all K∈s  by 

[ ]( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ( )∫ ⎭⎬
⎫

⎩⎨
⎧

∂
∂+

∂
∂=φ′

z
fw ydGzyfzkykwvzszkykwuyssk

0, .,,,  

Since [ ]GGn n −  converges weakly to ,GB  where B  stands for the 

standard Brownian bridge, it follows from the functional delta-method       

(see, e.g., [16]) that [ ( ) ( )] [ ]GfwGfwfwnfw PhPhnGGn n ,,,,,, −=φ−φ  

( )fwn ,W=  converges in distribution to the Gaussian variable 

[ ]( )GGfw B,φ′  

( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ( )∫ ⎭⎬
⎫

⎩⎨
⎧

∂
∂+

∂
∂=

z
ydGzyfzGyGwvzGzGyGwuyG

0
,,, BB  

( ).,: fwW=  

Since the class of functions FW ×  is shown to be Donsker according to 
Part I, we can infer that the process ( ){ }FW ∈∈ fwfwn ,:,W  converges 
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in distribution to ( )fw,W  which is a zero-mean Gaussian process, with 

covariance kernel given, for all ( )fw,  and ( ),~,~ fw  by 

( ( ) ( )) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )∫ ∫ −∧=
z z

ydGxdGyGxGyGxGyxafwfw
0 0 1 ,~,~,,cov WW  

( )[ ] ( ) ( ) ( ) ( )∫ ∫−+
z z

ydGxdGyGyxazG
0 0 2 ,1  

( )[ ] ( ) ( ) ( ) ( )∫ ∫−+
z z

ydGxdGxGyxazG
0 0 3 ,1  

( ) ( )[ ] ( ) ( ) ( )∫ ∫−+
z z

ydGxdGyxazGzG
0 0 4 ,,1  

where 

( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( ),,~,
~

,,,1 zyfzGyGu
wzxfzGxGu

wyxa
∂
∂

∂
∂=  

( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( ),,~,
~

,,,2 zyfzGyGv
wzxfzGxGu

wyxa
∂
∂

∂
∂=  

( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( ),,~,
~

,,,3 zyfzGyGu
wzxfzGxGv

wyxa
∂
∂

∂
∂=  

( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( ).,~,
~

,,,4 zyfzGyGv
wzxfzGxGv

wyxa
∂
∂

∂
∂=  

6.6. Part IV 

Here we show that the couple of processes ( )nn WG ,  converges weakly 

to joint process ( )WG,  which is a zero-mean Gaussian process. To this end, 

we show that it is tight and that its finite marginal distributions converge to 
those of a Gaussian process. 

The tightness follows immediately from Parts I and III, where it is 

proved that nG  converges weakly to a tight Gaussian process ( ),,Gzl H∞∈G  

and nW  converges weakly to a tight Gaussian process ( ).FW ×∈ ∞lW  
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For the study of the finite dimensional distributions, we have to show 

that for all R∈ββαα ...,,,...,, 11 m  and ( ) ( ) ,~,~,, FW ×∈iill fwfw  =l  

,...,,1 m  ,...,,1=i  the linear combination 

 ( ) ( )∑ ∑
= =

β+α
m

l i
iiniGfwnl fwh ll

1 1
,,

~,~WG  (7) 

is asymptotically Gaussian. For this, we make use of the asymptotic linearity 
of the two processes nG  and .nW  For larger values of n, the latter can be 

expressed in terms of the former. Indeed for all ( ) FW ×∈fw,  denote by 

fwL ,  the Hadamard derivative of fw,φ  at G; that is [ ].,, GL fwfw φ′=  Then 

for larger values of n one has 

( ) ( ) ( [ ]) ( ).1, ,,,,, PnfwGfwGfwn oGGnLPhPhnfw n +−=−=W  

Since ( ) ( ) [ )( )∑ ∑= = ∞
−− ⋅=⋅≤=⋅ n

j
n
j Yjn jnYnG 1 1 ,

11 ,II  using the linearity 

of ,, fwL  we obtain for n large enough that 

( ) [ ( [ )( )) ( )] ( )∑
=

∞ +−⋅=
n

j
PfwYfwn oGLL

n
fw j

1
,,, 11, IW  

( ( [ )( )) ( ).1,, PYfwn oL j +⋅= ∞IG  

Combining this with the linearity of nG  we obtain, for all ,...,,1 mαα  

R∈ββ ...,,1  and ( ) ( ) ,...,,1,...,,1,~,~,, ==×∈ imlfwfw iill FW  that 

( ) ( )∑ ∑
= =

β+α
m

l i
iiniGfwnl fwh ll

1 1
,,

~,~WG  

( ) ( ( [ )( )) ( )∑ ∑
= =

∞ +⋅β+α=
m

l i
PYfwniGfwnl oLh jiill

1 1
,~,~,, 1IGG  

( [ )( ) ( ).1
1 1

,~,~,, P

m

l i
YfwiGfwln oLh jiill +

⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛
⋅β+α= ∑ ∑

= =
∞IG  
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Recall that nG  is the empirical process and that the function 

( [ )( ))∑ ∑= = ∞ ⋅β+α
m
l i YfwiGfwl jiill Lh

1 1 ,~,~,, I  

belongs to ( ).2 PL  Then it follows that the random variable defined in (7) is 

asymptotically Gaussian, and hence the finite marginal distributions of the 
process ( ),, nn WG  

( ( ) ( ) ( ) ( ))fwfwhh nnGfwnGfwn mm
~,~...,,~,~,...,, 11,,,, 11 WWGG  

are asymptotically Gaussian too. Combining this with the tightness argument 
enable us to conclude that the joint process ( )nn WG ,  converges weakly to 

the process ( )WG,  which is Gaussian and centered. 
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