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Abstract 

Periodic behavior has been a successful feature in cellular processes 
and biological processes that are highly contaminated with noise 
problem. In this paper, we introduce the use of a new test procedure 
for finding periodic sequence in multiple series or microarray data, 
with respect to hypothesis testing method based on the Fisher 
g-statistic. Using the basic idea underlying a robust testing procedure 
under the Gaussian noise assumption, a computational efficiency 
means of detecting periodicity in biological time series data was 
established. 

1. Introduction 

Periodic phenomena are widespread in biology. The problem of     
finding periodicity in biological time series can be viewed as a multiple 
hypothesis testing of the spectral content of a given time series. The exact 
noise characteristics are unknown in many bioinformatics applications. 
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Furthermore, the observed time series can exhibit other non-idealities, such 
as outliers, short length and distortion from the original wave form. Hence, 
the computational methods should preferably be robust against such 
anomalies in the data. 

This approach can be parametric or non-parametric. The parametric 
approaches assume that the underlying stationary stochastic process has a 
certain structure which can be described using a small number of parameters. 
The major task in this method is to estimate the parameters of the model that 
describes the stochastic process. 

The non-parametric approaches explicitly estimate the covariance or the 
spectrum of the process without assuming that the process has any particular 
structure. 

DNA microarray experiments are usually classified based on the type of 
array that is used in the experiment (cDNA and oligonucleotide arrays) or 
according to the organism that is profiled. In static expression experiments, a 
snapshot of the expression of genes in different samples is measured, while 
in time series expression experiments, a temporal process is measured. 
Another important difference between these two types of data is that while 
static data from a sample population (e.g., ovarian cancer patients) are 
assumed to be independent identically distributed; time series data exhibit a 
strong autocorrelation between successive points. 

Much of the early work on analyzing time series expression experiments 
used methods developed originally for static data [1, 3]. More recently, 
several new algorithms specifically targeting time series expression data 
were presented in literature. 

The problems of processing gene expression and other molecular 
biological time series data include short time series length, the presence of 
noise of unknown distribution, outliers and other non-linearities involved       
in measurement technologies themselves. In [4], a robust rank-based 
modification of Fisher’s g test for finding hidden periodicities in time series 
data was established. The method performs well both under the Gaussian 
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noise assumption and when outliers and other non-linearities are present. The 
method, however, requires intensive numerical computation when it comes to 
evaluating the significant values. 

A major difference between the methods has been proposed [2]. 
Wichert’s method is capable of detecting unknown frequencies whereas other 
methods are designed for detecting fixed frequencies. From a computational 
point of view, the problem of finding unknown frequencies is even more 
demanding since no prior knowledge of the frequency to be detected is 
available. 

The main contribution of this paper is to establish methods of detecting 
periodicity in biological processes and comparing their relative efficiency. 

In Section 2, we provide some background on the methods employed in 
the detection of periodicity and also in the analysis of biological processes. 
In Section 3, we discuss on the analysis and result of our experiment on all 
the biological time series data. 

2. Methodology 

2.1. Method of analysis 

In order to be consistent with the previously published methods, we use 
similar notation as in [2] and also consider the same model for the periodic 
time series 

( ) ,cos nn nY ε+φ+ωβ=  (1) 

where ,0>β  ( ),,0 π∈ω  ,...,,1 Nn =  ( ],, ππ−∈φ  and nε  is an i.i.d. 

noise sequence. To test for the periodicity, define the null hypothesis as 
,0: =βoH  i.e., time series consists of the noise sequence alone, .nny ε=  

We review a method for detecting unknown frequencies and later introduce a 
modification which can be applied to the detection of known frequencies.     
We first review the Fisher’s test for the detection of periodic transcripts as 
introduced in [2]. 
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The method proposed by [2] is based on the periodogram spectral 
estimator defined as 

( ) [ ],,0,1 2

1
π∈ω=ω ∑ =

ω−N
n

ni
neyNI  (2) 

where N is the time series length. The periodogram is further evaluated at 
(harmonic) normalised frequencies 

,...,,1,0,2 alN
l
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where ( )[ ]21−= Na  and [ ]x  denotes the integer part of x. To test for the 

periodicity formally, some kind of a test statistic must be chosen, hence the 
use of the Fisher g-statistic. The so-called g-statistic for one time series is 
given by 
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In plain words, the g-statistic is the maximum periodogram ordinate 
divided by the sum of all periodogram ordinates for ....,,1 aI =  Large value 

of g indicates a strong periodic component and leads to the rejection of the 
null hypothesis. 

Wichert et al. [2] resorted to a result by Fisher, under the Gaussian noise 
assumption that gives the exact distribution of the g-statistic with respect to 
its null hypothesis. 

To correct the p-values for multiple testing, use the method of Benjamini 
and Hochberg, which controls the false discovery rate (FDR). The FDR 
method controls the expected proportion of false positives (type I errors) at a 
given rate q. The threshold of the FDR depends on the evaluated p-values. 

However, the same methods, such as simulation and permutation-based 
significance values, can also be applied to the modified g-statistic. In 
experimental results section, we apply both the standard and the modified      
g-statistics to real microarray data. 
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2.2. Simulation and permutation 

The simulation-based method is simple. Given the model as in equation 
(1) together with some distributional assumptions for ,nε  generate a set of P 

random time series under the null hypothesis. Use the obtained g-values to 
compute an estimate of the distribution of the g-statistic under the null 
hypothesis. The distribution can be estimated, e.g., using kernel density 
estimation methods. The testing can then be performed as explained above 
except that the significance values are computed/integrated relative to the 
estimated distribution. 

Note that the null distribution must be estimated for each time series 
length separately but, due to the distribution-free property, the null 
distribution is independent of the noise characteristics under the i.i.d. 
assumption. 

A more flexible way of obtaining p-values is to use permutation tests. 
Although they are a relatively old concept, permutation tests have only 
recently become interesting in practice because of the intensity of needed 
computing power. The idea is simple: 

Choose a test statistic. 

Evaluate the test statistic on the original data. 

Randomly permute the data and evaluate the test statistic on every 
permutation. 

Estimate the distribution of the test statistic with the help of the sample 
generated. 

Use the estimated distribution to get a p-value for the original test 
statistic computed. 

A sequence of random variables { } NnXn ...,,2,1, =  is exchangeable, 

if the joint distribution of NXXX πππ ...,,, 21  is the same as that of the 

original sequence NXXX ...,,, 21  for all permutations π. Under the null 
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hypothesis, the elements of the time series ny  are independent and identically 

distributed. And therefore exchangeable, and hence the permutation test can 
be applied. 

Alternatively, as the application of a random permutation destroys any 
periodic structure that is present in the original sequence, permutation tests 
can be used to assess how highly structured the given time point values are in 
the light of the chosen test statistic versus other permutations of the given 
sample. As the concept of permutation tests is non-parametric, they can be 
applied without knowing the exact distribution of the data at hand. 

Instead of performing the entire N! permutations for each time series, we 
have chosen to permute each of the original time series for 5000=P  times. 
As our simulations show, this seems to be quite an adequate number of 
iterations. 

Let us first examine the power of the test, i.e., one minus the probability 
of the type II error (false negative). The power of the test is estimated for the 
three different test cases as well as for different time series lengths and for 
different noise parameters using 10000 Monte Carlo runs. The significance 
level is set to .05.0=α  In all the three cases, the case-specific noise 
assumptions are used for both the null hypothesis ( )0=β  and the alternative 

hypothesis ( ).0>β  In this simulation, we use the signal model to represent a 

periodic signal (i.e., the alternative hypothesis). In the right column of Table 
3, the length of the time series is set to 40 and the power is shown as the 
function of varying noise parameters. Table 3 clearly shows that the power of 
the proposed robust hypothesis testing method is remarkably better than that 
of the Fisher’s test, especially in the case of outliers and non-linear 
distortion. More interestingly, however, the proposed method is also more 
powerful in the case of standard Gaussian noise. 

Next, we consider another simulation. In the same way as in [2],         
two thousand time series of length 50,45,40,20,10=N  and 100 were 

generated to test the periodicity detection. One thousand and nine hundred of 
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the time series were plain noise and one hundred time series were generated. 
We again consider the three aforementioned noise models. As explained       
in the computational methods subsection, we evaluated the g-statistic and     
p-value for each time series and then used the FDR rule to determine which 
of the time series was considered to be cyclic for a certain FDR level. The 
FDR level, at which the expected rate of false positives is controlled, was 
chosen similarly as in [2], i.e., 01.0,05.0,10.0,15.0=q  and 0.005. For each 

N and q, the simulation was run for 99 times for the simulation-based cases 
and 9 times for the permutation-based cases. Median statistics are reported 
for the number of found periodic components, the number of correctly 
identified periodic components (shown in parenthesis) and the number of 
truly periodic time series among the top 100 ranked sequences ( ).Z  

If we take a look at the results in Tables 1 to 3, we can draw some 
immediate conclusions: 

There are no significant differences between the two methods in terms of 
the number of detected genes or in terms of the number of correctly detected 
genes. However, the numbers of truly periodic genes among the top 100 
ranked sequences (Z-scores) show somewhat favorable performance for the 
robust method, especially for the short time series 20=N  and .40=N  
Indeed, this observation agrees with previous findings [3] where the robust 
method was found to have a good performance as a spectrum estimator for 
short time series. By comparing Tables 1, 2 and 3, it is obvious that the 
permutation tests do not provide any significant performance gain over the 
traditional approach where the significance values are computed using the 
simulation-based method, respectively. In both cases, the Z-scores are about 
the same, as expected. The only notable difference is seen in the number of 
found periodic genes for short time series ( )50,45,40.,e.g =N  and small 

FDR levels ( ),05.0,01.0,005.0=q  where the numbers are slightly higher 

when permutation tests are used. This suggests that the permutation-based 
method finds a bit smaller p-values than the simulation-based method. 
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3. Data Analysis and Result 

For each time series experiment (13 in total), the proposed robust 
methods for detecting genes having both fixed and unknown frequency 
components was applied. For the fixed frequency, we use the one that 
corresponds to the length of the cell cycle. Following the idea presented by 
Wichert et al., a simple method for estimating the cell cycle length/frequency 
is to compute the average robust spectral estimate. For each time series, we 
present the number of statistically significant genes that are found to be 
periodically behaving at a specific level of the FDR ( ).05.0=q  For the 

Spellman method, the sampling time was not equidistant in the beginning 
and at the end of the data set. 

Any monotone distortion preserves the ordering of the samples. 
Therefore, the rank-based method is completely insensitive to any monotone 
distortions. Consequently, the results for the third test case are identical to 
those presented in Tables 1 and 2. The results for the periodogram method 
are shown in Table 3. 

Table 1. Number of inferred periodic time series: The number of inferred 
periodic time series using the robust method and standard Gaussian noise in 
the data. P-values were obtained by simulating the distribution of the g-
statistic using 10000 time series composed of Gaussian noise 

q\N 10 20 40 45 50 100 

0.15 0 2(1) 107(90) 109(96) 117(99) 115(100) 

0.10 0 1(1) 96(87) 103(94) 110(98) 109(100) 

0.05 0 1(0) 83(79) 95(89) 101(96) 105(100) 

0.01 0 1(0) 59(59) 80(79) 90(89) 101(100) 

0.005 0 0(0) 32(32) 62(61) 64(64) 100(100) 

Z 12 49 89 93 95 100 
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Table 2. Number of inferred periodic time series: The number of inferred 
periodic time series using the robust method and standard Gaussian noise in 
the data. P-values were obtained by using permutation tests 

q\N 10 20 40 45 50 100 

0.15 0 4(3) 108(92) 113(96) 111(98) 119(100) 

0.10 0 1(1) 99(90) 106(94) 106(97) 112(100) 

0.05 0 1(0) 88(84) 97(89) 101(95) 106(100) 

0.01 0 0 65(64) 80(78) 86(86) 101(100) 

0.005 0 0 46(46) 61(61) 71(71) 100(100) 

Z 15 48 91 92 95 100 

Table 3. Number of inferred periodic time series: The number of inferred 
periodic time series using the periodogram method and standard Gaussian 
noise and cubic distortion in the data. P-values were obtained by using 
permutation tests 

q\N 10 20 40 45 50 100 

0.15 0 0 49(44) 79(64) 89(74) 107(93) 

0.10 0 0 39(36) 71(62) 80(69) 98(90) 

0.05 0 0 25(24) 52(49) 64(59) 90(88) 

0.01 0 0 8(8) 28(28) 44(43) 82(82) 

0.005 0 0 8(8) 19(19) 37(36) 67(67) 

Z 7 15 68 71 79 91 

4. Implication of Results 

Although the theoretical null distribution was derived by Fisher for 
Gaussian noise, we found that deviation from it can be significant when 
signal length is short. Moreover, when the signal does not cover an integer 
number of periods, significant drop in the statistical power of the test was 
observed. In this case, a much longer signal is needed for the test to return 
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reliable result. We found that Fisher test is relatively robust to noise. We   
also investigate how the FDR multiple testing correction strategy affects    
the number of detected periodic signals. Although the Fisher test may be 
unreliable for short signal, the Fisher g-statistic has been observed to provide 
a useful ranking of periodic signals. 

All these findings have important implications for periodic gene 
expression profiles detection as these profiles are often noisy, of very short 
length, and often with unknown periodicity. In high likelihood, the number 
of periodic gene expression profiles can be severely underestimated for short 
length signal as is found with many of the publicly available gene expression 
datasets. The presented method yields a robust way of finding periodicity in 
short time series data. As illustrated in simulations Subsection 2.2, the 
proposed robust detection method is remarkably insensitive to different kinds 
of non-idealities in the data, such as heavy contamination of outliers, missing 
values, short time series, non-linear distortions, and is completely insensitive 
to any monotone non-linear distortions. The results also show that the 
proposed method has clearly better performance than the Fisher’s test, even 
in the case of the standard Gaussian noise. Furthermore, the results on real 
data demonstrate that the proposed method performs well on real data and 
that the results are biologically meaningful. 
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