Far East Journal of Mathematical Sciences (FJMS)
© 2015 Pushpa Publishing House, Allahabad, India
Published Online: August 2015
http://dx.doi.org/10.17654/FJMSSep2015_075_090

APPLICATIONS OF DIFFERENTIAL SUBORDINATION
 TO THE GENERALIZED DZIOK-SRIVASTAVA CONVOLUTION OPERATOR

Uzoamaka A. Ezeafulukwe ${ }^{1,2}$ and Maslina Darus ${ }^{2, *}$
${ }^{1}$ Mathematics Department
Faculty of Physical Sciences
University of Nigeria
Nsukka, Nigeria
e-mail: uzoamaka.ezeafulukwe@unn.edu.ng
${ }^{2}$ School of Mathematical Sciences
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
43600 UKM Bangi
Selangor DE, Malaysia
e-mail: maslina@ukm.edu.my

Abstract

In this article, we investigate some inclusion properties of the generalized Dziok-Srivastava convolution operator on some class of analytic functions. Using the principle of differential subordination, we extended the work done by Xu et al. [6] to the τ-valent type and calculated some sharp results.

[^0]
1. Introduction and Preliminaries

Let $\mathcal{A}(\tau)$ denote the class of analytic functions in a unit disc U of the form

$$
\begin{equation*}
f(z)=z^{\tau}+\sum_{\kappa=1}^{\infty} \tau^{\kappa} a_{\kappa} z^{\tau+\kappa}, \quad \tau \in \mathbb{N}, \quad z \neq \frac{1}{\tau}, \quad \tau|z|<1 \tag{1.1}
\end{equation*}
$$

and $H[a, \kappa]$ denote the class of functions analytic in U of the form

$$
f(z)=a+a_{\kappa} z^{\tau+\kappa}+a_{\kappa+1} Z^{\tau+\kappa+1}+\cdots, \quad a \in \mathbb{R} .
$$

The Hadamard product $\chi_{1} * \chi_{2}$ of functions χ_{1} is defined by

$$
\left(\chi_{1} * \chi_{2}\right)(z)=\sum_{\kappa=0}^{\infty} a_{\kappa, 1} a_{\kappa, 2} z^{\kappa},
$$

where $\chi_{\mathrm{l}}(z)=\sum_{\mathrm{K}=0}^{\infty} a_{\kappa, 1} z^{\kappa}$ is analytic in U.
The function $f(z) \in \mathcal{A}(\tau)$ was defined in [1] as

$$
\Theta(z) * \frac{z^{\tau}}{1-\tau z}, \quad z \neq \frac{1}{\tau}, \quad \tau|z|<1, \quad \tau \in \mathbb{N},
$$

where $\Theta(z)=\sum_{\kappa=0}^{\infty} a_{\kappa} z^{\tau+\kappa}, a_{0}=1$.
A function $f(z)$ in $A(\tau)$ is said to be τ-valently starlike of order α ($0 \leq \alpha<\tau$) if

$$
\begin{equation*}
\mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha, \tag{1.2}
\end{equation*}
$$

also function $f(z)$ in $A(\tau)$ is said to be τ-valently convex of order α ($0 \leq \alpha<\tau$) if

$$
\begin{equation*}
\mathfrak{R e}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha \tag{1.3}
\end{equation*}
$$

We denote the class of functions which is τ-valently starlike of order α
and τ-valently convex of order α by $\mathcal{S}(\tau, \alpha)$ and $\mathcal{C}(\tau, \alpha)$, respectively. Some properties of functions in classes $\mathcal{S}(\tau, \alpha)$ and $\mathcal{C}(\tau, \alpha)$ had been studied extensively, see [22, p. 188] and their references.

Remark 1.1. Since (1.1) is equivalent to

$$
g(z)=z^{\tau}+\sum_{\kappa=\tau+1}^{\infty} a_{\kappa} z^{\kappa},
$$

τ-valently convexity implies τ-valently starlike.
The well known generalized Pochhammer symbol denoted by $(\eta)_{\kappa}$ is defined by

$$
(\eta)_{\kappa}= \begin{cases}\kappa! & (\eta=1) \tag{1.4}\\ 1 & (\kappa=0 ; \eta \in \mathbb{C} \backslash 0) \\ \eta(\eta+1) \cdots(\eta+\kappa-1) & (\kappa \in \mathbb{N} ; \eta \in \mathbb{C})\end{cases}
$$

Let

$$
\begin{equation*}
\mathcal{K}_{a, \tau}(z)=\frac{z^{\tau}}{(1-\tau z)^{a}}=z^{\tau}+\sum_{\kappa=1}^{\infty} \frac{(a)_{\kappa}}{(1)_{\kappa}} \tau^{\kappa} z^{\tau+\kappa} . \tag{1.5}
\end{equation*}
$$

The Hadamard product of $\mathcal{K}_{a, \tau}$ with $f \in A(\tau)$ denoted by $\mathcal{K}_{a, \tau} * f$ is defined by $\left(\mathcal{K}_{a, \tau} * f\right)(z)=\sum_{\kappa=0}^{\infty} \frac{(a)_{\kappa}}{(1)_{\kappa}} a_{\kappa} z^{\tau+\kappa}$.

If ϱ and ρ are analytic in U, then ϱ is said to be subordinate to ρ, written as $\varrho \prec \rho$ or $\varrho(z) \prec \rho(z)$, when ϱ is univalent in U, $\varrho(0)=\rho(0)$ and $\varrho(U) \subset \rho(U)$.

Let $\varphi(a, c ; z)$ be the incomplete beta function defined by

$$
\varphi(a, c ; z)=z+\sum_{\kappa=1}^{\infty} \frac{(a)_{\kappa}}{(c)_{\kappa}} z^{\kappa} \quad\left(z \in U ; c \notin \mathbb{Z}_{0}^{-}\right) .
$$

In 1999, Dziok-Srivastava [2] (see also [3]) defined the generalized hypergeometric function as

$$
\begin{equation*}
\varphi\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right)=z+\sum_{\kappa=1}^{\infty} \frac{\left(\alpha_{1}\right)_{\kappa} \cdots\left(\alpha_{q}\right)_{\kappa}}{\left(\beta_{1}\right)_{\kappa} \cdots\left(\beta_{s}\right)_{\kappa} \kappa!} z^{\kappa}, \tag{1.6}
\end{equation*}
$$

where $q, s \in \mathbb{N}$ with $q \leq s+1$ and $\alpha_{\imath} \neq 0, \beta_{\ell} \notin \mathbb{Z}_{0}^{-}$for all $\imath=1,2, \ldots, q$ and $\ell=1,2, \ldots, s$. Xu et al. [6] defined the τ-valent function of the type (1.6) as follows:

$$
\begin{align*}
\varphi\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z^{\tau}\right) & =\mathcal{H}_{\tau}\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right) \\
& =\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell} ; z\right) \quad(\imath=1, \ldots, q, \ell=1, \ldots, s) \\
& =z^{\tau}+\sum_{\kappa=1}^{\infty} \frac{\left(\alpha_{1}\right)_{\kappa} \cdots\left(\alpha_{q}\right)_{\kappa}}{\left(\beta_{1}\right)_{\kappa} \cdots\left(\beta_{s}\right)_{\kappa}} \frac{z^{\tau+\kappa}}{\kappa!} \quad(z \in U) . \tag{1.7}
\end{align*}
$$

Xu et al. [6] used the linear Dziok-Srivastava operator $\mathcal{H}_{1}\left(\alpha_{\imath} ; \beta_{\ell} ; z\right)$ convoluted with $f(z)$ in the class $A(1)$, as well as the function $h(z) \in$ $\mathcal{H}[1, \kappa]$ which is convex and univalent in the unit disc U, with $\mathfrak{R e}\{h(z)\}>0$ to define three subclasses of normalized analytic function as follow:

$$
\begin{align*}
& \mathcal{P}_{\alpha_{i} ; \beta_{\ell}}(h, \lambda) \\
:= & \left\{f \in A(1): \frac{z\left(\mathcal{H}_{1}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right)^{\prime}(z)+\lambda z^{2}\left(\mathcal{H}_{1}\left(\alpha_{i} ; \beta_{\ell}\right) f\right)^{\prime \prime}(z)}{(1-\lambda)\left(\mathcal{H}_{1}\left(\alpha_{i} ; \beta_{\ell}\right) f\right)(z)+\lambda z\left(\mathcal{H}_{1}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right)^{\prime}(z)} \prec h(z)\right\} \\
& (z \in U), \quad(\lambda \in[0,1] ; h \in \mathcal{H}[1, \kappa]), \tag{1.8}\\
& \mathcal{T}_{\alpha_{\imath} ; \beta_{\ell}}(h, \alpha) \\
:= & \left\{f \in A(1): \frac{\left(\mathcal{H}_{1}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right)(z)}{z}+\alpha\left(\mathcal{H}_{1}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right)^{\prime}(z) \prec h(z)\right\} \\
& (z \in U), \quad(\alpha \geq 0 ; h \in \mathcal{H}[1, \kappa]) \tag{1.9}
\end{align*}
$$

and

$$
\begin{align*}
& \mathcal{R}_{\alpha_{\imath} ; \beta_{\ell}}(h, \alpha) \\
:= & \left\{f \in A(1):\left(\mathcal{H}_{1}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right)^{\prime}(z)+\alpha z\left(\mathcal{H}_{1}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right)^{\prime \prime}(z) \prec h(z)\right\} \\
& (z \in U), \quad(\alpha \geq 0 ; h \in \mathcal{H}[1, \kappa]) . \tag{1.10}
\end{align*}
$$

Previously, many authors defined subclasses of normalized analytic functions similar to (1.8)-(1.10). They used specific values of α_{\imath} and β_{ℓ}, where $\imath=1,2, \ldots, s, \ell=1,2, \ldots, q$. Example of such authors is Özkan and Altıntaş [4] who used

$$
\text { - }\left(\mathcal{K}_{a, 1} * f\right)(z)=\mathcal{L}(a, 1) f(z)=\mathcal{H}_{1}(a ; 1) f(z)
$$

and also Trojnar-Spelina [5] who used

- $\mathcal{L}\left(\alpha_{1}, \beta_{1}\right) f(z)=\mathcal{H}_{1}\left(\alpha_{1}, 1 ; \beta_{1}\right) f(z)$,
where $\mathcal{L}(a, c) f$ is Carlson-Shaffer linear operator on $A(1)$. For more details of Carlson-Shaffer operator, see [7]. The authors [4-6] established some inclusion relationships of their classes of functions. Some other interesting subclasses of analytic function were studied recently using the generalized Dziok-Srivastava operator and for more details, see [8-18].

Motivated by all these, we extend the work done by Xu et al. [6] using the linear Dziok-Srivastava operator $\mathcal{H}_{1}\left(\alpha_{i} ; \beta_{\ell} ; z\right)$ convoluted with the function f of the class $A(1)$ to $\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell} ; z\right)$ convoluting with f of the class $A(\tau)$ with $h(z)$ of class $\mathcal{H}[a, \kappa]$ starlike in the unit disc U. We define the generalized form of the analytic subclass as follows: a function $f \in A(\tau)$ is said to be in the class $\mathcal{P}_{\alpha_{\imath} ; \beta_{\ell}}(h, \lambda ; \tau)$ if

$$
\begin{align*}
& \frac{z\left[\mathcal{H}_{\tau}\left(\alpha_{i} ; \beta_{\ell}\right) f\right]^{(\tau)}(z)+\lambda z^{2}\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right]^{(\tau+1)}(z)}{(1-\lambda)\left[\mathcal{H}_{\tau}\left(\alpha_{i} ; \beta_{\ell}\right) f\right]^{(\tau-1)}(z)+\lambda z\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right]^{(\tau)}(z)} \prec h(z), \\
& \lambda \in[0,1], h \in \mathcal{H}[0, \kappa], \quad(z \in U) . \tag{1.11}
\end{align*}
$$

The function $f \in A(\tau)$ is said to be in the class $\mathcal{T}_{\alpha_{i} ; \beta_{\ell}}(h, \alpha ; \tau)$ if

$$
\begin{align*}
& (1-\alpha) \frac{\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right]^{(\tau-1)}(z)}{z}+\alpha\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right]^{(\tau)}(z) \prec h(z), \\
& \alpha \geq 0, h \in \mathcal{H}[a, \kappa],(z \in U) . \tag{1.12}
\end{align*}
$$

The function $f \in A(\tau)$ is said to be in the class $\mathcal{R}_{\alpha_{\imath} ; \beta_{\ell}}(h, \alpha ; \tau)$ if

$$
\begin{align*}
& {\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right]^{(\tau)}(z)+\alpha z\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right]^{(\tau+1)}(z) \prec h(z),} \\
& \alpha \geq 0, h \in \mathcal{H}[a, \kappa],(z \in U) . \tag{1.13}
\end{align*}
$$

We review some known preliminary results needed to establish our proof.

Theorem $1.1[20,19]$. If Θ convex is in the unit disc U with $\mathfrak{R e}\{\gamma\} \geq 0$, $\gamma \neq 0, \Theta(0)=a, a \neq 0$ and there exists $\vartheta \in H[a, \kappa]$ which satisfies

$$
\begin{equation*}
\vartheta(z)+\frac{z \vartheta^{\prime}(z)}{\gamma} \prec \Theta(z), \tag{1.14}
\end{equation*}
$$

then

$$
\vartheta(z) \prec \sigma(z) \prec \Theta(z),
$$

where

$$
\begin{equation*}
\sigma(z)=\gamma \kappa^{-1} z^{\left(\frac{-\gamma}{\kappa}\right)} \int_{0}^{z} \Theta(\xi) \xi^{\left(\frac{\gamma}{\kappa}\right)-1} d \xi . \tag{1.15}
\end{equation*}
$$

The function σ is convex and the best (a, κ)-dominant.
Theorem 1.2 [20, 21]. Let ϑ be starlike in U with $\vartheta(0)=0$, if $\Theta \in H[a, n], a \neq 0$ satisfies

$$
z \Theta^{\prime}(z) \prec \vartheta(z),
$$

then

$$
\Theta(z) \prec \Upsilon(z)=a+\frac{1}{\kappa} \int_{0}^{z} \vartheta(\xi) \xi^{-1} d \xi .
$$

The function Υ is convex and the best (a, κ)-dominant.

The objective of this article is to investigate some inclusion properties of the generalized Dziok-Srivastava convolution operator on some class of analytic functions and using the principle of differential subordination, extended the work done by Xu et al. [6] to the τ-valent type and calculated some sharp results.

2. Inclusion Relationships

In this section, we use the classes defined in (1.11)-(1.13) to establish some inclusion properties. We used same technique as in Xu et al. [6] to prove our results.

Theorem 2.1. Let $\mathcal{P}_{\alpha_{\imath} ; \beta_{\ell}}(h, \lambda ; \tau)$ be as defined in (1.11). Then

$$
\begin{equation*}
f \in \mathcal{P}_{\alpha_{i} ; \beta_{\ell}}(h, \lambda ; \tau+1) \Leftrightarrow g(z) \in \mathcal{P}_{\alpha_{i} ; \beta_{\ell}}(h, 0 ; \tau), \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
g(z)=\lambda z f^{(\tau+1)}(z)+(1-\lambda) f^{(\tau)}(z) \tag{2.2}
\end{equation*}
$$

and

$$
\begin{align*}
& f \in \mathcal{P}_{\alpha_{i} ; \beta_{\ell}}(h, \lambda ; \tau+1) \\
& \Rightarrow \Psi \tag{2.3}\\
&=\lambda f^{(\tau)}+(1-\lambda) \int_{0}^{z} \xi^{-1} f^{(\tau)}(\xi) d \xi \in \mathcal{P}_{\alpha_{i} ; \beta_{\ell}}(h, 1 ; \tau) .
\end{align*}
$$

Proof. If $f \in \mathcal{P}_{\alpha_{i} ; \beta_{\ell}}(h, \lambda ; \tau+1)$, then there exists h starlike in U with $h(0)=0$ such that the subordination (1.11) holds. Let $g(z)=\lambda z f^{(\tau+1)}(z)+$ $(1-\lambda) f^{(\tau)}(z)$. Then

$$
\begin{aligned}
& \frac{z\left[\mathcal{H}_{\tau}\left(\alpha_{i} ; \beta_{\ell}\right) f\right]^{(\tau+1)}(z)+\lambda z^{2}\left[\mathcal{H}_{\tau}\left(\alpha_{i} ; \beta_{\ell}\right) f\right]^{(\tau+2)}(z)}{(1-\lambda)\left[\mathcal{H}_{\tau}\left(\alpha_{i} ; \beta_{\ell}\right) f\right]^{(\tau)}(z)+\lambda z\left[\mathcal{H}_{\tau}\left(\alpha_{i} ; \beta_{\ell}\right) f\right]^{(\tau+1)}(z)} \\
= & \frac{\left[\varphi\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z^{\tau}\right)\right]^{(\tau)} * z g^{\prime}(z)}{\left[\varphi\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z^{\tau}\right)\right]^{(\tau)} * g(z)}
\end{aligned}
$$

$$
=\frac{z\left[\left[\mathcal{H}_{\tau}\left(\alpha_{i} ; \beta_{\ell}\right)\right]^{(\tau)} g\right]^{\prime}(z)}{\left(\left[\mathcal{H}_{\tau}\left(\alpha_{i} ; \beta_{\ell}\right)\right]^{(\tau)} g\right)(z)} .
$$

This shows that when $f \in \mathcal{P}_{\alpha_{i} ; \beta_{\ell}}(h, \lambda ; \tau+1)$, then $g(z)=\lambda z f^{(\tau+1)}(z)+$ $(1-\lambda) f^{(\tau)}(z) \in \mathcal{P}_{\alpha_{i} ; \beta_{\ell}}(h, 0 ; \tau)$. The converse also holds.

Assume $f \in \mathcal{P}_{\alpha_{i} ; \beta_{\ell}}(h, \lambda ; \tau+1)$. Then we have shown that $g(z)=$ $\lambda z f^{(\tau+1)}(z)+(1-\lambda) f^{(\tau)}(z) \in \mathcal{P}_{\alpha_{i} ; \beta_{\ell}}(h, 0 ; \tau)$. We also note from (2.3) that $z \Psi^{\prime}(z)=g(z), z \in U$ that means

$$
\Psi \in \mathcal{P}_{\alpha_{\imath} ; \beta_{\ell}}(h, 1 ; \tau) \Leftrightarrow z \Psi^{\prime} \in \mathcal{P}_{\alpha_{l} ; \beta_{\ell}}(h, 0 ; \tau)
$$

and hence $\Psi \in \mathcal{P}_{\alpha_{i} ; \beta_{\ell}}(h, \lambda ; \tau)$.
Theorem 2.2. Let $\mathcal{T}_{\alpha_{2} ; \beta_{\ell}}(h, \lambda ; \tau)$ be as defined in (1.12) with h convex in $U, \alpha=\tau!$ and $\mathfrak{R e}\{h(z)\}>0$. Then

$$
\begin{equation*}
f \in \mathcal{T}_{\alpha_{\imath} ; \beta_{\ell}}(h, \alpha ; \tau) \Rightarrow f \in \mathcal{T}_{\alpha_{\imath} ; \beta_{\ell}}(h, 0 ; \tau-1) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{T}_{\alpha_{\imath} ; \beta_{\ell}}(h, \alpha ; \tau) \subset \mathcal{T}_{\alpha_{i} ; \beta_{\ell}}(h, \delta ; \tau-1) \tag{2.5}
\end{equation*}
$$

Proof. Let $f \in \mathcal{T}_{\alpha_{\imath} ; \beta_{\ell}}(h, \alpha ; \tau)$ and $h(0)=\tau$!. Then subordination (1.12) holds. Let

$$
\begin{equation*}
q(z)=\frac{\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right)\right]^{(\tau-1)}(z)}{z} . \tag{2.6}
\end{equation*}
$$

Simple calculation on (2.6) gives

$$
q(z)+\alpha z q^{\prime}(z)=(1-\alpha) \frac{\left[\mathcal{H}_{\tau}\left(\alpha_{i} ; \beta_{\ell}\right) f\right]^{(\tau-1)}(z)}{z}+\alpha\left[\mathcal{H}_{\tau}\left(\alpha_{i} ; \beta_{\ell}\right)\right]^{(\tau)}(z) .
$$

Assume $\gamma=\frac{1}{\alpha}, \alpha>0$. Then, by Theorem 1.1,

$$
q(z) \prec h(z) \quad(z \in U),
$$

which shows that $f \in \mathcal{T}_{\alpha_{i} ; \beta_{\ell}}(h, 0 ; \tau-1)$ and this concludes the first part of Theorem 2.2. To show the proof of the second part of Theorem 2.2. If $\delta=0$, then the proof is obvious. Assume $\delta \neq 0$ and $f \in \mathcal{T}_{\alpha_{\tau} ; \beta_{\ell}}(h, \alpha ; \tau)$. Then there exists a function $h(U)$ such that

$$
(1-\alpha) \frac{\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right]^{(\tau-1)}(z)}{z}+\alpha\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right]^{(\tau)}(z) \in h(U) .
$$

Now

$$
\begin{aligned}
& (1-\delta) \frac{\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right]^{(\tau-1)}(z)}{z}+\delta\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right]^{(\tau)}(z) \\
= & \left(1-\frac{\delta}{\alpha}\right) \frac{\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right]^{(\tau-1)}(z)}{z} \\
& +\frac{\delta}{\alpha}\left((1-\alpha) \frac{\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right]^{(\tau-1)}(z)}{z}+\alpha\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right]^{(\tau)}(z)\right) .
\end{aligned}
$$

Since $\frac{\delta}{\alpha}<1$ and $h(U)$ is convex, we conclude that

$$
(1-\delta) \frac{\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right]^{(\tau-1)}(z)}{z}+\delta\left[\mathcal{H}_{\tau}\left(\alpha_{i} ; \beta_{\ell}\right) f\right]^{(\tau)}(z) \in h(U),
$$

as h is convex univalent in U, then $f \in \mathcal{T}_{\alpha_{i} ; \beta_{\ell}}(h, \delta ; \tau-1)$. This ends the proof.

Theorem 2.3. Let $\mathcal{R}_{\alpha_{\tau} ; \beta_{\ell}}(h, \lambda ; \tau)$ be as defined in (1.13) with h convex in $U, a=\tau!$ and $\mathfrak{R e}\{h(z)\}>0$. Then

$$
\begin{equation*}
f \in \mathcal{R}_{\alpha_{i} ; \beta_{\ell}}(h, \alpha ; \tau) \Rightarrow f \in \mathcal{R}_{\alpha_{i} ; \beta_{\ell}}(h, 0 ; \tau-1) \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{R}_{\alpha_{i} ; \beta_{\ell}}(h, \alpha ; \tau) \subset \mathcal{R}_{\alpha_{i} ; \beta_{\ell}}(h, \delta ; \tau-1) . \tag{2.8}
\end{equation*}
$$

Proof. Let $f \in \mathcal{R}_{\alpha_{i} ; \beta_{\ell}}(h, \alpha ; \tau)$, assume

$$
\begin{equation*}
q(z)=\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right]^{(\tau)}(z) . \tag{2.9}
\end{equation*}
$$

Then

$$
q(z)+z \alpha q^{\prime}(z)=\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right]^{(\tau)}(z)+\alpha z\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right]^{(\tau+1)}(z)
$$

and by Theorem 1.1 with $\gamma=\frac{1}{\alpha}, \alpha>0$,

$$
q(z) \prec h(z) .
$$

To show the proof of the second part of Theorem 2.2. If $\delta=0$, then the proof is obvious. Assume $\delta \neq 0$ and $f \in \mathcal{T}_{\alpha_{\ell} ; \beta_{\ell}}(h, \alpha ; \tau)$. Then there exists a function $h(U)$ such that

$$
\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right]^{(\tau)}(z)+\alpha\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right]^{(\tau+1)}(z) \in h(U) .
$$

Now

$$
\begin{aligned}
& {\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right]^{(\tau)}(z)+\delta\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right]^{(\tau+1)}(z) } \\
= & \left(1-\frac{\delta}{\alpha}\right)\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right]^{(\tau)}(z) \\
& +\frac{\delta}{\alpha}\left(\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right]^{(\tau)}(z)+\alpha\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right]^{(\tau+1)}(z)\right) .
\end{aligned}
$$

Since $\frac{\delta}{\alpha}<1$ and $h(U)$ is convex, we conclude that

$$
\left[\mathcal{H}_{\tau}\left(\alpha_{i} ; \beta_{\ell}\right) f\right]^{(\tau)}(z)+\delta\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right]^{(\tau+1)}(z) \in h(U),
$$

as h is convex univalent in U, then $f \in \mathcal{R}_{\alpha_{\imath} ; \beta_{\ell}}(h, \delta ; \tau-1)$. This ends the proof.

Theorem 2.4. Let $\mathcal{R}_{\alpha_{\imath} ; \beta_{\ell}}(h, \lambda ; \tau)$ be as defined in (1.12) with h convex
in $U, a=r!$ and $\mathfrak{R e}\{h(z)\}>0$. Then

$$
\begin{equation*}
f \in \mathcal{R}_{\alpha_{i} ; \beta_{\ell}}(h, \alpha ; \tau) \Leftrightarrow z f^{\prime}(z) \in \mathcal{T}_{\alpha_{i} ; \beta_{\ell}}(h, 0 ; \tau-1) \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{R}_{\alpha_{i} ; \beta_{\ell}}(h, \alpha ; \tau) \subset \mathcal{T}_{\alpha_{i} ; \beta_{\ell}}(h, \alpha ; \tau) \tag{2.11}
\end{equation*}
$$

Proof. Using the fact that

$$
\begin{aligned}
& (1-\alpha) \frac{\left(\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right]^{(\tau-1)} *\left(z f^{(\tau)}\right)\right)(z)}{z} \\
& +\alpha\left(\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right)\right]^{(\tau)} *\left(f^{(\tau)}+z f^{(\tau+1)}\right)\right)(z) \\
= & {\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right]^{(\tau)}(z)+\alpha\left(\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right]^{(\tau-1)}\right)(z) }
\end{aligned}
$$

the first part of the theorem is proved.
Now, letting

$$
q(z)=(1-\alpha) \frac{\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right]^{(\tau-1)}(z)}{z}+\alpha\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right]^{(\tau)}(z),
$$

with the assumption that $f \in \mathcal{R}_{\alpha_{i} ; \beta_{\ell}}(h, \alpha ; \tau)$, we have

$$
q(z)+z q^{\prime}(z)=\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right]^{(\tau)}(z)+\alpha z\left(\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right) f\right]^{(\tau+1)}\right)(z)
$$

then, by Theorem 1.1, with $\gamma=1$ implies

$$
q(z) \prec h(z) \quad(z \in U) .
$$

This shows that $f \in \mathcal{T}_{\alpha_{i} ; \beta_{\ell}}(h, \alpha ; \tau)$.

3. Applications of Differential Subordinations

3.1. Sharp results

We establish some sharp results of Theorems 2.1-2.4.
Theorem 3.1. Let $\mathcal{P}_{\alpha_{i} ; \beta_{\ell}}(h, \lambda ; \tau)$ be as defined in (1.12) with h starlike
in $U, h(0)=0$, if

$$
\begin{equation*}
f \in \mathcal{P}_{\alpha_{\imath} ; \beta_{\ell}}(h, \lambda ; \tau+1), \tag{3.1}
\end{equation*}
$$

then

$$
q(z)=\left(\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right)\right]^{(\tau)} g\right)(z) \prec v(z)=r!\exp \left[\int_{0}^{z} h(\xi) \xi^{-1} d \xi\right],
$$

where $g(z)$ is (2.2). The function v is the best $(\tau!, \kappa)$-dominant.
Proof. Let $f \in \mathcal{P}_{\alpha_{2} ; \beta_{\ell}}(h, \lambda ; \tau+1)$. Then $q(0)=\left(\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right)\right]^{(\tau)} g\right)(0)$ $=\tau!\neq 0$ and

$$
\frac{\left[\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right)\right]^{(\tau)} g\right]^{\prime}(z)}{\left(\left[\mathcal{H}_{\tau}\left(\alpha_{i} ; \beta_{\ell}\right)\right]^{(\tau)} g\right)(z)} \prec h(z),
$$

so $q(z) \neq 0$ in U. Let $\psi(z)=\log q(z)$. Then $\psi(z) \in \mathcal{H}[\log q(z), \kappa]$ and

$$
z \psi^{\prime}(z)=z \frac{q^{\prime}(z)}{q(z)}=\frac{\left[\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right)\right]^{(\tau)} g\right]^{\prime}(z)}{\left(\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right)\right]^{(\tau)} g\right)(z)} .
$$

Then, by Theorem 1.1, Theorem 3.1 is proved.
Theorem 3.2. Let $\mathcal{T}_{\alpha_{i} ; \beta_{\ell}}(h, \lambda ; \tau)$ be as defined in (1.12) with h convex in $U, a=r!$ and $\mathfrak{R e}\{h(z)\}>0$. Then

$$
\begin{align*}
f \in \mathcal{T}_{\alpha_{\imath} ; \beta_{\ell}}(h, \lambda ; \tau) & \Rightarrow q(z)=\frac{\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right)\right]^{(\tau-1)}(z)}{z} \\
& \prec v(z)=z\left(\frac{-\gamma}{\kappa}\right) \gamma \kappa \int_{0}^{z} h(\xi) \xi^{\left(\frac{\gamma}{\kappa}\right)-1} d \xi . \tag{3.2}
\end{align*}
$$

The function v is convex and the best $(\tau!, \kappa)$-dominant.
Proof. Assume $f \in \mathcal{T}_{\alpha_{i} ; \beta_{\ell}}(h, \lambda ; \tau)$ and $q(z)=\frac{\left[\mathcal{H}_{\tau}\left(\alpha_{i} ; \beta_{\ell}\right)\right]^{(\tau-1)}(z)}{z}$. Then the subordination

$$
\begin{equation*}
q(z)+\alpha z q^{\prime}(z) \prec h(z) \tag{3.3}
\end{equation*}
$$

holds. Applying Theorem 1.1 to (3.3) gives the proof of Theorem 3.2.
Theorem 3.3. Let $\mathcal{R}_{\alpha_{i} ; \beta_{\ell}}(h, \lambda ; \tau)$ be as defined in (1.13) with h convex in $U, a=\tau!$ and $\mathfrak{R e}\{h(z)\}>0$. Then
(i)

$$
\begin{align*}
f \in \mathcal{R}_{\alpha_{i} ; \beta_{\ell}}(h, \lambda ; \tau) \Rightarrow q(z) & =\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right)\right]^{(\tau)} \prec v(z) \\
& =z\left(\frac{-\gamma}{\kappa}\right) \gamma \kappa \int_{0}^{z} h(\xi) \xi^{\left(\frac{\gamma}{\kappa}\right)-1} d \xi \tag{3.4}
\end{align*}
$$

(ii)

$$
f \in \mathcal{R}_{\alpha_{i} ; \beta_{\ell}}(h, \lambda ; \tau) \Rightarrow q(z) \prec v(z)=z\left(\frac{-\gamma}{\kappa}\right) \gamma \kappa \int_{0}^{z} h(\xi) \xi^{\left(\frac{\gamma}{\kappa}\right)-1} d \xi
$$

where

$$
q(z)=(1-\alpha) \frac{\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right)\right]^{(\tau-1)}(z)}{z}+\alpha z\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right)\right]^{(\tau)}(z) .
$$

The function v is convex and the best $(\tau!, \kappa)$-dominant.
Proof. Let $f \in \mathcal{R}_{\alpha_{i} ; \beta_{\ell}}(h, \lambda ; \tau)$ and $q(z)=\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right)\right]^{(\tau)}(z)$. Then

$$
\begin{equation*}
q(z)+z \alpha q^{\prime}(z) \prec h(z) \tag{3.5}
\end{equation*}
$$

and application of Theorem 1.1 to (3.5) yields Theorem 3.3(i).
Let $f \in \mathcal{R}_{\alpha_{i} ; \beta_{\ell}}(h, \lambda ; \tau)$ and

$$
q(z)=(1-\alpha) \frac{\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right)\right]^{(\tau-1)}(z)}{z}+\alpha\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right)\right]^{(\tau)}(z) .
$$

Then the subordination $q(z)+z q^{\prime}(z) \prec h(z)$ holds, application of Theorem 1.1 with $\gamma=1$ concludes the proof of the theorem.

3.2. Conclusion

We calculated some choices of

$$
\mathcal{P}_{\alpha_{i} ; \beta_{\ell}}(h(z), \lambda ; \tau+1), \quad \mathcal{T}_{\alpha_{\imath} ; \beta_{\ell}}(h(z), \lambda ; \tau) \quad \text { and } \quad \mathcal{R}_{\alpha_{\imath} ; \beta_{\ell}}(h(z), \lambda ; \tau+1)
$$

with their corresponding $v(z)$ for Theorems 3.1-3.3 as follows:

- Let $f \in \mathcal{P}_{\alpha_{i} ; \beta_{\ell}}\left(\frac{z}{1-\tau Z}, 0 ; \tau+1\right), h \in \mathcal{S}(\tau, \alpha)$. Then

$$
\left(\left[\mathcal{H}_{\tau}\left(\alpha_{i} ; \beta_{\ell}\right)\right]^{(\tau)} g\right)(z) \prec v(z)=\tau!\left(\frac{1}{1-\tau Z}\right)^{\tau}, \quad v \in \mathcal{S}(\tau, \alpha) .
$$

- Let $f \in \mathcal{T}_{\alpha_{i} ; \beta_{\ell}}\left(\frac{\tau!+(1-2 \alpha)(2-\tau z) z}{(1-\tau z)^{2}}, 1 ; \tau\right), \quad h \in \mathcal{C}(\tau, \alpha), \quad \gamma=1$.

Then

$$
\frac{\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right)\right]^{(\tau-1)}(z)}{z} \prec v(z)=\left(\frac{\tau!+(1-2 \alpha) z}{(1-\tau z)^{2}}\right), \quad v \in \mathcal{C}(\tau, \alpha) .
$$

- Let $f \in \mathcal{R}_{\alpha_{i} ; \beta_{\ell}}\left(\frac{\tau!+(2-\tau z) z}{(1-\tau z)^{2}}, 1 ; \tau\right), h \in \mathcal{C}(\tau, \alpha), \gamma=1$. Then

$$
\left[\mathcal{H}_{\tau}\left(\alpha_{\imath} ; \beta_{\ell}\right)\right]^{(\tau-1)}(z) \prec v(z)=\left(\frac{\tau!+z}{(1-\tau z)^{2}}\right), \quad v \in \mathcal{C}(\tau, \alpha) .
$$

Acknowledgment

The work presented here was partially supported by AP-2013-009.

References

[1] U. A. Ezeafulukwe and M. Darus, Some properties of certain class of analytic functions, Int. J. Math. Math. Sci. 2014 (2014), Article ID 358467, 5 pp.
[2] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999), 1-13.
[3] Z. Shareef, S. Hussain and M. Darus, Convolution operators in the geometric function theory, J. Inequal. Appl. 2012 (2012), 213, 11 pp.
[4] Ö. Özkan and O. Altıntaş, Applications of differential subordination, Appl. Math. Lett. 19 (2006), 728-734.
[5] L. Trojnar-Spelina, On certain applications of the Hadamard product, Appl. Math. Comput. 199 (2008), 653-662.
[6] Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, Some applications of differential subordination and the Dziok-Srivastava convolution operator, Appl. Math. Comput. 230 (2014), 496-508.
[7] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984), 737-745.
[8] R. Aghalary, S. B. Joshi, R. N. Mohapatra and V. Ravichandran, Subordinations for analytic functions defined by the Dziok-Srivastava linear operator, Appl. Math. Comput. 187 (2007), 13-19.
[9] N. E. Cho and I. H. Kim, Inclusion properties of certain classes of meromorphic functions associated with generalized hypergeometric function, Appl. Math. Comput. 187 (2007), 115-121.
[10] J. Dziok, On some applications of the Briot-Bouquet differential subordinations, J. Math. Anal. Appl. 328 (2007), 295-301.
[11] J. Dziok, On the convex combination of the Dziok-Srivastava operator, Appl. Math. Comput. 188 (2007), 1214-1220.
[12] J.-L. Liu and H. M. Srivastava, Classes of meromorphically multivalent functions associated with the generalized hypergeometric function, Math. Comput. Modelling 39 (2004), 21-34.
[13] J.-L. Liu and H. M. Srivastava, Certain properties of the Dziok-Srivastava operator, Appl. Math. Comput. 159 (2004), 485-493.
[14] J. Patel, A. K. Mishra and H. M. Srivastava, Classes of multivalent analytic functions involving the Dziok-Srivastava operator, Comput. Math. Appl. 54 (2007), 599-616.
[15] C. Ramachandran, T. N. Shanmugam, H. M. Srivastava and A. Swaminathan, A unified class of k-uniformly convex functions defined by the Dziok-Srivastava linear operator, Appl. Math. Comput. 190 (2007), 1627-1636.
[16] K. Piejko and J. Sokól, On the Dziok-Srivastava operator under multivalent analytic functions, Appl. Math. Comput. 177 (2006), 839-843.
[17] H. M. Srivastava, N.-Eng Xu and Ding-Gong Yang, Inclusion relations and convolution properties of a certain class of analytic functions associated with the Ruscheweyh derivatives, J. Math. Anal. Appl. 331 (2007), 686-700.
[18] H. M. Srivastava, D.-G. Yang and N.-E. Xu, Subordinations for multivalent analytic functions associated with the Dziok-Srivastava operator, Integral Transforms Spec. Funct. 20 (2009), 581-606.
[19] D. J. Hallenbeck and St. Ruscheweyh, Subordination by convex functions, Proc. Amer. Math. Soc. 52 (1975), 191-195.
[20] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Marcel Dekker Inc., 2000.
[21] T. J. Suffridge, Some remarks on convex maps of the unit disc, Duke Math. J. 37 (1970), 775-777.
[22] H. M. Srivastava and Shigeyoshi Owa, Univalent Functions, Fractional Calculus, and their Applications, Ellis Horwood, 1989.

[^0]: Received: April 26, 2015; Accepted: June 21, 2015
 2010 Mathematics Subject Classification: 30C45.
 Keywords and phrases: Pochhammer symbol, τ-valent starlike, τ-valent convex, differential subordination.
 *Corresponding author
 Communicated by K. K. Azad

