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Abstract

In this article, we investigate some inclusion properties of the
generalized Dziok-Srivastava convolution operator on some class of
analytic functions. Using the principle of differential subordination,
we extended the work done by Xu et al. [6] to the t-valent type and
calculated some sharp results.
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1. Introduction and Preliminaries

Let A(t) denote the class of analytic functions in a unit disc U of the

form
S |
f(2)=2"+ ) taz™*, teN, 2%, dz[<1l (1D
k=l

and H[a, k] denote the class of functions analytic in U of the form

f(z)=a+a.z" +a_, 2" 4.... aeR
K K+1

b

The Hadamard product y; * x, of functions y, is defined by

(o *x2)@) =Y

-0 aK,laK,2ZK7
where y,(z) = zrzo a, ,z° isanalytic in U.
The function f(z) € A(t) was defined in [1] as

Z’C

®(Z)* 1-1z

, Z¢%, 1z]<1, teN,

where ©(2) = > a2""™, a5 = 1.

A function f(z) in A(t) is said to be t-valently starlike of order o
(0<a<1)if

me{zlfé(zz))} > a, (1.2)

also function f(z) in A(t) is said to be t-valently convex of order a
(0<o<r1)if

%e{l + fo,z(zz))} > o (1.3)

We denote the class of functions which is t-valently starlike of order o
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and t-valently convex of order a by S(t, ) and C(r, o), respectively.
Some properties of functions in classes S(t, a) and C(t, o) had been

studied extensively, see [22, p. 188] and their references.
Remark 1.1. Since (1.1) is equivalent to
o0
g(z)=2"+ Z a,.z",
K=T+l
t-valently convexity implies t-valently starlike.

The well known generalized Pochhammer symbol denoted by (n),. is
defined by
K! m=1),
(M), =41 (k= 0;m e C\0), (1.4)
nm+1)-Mm+x-1) (keN;neC).
Let
T o0

K:a’T(Z) = (1_27)a =7"+ Z (a)K TKZT+K. (15)

The Hadamard product of ICy ; with f € A(t) denoted by Ky ; * f is

defined by (K, , * f)(z) = Z:zo%a](zﬁ'{.
K

If o and p are analytic in U, then o is said to be subordinate to p,
written as ¢ < p or 9(z) < p(z), when o is univalent in U, 0(0) = p(0)
and o(U) < p(U).

Let ¢(a, C; z) be the incomplete beta function defined by

(a)K
(©)

* (zeU;ceZy).

0
o(a, c; z) = Z+Z
k=1
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In 1999, Dziok-Srivastava [2] (see also [3]) defined the generalized

hypergeometric function as

@0y, ooy O By s Bs Z) = 2+ Z ((B(Tl)) (g):;*)i‘ z", (1.6)

where 9, s e N with q<s+1land a, #0, B, ¢ Zy forall 2 =1, 2, ..., q
and /=1, 2, ..., S. Xuetal. [6] defined the t-valent function of the type (1.6)

as follows:
(p((x’ls sy (X,q, Bl’ sy BS’ ZT) = H‘C(ala ceey (X,q, Bla ceey BS: Z)

=H(a;Bp;2) (=1..,0,¢=1..,5)

Z((OL:; EZS)KZK! (2=U) A7

Xu et al. [6] used the linear Dziok-Srivastava operator Hi(o,; B/; Z)
convoluted with f(z) in the class A(l), as well as the function h(z) e
H[1, k] which is convex and univalent in the unit disc U, with Re{h(z)} > 0

to define three subclasses of normalized analytic function as follow:

a Bf(h 7”)

_ { o Ay 2P0 B 1) (2) #2322 (Hy (ot B) 1) (2) {h(z)}
(1= 1) (Ml By) T)(2) + 22(Hy (s By) £ (2)

(zeU), (nelo,1] heH I, «]), (1.8)

Taz§ Bs (h’ (l)

{1 e a: PALBIDE o0 ,ip) 1) () < 0(2)|

(zeU), (a=0;heH[,x]) (1.9)
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and

Raz; By (h’ (l)

={f e AQl): (Hy(a,; B) ) (2) + az(Hy (a3 B) ) (2) < h(2)}
(zeU), (a=0;heH,«]). (1.10)
Previously, many authors defined subclasses of normalized analytic
functions similar to (1.8)-(1.10). They used specific values of o, and B,

where 2 =1, 2, .., s, £ =1,2, .., q. Example of such authors is Ozkan and

Altintas [4] who used

o (Ka1* f)(2)=L(a, ) f(z) = Hy(a 1) f(2),
and also Trojnar-Spelina [5] who used

o L(oy, Br) F(2) = Hyloy, 1; By) f(2),

where £(a, ¢) f is Carlson-Shaffer linear operator on A(1). For more details
of Carlson-Shaffer operator, see [7]. The authors [4-6] established some
inclusion relationships of their classes of functions. Some other interesting
subclasses of analytic function were studied recently using the generalized
Dziok-Srivastava operator and for more details, see [8-18].

Motivated by all these, we extend the work done by Xu et al. [6] using
the linear Dziok-Srivastava operator H;(o,; By; z) convoluted with the
function f of the class A(1) to H(a,; By; z) convoluting with f of the class
A(t) with h(z) of class H[a, k] starlike in the unit disc U. We define the
generalized form of the analytic subclass as follows: a function f e A(t) is

said to be in the class P (h, &; 1) if

g By

2[H(a; By) F17(2) + A2 [Ho(oy; By) F 1T (2)
(1= M) [He(a; Be) FIEV(@) + Az[Ho(o; B,) F17(2)

A e[0,1], heHo, ], (zeU). (1.11)

h(2),
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The function f e A(t) is said to be in the class 7 (h, o; 1) if

oy By

(- ) el BTN oty ) 1190 < i),

z
a>0, heH[a k], (zeU). (1.12)
The function f e A(t) is said to be in the class R, . g, (h, a; 1) if

[Helos B,) F1(2) + 0z[Ho (s B,) F 1 (2) < h(2),
a>0, heH[a k], (zeU). (1.13)

We review some known preliminary results needed to establish our
proof.

Theorem 1.1 [20, 19]. If ® convex is in the unit disc U with Re{y} > 0,

y#0, ©0)=a, a=0 and there exists 9 € H[a, k] which satisfies

9(z) + %(Z) < 0(z), (1.14)
then

9(z) < o(z) < O(2),
where

o(z) = YK‘IZ(%)J 02 ®(é)é(%)_ld&- (1.15)

The function o is convex and the best (a, k)-dominant.

Theorem 1.2 [20, 21]. Let 9 be starlike in U with 9(0) = 0, if

® € H[a, n], a # 0 satisfies

20'(z) < 9(2),
then

0(2)< Y(z)=a+ %IOZ 9(8)& de,

The function Y is convex and the best (a, «)-dominant.
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The objective of this article is to investigate some inclusion properties
of the generalized Dziok-Srivastava convolution operator on some class
of analytic functions and using the principle of differential subordination,
extended the work done by Xu et al. [6] to the t-valent type and calculated

some sharp results.
2. Inclusion Relationships

In this section, we use the classes defined in (1.11)-(1.13) to establish
some inclusion properties. We used same technique as in Xu et al. [6] to

prove our results.

Theorem 2.1. Let P (h, &; 1) be as defined in (1.11). Then

o By
fePy.p,(hAit+1) & g(z) e Py ., (0 0; 1), 2.1)
where
9(z) = a2 f () + (1= 2) 1D (2) 2.2)
and
fePy,p, (A T+1)

Sw=af@i0- x)J'OZ e t)de e Py g, (N L7).  (23)

Proof. If f e P (h, &; T+ 1), then there exists h starlike in U with

oy By

h(0) = 0 such that the subordination (1.11) holds. Let g(z) = Azf ("*D(z) +
(1-2) f(z). Then

2[H(ay; By) F17 (@) + A2 [Ha(oy; Bo) F1T2(2)
(1= M) [Ho(a: By) F1P(@) + hz[Ho(o; B,) £ 17D (2)

Lol s 01g3 By s Bsi 2907 % 29'(2)
[9(ctrs s 0tg B s Bsi 2907 % 9(2)
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I GRCH ) W (6]
(Moo B V9)(2)

This shows that when f € P

oy By (h, &; T+1), then g(z) = Azf (‘E+1)(Z) N

(1-2) f(T)(Z) € Pg,;p, (N, 0; 7). The converse also holds.

Assume f e P g (0, A; t+1). Then we have shown that g(z) =
a2t + (-0t @) e P L,
Z2¥'(z) = g(z2), z € U that means

(h, 0; t). We also note from (2.3) that

YepP (hLt)e W' eP (h, 0; 1)

oy By a5 By

and hence ¥ € P, .5, (h, 1; 7). O

Theorem 2.2. Let 7 (h, ; t) be as defined in (1.12) with h convex

o, By
inU, a = 1! and Re{h(z)} > 0. Then

feT (hyos )= f eT,y p,(h 0;1-1) (2.4)

o, By
and

qu;m(h, o 1) Ta,.p, (h, 3; T —1). (2.5)

Proof. Let f € 7, ., (h, o; t) and h(0) = !. Then subordination (1.12)
holds. Let

o.: (t-1)
q(z) — [Hr( 2 BZZ)] (Z) ) (2.6)

Simple calculation on (2.6) gives

oL (t-1)
0(2) + azq(2) = (1 - o) Pl PO @) oy 6,0,

Assume 7 = é, o > 0. Then, by Theorem 1.1,

q(z)< h(z) (zeU),
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which shows that f € 7 (h, 0; T — 1) and this concludes the first part of

o, By
Theorem 2.2. To show the proof of the second part of Theorem 2.2. If & = 0,
then the proof is obvious. Assume § # 0 and f e T%;Bz (h, a; t). Then

there exists a function h(U) such that

o (t-1)
(- oy Pl BT L oy (,8) 1192) < i),

Now

(- o)l BT ) 10

_ (1 - i) [He(e; B) F1(2)

o z

o.: (t-1)
n g[(l _ OL) [Hr( B BZZ) f] (Z) n OL['HT(OLZ; BZ) f ](r)(Z)J

Since g <1 and h(U) is convex, we conclude that

-l BT g1y 00,y 119 < ),

as h is convex univalent in U, then f € 7 (h, 8; T —1). This ends the

oy By

proof. O

Theorem 2.3. Let R (h, &; t) be as defined in (1.13) with h convex

oy By

inU, a = 1! and Re{h(z)} > 0. Then

feR (hya;t)=> feR (h, 0, t—1) (2.7)

Oy Bl Oy s Bf

and

R, (hya; 1) R (h, &; T —1). (2.8)

oy By
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Proof.Let f e R (h, o; 1), assume

oy By

A(z) = [He(o: B) F17(2). 2.9)

Then

C](Z) + ZO(,q’(Z) = [H‘C(az; B[) f ](T)(Z) + OCZ[HT((XZ; BE) f ](‘E+1)(Z)
and by Theorem 1.1 with y = é, o >0,

q(z) < h(2).

To show the proof of the second part of Theorem 2.2. If & = 0, then the

proof is obvious. Assume & # 0 and f € T, .g,(h, o; 7). Then there exists

a function h(U) such that

[He(o; Be) F17(2) + o Ho(a; By) F17(2) € h(U).

Now

[He(os Be) F17(2) + 8[Ho (s By) F170(2)

- (1- )it 0 1)
+ 2 ([Holots B) F17(2) + of el By) 1170 2)),
Since g <1 and h(U) is convex, we conclude that

[He(os Be) F17(2) + 8[He (s By) F17D(2) € hQU),

as h is convex univalent in U, then f e R, (h, 8; T —1). This ends the

proof. O

Theorem 2.4. Let R%Bf(h, A; 1) be as defined in (1.12) with h convex
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inU, a =r! and Re{h(z)} > 0. Then

feR (h,a; 1) = 2f'(2) e T (h, 0, t—1) (2.10)

oy By oy By

and

Ro,:p,(host)c T (h, o; 7). (2.11)

oy By

Proof. Using the fact that

(1 = oy el B D = @) (2)

z

+a([He(ay; B = (£ 4 28Dy (2)

= [Holo: B F19(@) + al(Ho(o: B) 1) @),
the first part of the theorem is proved.

Now, letting

o B 1D
a(2) = (1 - o BP0 o3 i) 1),

with the assumption that f € R (h, o; 1), we have

oy By
4(2) + 20(2) = [Ho(o; Be) F10(2) + o[l Be) F 1) (2),
then, by Theorem 1.1, with y =1 implies
q(z) < h(z) (zeU).

This shows that f € 7, .5, (h, o; 7). O

3. Applications of Differential Subordinations

3.1. Sharp results
We establish some sharp results of Theorems 2.1-2.4.

Theorem 3.1. Let P (h, &; t) be as defined in (1.12) with h starlike

oy By
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inU, h(0) = 0, if

fep (h, A; T+ 1), (3.1)

a3 Py

then
a(2) = (o BN V9)(2) < a) = resp [ h(e)e s |
where g(z) is (2.2). The function v is the best (!, k)-dominant.

Proof. Let f € Py .p, (h, A; T+ 1). Then q(0) = ([H(a,; B,)(V9)(0)

=1l# 0 and

[Hs(o: BOIVOI @) )
([Hle BV 0)(2)

so q(z) # 0 in U. Let y(z) = log q(z). Then y(z) € H[log q(z), k] and

@) oo BOIg] (2)
V9D T Gt pP) (2)

Then, by Theorem 1.1, Theorem 3.1 is proved. O

Theorem 3.2. Let T%;m(h, A; 1) be as defined in (1.12) with h convex
inU, a =r! and Re{h(z)} > 0. Then

FeTasp(20)=0@)-= [Ho(; BZE)](T_I)(Z)

K

<v(z) = z(_—y)qu J' OZ h(g)g(%j_ldg. 3.2)

The function v is convex and the best (t!, «)-dominant.

(t-1)
Proof. Assume f € 7 ] (Z)

(h, 2 7) and q(z) = Ps(iBr)

oy By

Then the subordination
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q(z) + azq'(z) < h(z) (3.3)
holds. Applying Theorem 1.1 to (3.3) gives the proof of Theorem 3.2. O

Theorem 3.3. Let R%Bf(h, A; 1) be as defined in (1.13) with h convex
inU, a = 1! and Re{h(z)} > 0. Then

(i)
feRo,p, (2 1) = 0(2) = [He(os )™ < (2)

_ z(‘—ij [ h(&)a@_ldé, (3.4)

K
(i)
EATNEINC)s
feRg,p, (1A 1t)=0(z) < Vv(z)= z(—)mjo h(E)e\ ) de,

K

where

. (t-1)
a(2) = (1 - ) PP @) L oy (a0, 20,
The function v is convex and the best (<!, «)-dominant.
Proof. Let f € R, .g,(h, A; 1) and q(2) = [H(a; B[)](T)(Z). Then

q(z) + zaq'(z) < h(z) (3.5)
and application of Theorem 1.1 to (3.5) yields Theorem 3.3(i).

Let f e R (h, &; t) and

oy By

o (t-1)
() = (1 - o) PAL LD 4 oy (o 2),

Then the subordination q(z) + zq'(z) < h(z) holds, application of Theorem
1.1 with y =1 concludes the proof of the theorem. O



88 Uzoamaka A. Ezeafulukwe and Maslina Darus
3.2. Conclusion
We calculated some choices of

Po,:p,(0(@) At +1), T (h(z), »; 1) and R (h(z), ; T+ 1)

oy By g By

with their corresponding v(z) for Theorems 3.1-3.3 as follows:

elet f eP (1_; 0; T+ 1), h € S(z, ). Then

o3 By 1z’

(telas BP9 @) < v(2) = i 2] L ve st .

U+ (1-20)(2 —12)2 L

o Let f ETG,;B(( (1-1z)?

r], helC(t,a), y=1.

Then

[He(oy; B (2) d+ (1 - 20)2
Zz < V() = ( JEI e v eC(t, ).

t+ (2 —12)z

elet f ERGZ;WE (-]

L ‘CJ, h e C(r, a), y =1. Then

_d+z
(1-12)

[He(a: BT D(2) < v(2) =[ J Ve C(t, a).
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