APPLICATIONS OF DIFFERENTIAL SUBORDINATION TO THE GENERALIZED DZIOK-SRIVASTAVA CONVOLUTION OPERATOR

ISSN: 0972-0871

Uzoamaka A. Ezeafulukwe^{1,2} and Maslina Darus^{2,*}

¹Mathematics Department Faculty of Physical Sciences University of Nigeria Nsukka, Nigeria

e-mail: uzoamaka.ezeafulukwe@unn.edu.ng

²School of Mathematical Sciences
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
43600 UKM Bangi
Selangor DE, Malaysia

e-mail: maslina@ukm.edu.my

Abstract

In this article, we investigate some inclusion properties of the generalized Dziok-Srivastava convolution operator on some class of analytic functions. Using the principle of differential subordination, we extended the work done by Xu et al. [6] to the τ -valent type and calculated some sharp results.

Received: April 26, 2015; Accepted: June 21, 2015 2010 Mathematics Subject Classification: 30C45.

Keywords and phrases: Pochhammer symbol, τ -valent starlike, τ -valent convex, differential subordination.

*Corresponding author

Communicated by K. K. Azad

1. Introduction and Preliminaries

Let $A(\tau)$ denote the class of analytic functions in a unit disc U of the form

$$f(z) = z^{\tau} + \sum_{\kappa=1}^{\infty} \tau^{\kappa} a_{\kappa} z^{\tau+\kappa}, \quad \tau \in \mathbb{N}, \quad z \neq \frac{1}{\tau}, \quad \tau \mid z \mid < 1$$
 (1.1)

and $H[a, \kappa]$ denote the class of functions analytic in U of the form

$$f(z) = a + a_{\kappa} z^{\tau + \kappa} + a_{\kappa + 1} z^{\tau + \kappa + 1} + \cdots, \quad a \in \mathbb{R}.$$

The Hadamard product $\chi_1 * \chi_2$ of functions χ_ι is defined by

$$(\chi_1 * \chi_2)(z) = \sum_{\kappa=0}^{\infty} a_{\kappa,1} a_{\kappa,2} z^{\kappa},$$

where $\chi_1(z) = \sum_{\kappa=0}^{\infty} a_{\kappa, 1} z^{\kappa}$ is analytic in U.

The function $f(z) \in \mathcal{A}(\tau)$ was defined in [1] as

$$\Theta(z) * \frac{z^{\tau}}{1 - \tau z}, \quad z \neq \frac{1}{\tau}, \quad \tau | z | < 1, \quad \tau \in \mathbb{N},$$

where $\Theta(z) = \sum_{\kappa=0}^{\infty} a_{\kappa} z^{\tau+\kappa}, \ a_0 = 1.$

A function f(z) in $A(\tau)$ is said to be τ -valently starlike of order α $(0 \le \alpha < \tau)$ if

$$\Re e\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha,\tag{1.2}$$

also function f(z) in $A(\tau)$ is said to be τ -valently convex of order α $(0 \le \alpha < \tau)$ if

$$\Re e \left\{ 1 + \frac{z f''(z)}{f'(z)} \right\} > \alpha. \tag{1.3}$$

We denote the class of functions which is τ -valently starlike of order α

and τ -valently convex of order α by $\mathcal{S}(\tau, \alpha)$ and $\mathcal{C}(\tau, \alpha)$, respectively. Some properties of functions in classes $\mathcal{S}(\tau, \alpha)$ and $\mathcal{C}(\tau, \alpha)$ had been studied extensively, see [22, p. 188] and their references.

Remark 1.1. Since (1.1) is equivalent to

$$g(z) = z^{\tau} + \sum_{\kappa=\tau+1}^{\infty} a_{\kappa} z^{\kappa},$$

 τ -valently convexity implies τ -valently starlike.

The well known generalized Pochhammer symbol denoted by $(\eta)_{\kappa}$ is defined by

$$(\eta)_{\kappa} = \begin{cases} \kappa! & (\eta = 1), \\ 1 & (\kappa = 0; \, \eta \in \mathbb{C} \backslash 0), \\ \eta(\eta + 1) \cdots (\eta + \kappa - 1) & (\kappa \in \mathbb{N}; \, \eta \in \mathbb{C}). \end{cases}$$
 (1.4)

Let

$$\mathcal{K}_{a,\,\tau}(z) = \frac{z^{\tau}}{(1-\tau z)^{a}} = z^{\tau} + \sum_{\kappa=1}^{\infty} \frac{(a)_{\kappa}}{(1)_{\kappa}} \tau^{\kappa} z^{\tau+\kappa}. \tag{1.5}$$

The Hadamard product of $\mathcal{K}_{a,\,\tau}$ with $f\in A(\tau)$ denoted by $\mathcal{K}_{a,\,\tau}*f$ is defined by $(\mathcal{K}_{a,\,\tau}*f)(z)=\sum_{\kappa=0}^{\infty}\frac{(a)_{\kappa}}{(1)_{\kappa}}a_{\kappa}z^{\tau+\kappa}.$

If ϱ and ρ are analytic in U, then ϱ is said to be *subordinate* to ρ , written as $\varrho \prec \rho$ or $\varrho(z) \prec \rho(z)$, when ϱ is univalent in U, $\varrho(0) = \rho(0)$ and $\varrho(U) \subset \rho(U)$.

Let $\varphi(a, c; z)$ be the incomplete beta function defined by

$$\varphi(a, c; z) = z + \sum_{\kappa=1}^{\infty} \frac{(a)_{\kappa}}{(c)_{\kappa}} z^{\kappa} \quad (z \in U; c \notin \mathbb{Z}_{0}^{-}).$$

In 1999, Dziok-Srivastava [2] (see also [3]) defined the generalized hypergeometric function as

$$\varphi(\alpha_1, ..., \alpha_q; \beta_1, ..., \beta_s; z) = z + \sum_{\kappa=1}^{\infty} \frac{(\alpha_1)_{\kappa} \cdots (\alpha_q)_{\kappa}}{(\beta_1)_{\kappa} \cdots (\beta_s)_{\kappa} \kappa!} z^{\kappa},$$
 (1.6)

where $q, s \in \mathbb{N}$ with $q \le s+1$ and $\alpha_i \ne 0$, $\beta_\ell \notin \mathbb{Z}_0^-$ for all i = 1, 2, ..., q and $\ell = 1, 2, ..., s$. Xu et al. [6] defined the τ -valent function of the type (1.6) as follows:

Xu et al. [6] used the linear Dziok-Srivastava operator $\mathcal{H}_1(\alpha_i; \beta_\ell; z)$ convoluted with f(z) in the class A(1), as well as the function $h(z) \in \mathcal{H}[1, \kappa]$ which is convex and univalent in the unit disc U, with $\Re e\{h(z)\} > 0$ to define three subclasses of normalized analytic function as follow:

$$\mathcal{P}_{\alpha_{l};\beta_{\ell}}(h,\lambda)$$

$$:= \left\{ f \in A(1) : \frac{z(\mathcal{H}_{1}(\alpha_{l};\beta_{\ell})f)'(z) + \lambda z^{2}(\mathcal{H}_{1}(\alpha_{l};\beta_{\ell})f)''(z)}{(1-\lambda)(\mathcal{H}_{1}(\alpha_{l};\beta_{\ell})f)(z) + \lambda z(\mathcal{H}_{1}(\alpha_{l};\beta_{\ell})f)'(z)} \prec h(z) \right\}$$

$$(z \in U), \quad (\lambda \in [0,1]; \ h \in \mathcal{H}[1,\kappa]), \qquad (1.8)$$

$$\mathcal{T}_{\alpha_{l};\beta_{\ell}}(h,\alpha)$$

$$:= \left\{ f \in A(1) : \frac{(\mathcal{H}_{1}(\alpha_{l};\beta_{\ell})f)(z)}{z} + \alpha(\mathcal{H}_{1}(\alpha_{l};\beta_{\ell})f)'(z) \prec h(z) \right\}$$

$$(z \in U), \quad (\alpha \geq 0; \ h \in \mathcal{H}[1,\kappa]) \qquad (1.9)$$

and

$$\mathcal{R}_{\alpha_{i}; \beta_{\ell}}(h, \alpha)$$

$$:= \{ f \in A(1) : (\mathcal{H}_{1}(\alpha_{i}; \beta_{\ell}) f)'(z) + \alpha z (\mathcal{H}_{1}(\alpha_{i}; \beta_{\ell}) f)''(z) \prec h(z) \}$$

$$(z \in U), \quad (\alpha \geq 0; h \in \mathcal{H}[1, \kappa]). \tag{1.10}$$

Previously, many authors defined subclasses of normalized analytic functions similar to (1.8)-(1.10). They used specific values of α_i and β_ℓ , where i = 1, 2, ..., s, $\ell = 1, 2, ..., q$. Example of such authors is Özkan and Altıntaş [4] who used

•
$$(\mathcal{K}_{a,1} * f)(z) = \mathcal{L}(a, 1) f(z) = \mathcal{H}_1(a; 1) f(z),$$

and also Trojnar-Spelina [5] who used

•
$$\mathcal{L}(\alpha_1, \beta_1) f(z) = \mathcal{H}_1(\alpha_1, 1; \beta_1) f(z)$$
,

where $\mathcal{L}(a, c) f$ is Carlson-Shaffer linear operator on A(1). For more details of Carlson-Shaffer operator, see [7]. The authors [4-6] established some inclusion relationships of their classes of functions. Some other interesting subclasses of analytic function were studied recently using the generalized Dziok-Srivastava operator and for more details, see [8-18].

Motivated by all these, we extend the work done by Xu et al. [6] using the linear Dziok-Srivastava operator $\mathcal{H}_1(\alpha_i; \beta_\ell; z)$ convoluted with the function f of the class A(1) to $\mathcal{H}_{\tau}(\alpha_i; \beta_\ell; z)$ convoluting with f of the class $A(\tau)$ with h(z) of class $\mathcal{H}[a, \kappa]$ starlike in the unit disc U. We define the generalized form of the analytic subclass as follows: a function $f \in A(\tau)$ is said to be in the *class* $\mathcal{P}_{\alpha_i; \beta_\ell}(h, \lambda; \tau)$ if

$$\frac{z[\mathcal{H}_{\tau}(\alpha_{i};\beta_{\ell})f]^{(\tau)}(z) + \lambda z^{2}[\mathcal{H}_{\tau}(\alpha_{i};\beta_{\ell})f]^{(\tau+1)}(z)}{(1-\lambda)[\mathcal{H}_{\tau}(\alpha_{i};\beta_{\ell})f]^{(\tau-1)}(z) + \lambda z[\mathcal{H}_{\tau}(\alpha_{i};\beta_{\ell})f]^{(\tau)}(z)} \prec h(z),$$

$$\lambda \in [0,1], \ h \in \mathcal{H}[0,\kappa], \ (z \in U). \tag{1.11}$$

The function $f \in A(\tau)$ is said to be in the class $\mathcal{T}_{\alpha_i; \beta_\ell}(h, \alpha; \tau)$ if

$$(1 - \alpha) \frac{\left[\mathcal{H}_{\tau}(\alpha_{i}; \beta_{\ell}) f\right]^{(\tau - 1)}(z)}{z} + \alpha \left[\mathcal{H}_{\tau}(\alpha_{i}; \beta_{\ell}) f\right]^{(\tau)}(z) \prec h(z),$$

$$\alpha \geq 0, \ h \in \mathcal{H}[a, \kappa], \ (z \in U). \tag{1.12}$$

The function $f \in A(\tau)$ is said to be in the class $\mathcal{R}_{\alpha_{\ell}; \beta_{\ell}}(h, \alpha; \tau)$ if

$$[\mathcal{H}_{\tau}(\alpha_{i}; \beta_{\ell}) f]^{(\tau)}(z) + \alpha z [\mathcal{H}_{\tau}(\alpha_{i}; \beta_{\ell}) f]^{(\tau+1)}(z) \prec h(z),$$

$$\alpha \geq 0, \ h \in \mathcal{H}[a, \kappa], \ (z \in U). \tag{1.13}$$

We review some known preliminary results needed to establish our proof.

Theorem 1.1 [20, 19]. If Θ convex is in the unit disc U with $\Re\{\gamma\} \ge 0$, $\gamma \ne 0$, $\Theta(0) = a$, $a \ne 0$ and there exists $\vartheta \in H[a, \kappa]$ which satisfies

$$\vartheta(z) + \frac{z\vartheta'(z)}{\gamma} \prec \Theta(z),$$
 (1.14)

then

$$\vartheta(z) \prec \sigma(z) \prec \Theta(z)$$
,

where

$$\sigma(z) = \gamma \kappa^{-1} z^{\left(\frac{-\gamma}{\kappa}\right)} \int_0^z \Theta(\xi) \xi^{\left(\frac{\gamma}{\kappa}\right) - 1} d\xi.$$
 (1.15)

The function σ *is convex and the best* (a, κ) *-dominant.*

Theorem 1.2 [20, 21]. Let ϑ be starlike in U with $\vartheta(0) = 0$, if $\Theta \in H[a, n], \ a \neq 0$ satisfies

$$z\Theta'(z) \prec \vartheta(z)$$

then

$$\Theta(z) \prec \Upsilon(z) = a + \frac{1}{\kappa} \int_0^z \vartheta(\xi) \xi^{-1} d\xi.$$

The function Υ is convex and the best (a, κ) -dominant.

The objective of this article is to investigate some inclusion properties of the generalized Dziok-Srivastava convolution operator on some class of analytic functions and using the principle of differential subordination, extended the work done by Xu et al. [6] to the τ -valent type and calculated some sharp results.

2. Inclusion Relationships

In this section, we use the classes defined in (1.11)-(1.13) to establish some inclusion properties. We used same technique as in Xu et al. [6] to prove our results.

Theorem 2.1. Let $\mathcal{P}_{\alpha_i; \beta_\ell}(h, \lambda; \tau)$ be as defined in (1.11). Then

$$f \in \mathcal{P}_{\alpha_i; \beta_\ell}(h, \lambda; \tau + 1) \Leftrightarrow g(z) \in \mathcal{P}_{\alpha_i; \beta_\ell}(h, 0; \tau),$$
 (2.1)

where

$$g(z) = \lambda z f^{(\tau+1)}(z) + (1-\lambda) f^{(\tau)}(z)$$
 (2.2)

and

$$f \in \mathcal{P}_{\alpha_i;\beta_\ell}(h, \lambda; \tau + 1)$$

$$\Rightarrow \Psi = \lambda f^{(\tau)} + (1 - \lambda) \int_0^z \xi^{-1} f^{(\tau)}(\xi) d\xi \in \mathcal{P}_{\alpha_i; \beta_\ell}(h, 1; \tau). \tag{2.3}$$

Proof. If $f \in \mathcal{P}_{\alpha_i;\beta_\ell}(h,\lambda;\tau+1)$, then there exists h starlike in U with h(0) = 0 such that the subordination (1.11) holds. Let $g(z) = \lambda z f^{(\tau+1)}(z) + (1-\lambda) f^{(\tau)}(z)$. Then

$$\frac{z[\mathcal{H}_{\tau}(\alpha_{i}; \beta_{\ell})f]^{(\tau+1)}(z) + \lambda z^{2}[\mathcal{H}_{\tau}(\alpha_{i}; \beta_{\ell})f]^{(\tau+2)}(z)}{(1-\lambda)[\mathcal{H}_{\tau}(\alpha_{i}; \beta_{\ell})f]^{(\tau)}(z) + \lambda z[\mathcal{H}_{\tau}(\alpha_{i}; \beta_{\ell})f]^{(\tau+1)}(z)}$$

$$[\mathfrak{g}(\alpha_{1}, \alpha_{1}; \beta_{1}, \beta_{1}; z^{\tau})]^{(\tau)} * zg'(z)$$

$$= \frac{\left[\varphi(\alpha_{1}, ..., \alpha_{q}; \beta_{1}, ..., \beta_{s}; z^{\tau}) \right]^{(\tau)} * zg'(z)}{\left[\varphi(\alpha_{1}, ..., \alpha_{q}; \beta_{1}, ..., \beta_{s}; z^{\tau}) \right]^{(\tau)} * g(z)}$$

$$=\frac{z[[\mathcal{H}_{\tau}(\alpha_{i};\beta_{\ell})]^{(\tau)}g]'(z)}{([\mathcal{H}_{\tau}(\alpha_{i};\beta_{\ell})]^{(\tau)}g)(z)}.$$

This shows that when $f \in \mathcal{P}_{\alpha_i; \beta_\ell}(h, \lambda; \tau + 1)$, then $g(z) = \lambda z f^{(\tau+1)}(z) + (1 - \lambda) f^{(\tau)}(z) \in \mathcal{P}_{\alpha_i; \beta_\ell}(h, 0; \tau)$. The converse also holds.

Assume $f \in \mathcal{P}_{\alpha_i;\beta_\ell}(h,\lambda;\tau+1)$. Then we have shown that $g(z) = \lambda z f^{(\tau+1)}(z) + (1-\lambda) f^{(\tau)}(z) \in \mathcal{P}_{\alpha_i;\beta_\ell}(h,0;\tau)$. We also note from (2.3) that $z\Psi'(z) = g(z), z \in U$ that means

$$\Psi \in \mathcal{P}_{\alpha_i;\beta_\ell}(h, 1; \tau) \Leftrightarrow z\Psi' \in \mathcal{P}_{\alpha_i;\beta_\ell}(h, 0; \tau)$$

and hence $\Psi \in \mathcal{P}_{\alpha_i;\beta_\ell}(h, \lambda; \tau)$.

Theorem 2.2. Let $\mathcal{T}_{\alpha_t;\beta_\ell}(h,\lambda;\tau)$ be as defined in (1.12) with h convex in U, $\alpha = \tau!$ and $\Re\{h(z)\} > 0$. Then

$$f \in \mathcal{T}_{\alpha_i; \beta_\ell}(h, \alpha; \tau) \Rightarrow f \in \mathcal{T}_{\alpha_i; \beta_\ell}(h, 0; \tau - 1)$$
 (2.4)

and

$$\mathcal{T}_{\alpha_i;\beta_\ell}(h, \alpha; \tau) \subset \mathcal{T}_{\alpha_i;\beta_\ell}(h, \delta; \tau - 1).$$
 (2.5)

Proof. Let $f \in \mathcal{T}_{\alpha_i;\beta_\ell}(h,\alpha;\tau)$ and $h(0) = \tau!$. Then subordination (1.12) holds. Let

$$q(z) = \frac{\left[\mathcal{H}_{\tau}(\alpha_i; \beta_\ell)\right]^{(\tau-1)}(z)}{z}.$$
 (2.6)

Simple calculation on (2.6) gives

$$q(z) + \alpha z q'(z) = (1 - \alpha) \frac{\left[\mathcal{H}_{\tau}(\alpha_i; \beta_{\ell}) f\right]^{(\tau - 1)}(z)}{z} + \alpha \left[\mathcal{H}_{\tau}(\alpha_i; \beta_{\ell})\right]^{(\tau)}(z).$$

Assume $\gamma = \frac{1}{\alpha}$, $\alpha > 0$. Then, by Theorem 1.1,

$$q(z) \prec h(z) \quad (z \in U),$$

which shows that $f \in \mathcal{T}_{\alpha_i;\beta_\ell}(h, 0; \tau - 1)$ and this concludes the first part of Theorem 2.2. To show the proof of the second part of Theorem 2.2. If $\delta = 0$, then the proof is obvious. Assume $\delta \neq 0$ and $f \in \mathcal{T}_{\alpha_i;\beta_\ell}(h, \alpha; \tau)$. Then there exists a function h(U) such that

$$(1-\alpha)\frac{\left[\mathcal{H}_{\tau}(\alpha_{i};\,\beta_{\ell})f\right]^{(\tau-1)}(z)}{z}+\alpha\left[\mathcal{H}_{\tau}(\alpha_{i};\,\beta_{\ell})f\right]^{(\tau)}(z)\in h(U).$$

Now

$$(1 - \delta) \frac{\left[\mathcal{H}_{\tau}(\alpha_{i}; \beta_{\ell}) f\right]^{(\tau - 1)}(z)}{z} + \delta \left[\mathcal{H}_{\tau}(\alpha_{i}; \beta_{\ell}) f\right]^{(\tau)}(z)$$

$$= \left(1 - \frac{\delta}{\alpha}\right) \frac{\left[\mathcal{H}_{\tau}(\alpha_{i}; \beta_{\ell}) f\right]^{(\tau - 1)}(z)}{z}$$

$$+ \frac{\delta}{\alpha} \left((1 - \alpha) \frac{\left[\mathcal{H}_{\tau}(\alpha_{i}; \beta_{\ell}) f\right]^{(\tau - 1)}(z)}{z} + \alpha \left[\mathcal{H}_{\tau}(\alpha_{i}; \beta_{\ell}) f\right]^{(\tau)}(z)\right).$$

Since $\frac{\delta}{\alpha}$ < 1 and h(U) is convex, we conclude that

$$(1-\delta)\frac{\left[\mathcal{H}_{\tau}(\alpha_{i};\,\beta_{\ell})f\right]^{(\tau-1)}(z)}{z}+\delta\left[\mathcal{H}_{\tau}(\alpha_{i};\,\beta_{\ell})f\right]^{(\tau)}(z)\in\mathit{h}(U),$$

as h is convex univalent in U, then $f \in \mathcal{T}_{\alpha_i;\beta_\ell}(h, \delta; \tau - 1)$. This ends the proof.

Theorem 2.3. Let $\mathcal{R}_{\alpha_i;\beta_\ell}(h,\lambda;\tau)$ be as defined in (1.13) with h convex in U, $a = \tau!$ and $\Re\{h(z)\} > 0$. Then

$$f \in \mathcal{R}_{\alpha_i; \beta_\ell}(h, \alpha; \tau) \Rightarrow f \in \mathcal{R}_{\alpha_i; \beta_\ell}(h, 0; \tau - 1)$$
 (2.7)

and

$$\mathcal{R}_{\alpha_{\tau};\beta_{\ell}}(h,\,\alpha;\,\tau) \subset \mathcal{R}_{\alpha_{\tau};\beta_{\ell}}(h,\,\delta;\,\tau-1). \tag{2.8}$$

Proof. Let $f \in \mathcal{R}_{\alpha_i; \beta_\ell}(h, \alpha; \tau)$, assume

$$q(z) = \left[\mathcal{H}_{\tau}(\alpha_i; \beta_\ell) f \right]^{(\tau)}(z). \tag{2.9}$$

Then

$$q(z) + z\alpha q'(z) = \left[\mathcal{H}_{\tau}(\alpha_i; \beta_{\ell})f\right]^{(\tau)}(z) + \alpha z \left[\mathcal{H}_{\tau}(\alpha_i; \beta_{\ell})f\right]^{(\tau+1)}(z)$$

and by Theorem 1.1 with $\gamma = \frac{1}{\alpha}, \ \alpha > 0$,

$$q(z) \prec h(z)$$
.

To show the proof of the second part of Theorem 2.2. If $\delta=0$, then the proof is obvious. Assume $\delta\neq 0$ and $f\in\mathcal{T}_{\alpha_i;\beta_\ell}(h,\alpha;\tau)$. Then there exists a function h(U) such that

$$[\mathcal{H}_{\tau}(\alpha_{i}; \beta_{\ell}) f]^{(\tau)}(z) + \alpha [\mathcal{H}_{\tau}(\alpha_{i}; \beta_{\ell}) f]^{(\tau+1)}(z) \in h(U).$$

Now

$$\begin{split} & \left[\mathcal{H}_{\tau}(\alpha_{i}; \, \beta_{\ell}) f \right]^{(\tau)}(z) + \delta \left[\mathcal{H}_{\tau}(\alpha_{i}; \, \beta_{\ell}) f \right]^{(\tau+1)}(z) \\ &= \left(1 - \frac{\delta}{\alpha} \right) \left[\mathcal{H}_{\tau}(\alpha_{i}; \, \beta_{\ell}) f \right]^{(\tau)}(z) \\ &+ \frac{\delta}{\alpha} \left(\left[\mathcal{H}_{\tau}(\alpha_{i}; \, \beta_{\ell}) f \right]^{(\tau)}(z) + \alpha \left[\mathcal{H}_{\tau}(\alpha_{i}; \, \beta_{\ell}) f \right]^{(\tau+1)}(z) \right). \end{split}$$

Since $\frac{\delta}{\alpha}$ < 1 and h(U) is convex, we conclude that

$$[\mathcal{H}_{\tau}(\alpha_{i}; \beta_{\ell}) f]^{(\tau)}(z) + \delta [\mathcal{H}_{\tau}(\alpha_{i}; \beta_{\ell}) f]^{(\tau+1)}(z) \in h(U),$$

as h is convex univalent in U, then $f \in \mathcal{R}_{\alpha_i; \beta_\ell}(h, \delta; \tau - 1)$. This ends the proof.

Theorem 2.4. Let $\mathcal{R}_{\alpha_i;\beta_\ell}(h,\lambda;\tau)$ be as defined in (1.12) with h convex

in U, a = r! and $\Re\{h(z)\} > 0$. Then

$$f \in \mathcal{R}_{\alpha_i;\beta_\ell}(h, \alpha; \tau) \Leftrightarrow zf'(z) \in \mathcal{T}_{\alpha_i;\beta_\ell}(h, 0; \tau - 1)$$
 (2.10)

and

$$\mathcal{R}_{\alpha_{\bullet};\beta_{\ell}}(h,\alpha;\tau) \subset \mathcal{T}_{\alpha_{\bullet};\beta_{\ell}}(h,\alpha;\tau). \tag{2.11}$$

Proof. Using the fact that

$$(1 - \alpha) \frac{([\mathcal{H}_{\tau}(\alpha_i; \beta_{\ell}) f]^{(\tau - 1)} * (zf^{(\tau)}))(z)}{z}$$

$$+ \alpha([\mathcal{H}_{\tau}(\alpha_i; \beta_{\ell})]^{(\tau)} * (f^{(\tau)} + zf^{(\tau + 1)}))(z)$$

$$= [\mathcal{H}_{\tau}(\alpha_i; \beta_{\ell}) f]^{(\tau)}(z) + \alpha([\mathcal{H}_{\tau}(\alpha_i; \beta_{\ell}) f]^{(\tau - 1)})(z),$$

the first part of the theorem is proved.

Now, letting

$$q(z) = (1 - \alpha) \frac{\left[\mathcal{H}_{\tau}(\alpha_i; \beta_{\ell}) f\right]^{(\tau - 1)}(z)}{z} + \alpha \left[\mathcal{H}_{\tau}(\alpha_i; \beta_{\ell}) f\right]^{(\tau)}(z),$$

with the assumption that $f \in \mathcal{R}_{\alpha_i; \beta_f}(h, \alpha; \tau)$, we have

$$q(z) + zq'(z) = \left[\mathcal{H}_{\tau}(\alpha_i; \beta_{\ell}) f\right]^{(\tau)}(z) + \alpha z \left(\left[\mathcal{H}_{\tau}(\alpha_i; \beta_{\ell}) f\right]^{(\tau+1)}\right)(z),$$

then, by Theorem 1.1, with $\gamma = 1$ implies

$$q(z) \prec h(z) \quad (z \in U).$$

This shows that $f \in \mathcal{T}_{\alpha_i; \beta_\ell}(h, \alpha; \tau)$.

3. Applications of Differential Subordinations

3.1. Sharp results

We establish some sharp results of Theorems 2.1-2.4.

Theorem 3.1. Let $\mathcal{P}_{\alpha_{\lambda};\beta_{\ell}}(h,\lambda;\tau)$ be as defined in (1.12) with h starlike

in U, h(0) = 0, if

$$f \in \mathcal{P}_{\alpha_{\sigma};\beta_{\ell}}(h,\lambda;\tau+1),$$
 (3.1)

then

$$q(z) = ([\mathcal{H}_{\tau}(\alpha_i; \beta_{\ell})]^{(\tau)}g)(z) \prec v(z) = r! \exp \left[\int_0^z h(\xi) \xi^{-1} d\xi\right],$$

where g(z) is (2.2). The function v is the best $(\tau!, \kappa)$ -dominant.

Proof. Let $f \in \mathcal{P}_{\alpha_i;\beta_\ell}(h, \lambda; \tau + 1)$. Then $q(0) = ([\mathcal{H}_{\tau}(\alpha_i; \beta_\ell)]^{(\tau)}g)(0)$ = $\tau! \neq 0$ and

$$\frac{\left[\left[\mathcal{H}_{\tau}(\alpha_{i};\,\beta_{\ell})\right]^{(\tau)}g\right]'(z)}{\left(\left[\mathcal{H}_{\tau}(\alpha_{i};\,\beta_{\ell})\right]^{(\tau)}g\right)(z)} \prec h(z),$$

so $q(z) \neq 0$ in U. Let $\psi(z) = \log q(z)$. Then $\psi(z) \in \mathcal{H}[\log q(z), \kappa]$ and

$$z\psi'(z) = z \frac{q'(z)}{q(z)} = \frac{\left[\left[\mathcal{H}_{\tau}(\alpha_i; \beta_{\ell})\right]^{(\tau)} g\right]'(z)}{\left(\left[\mathcal{H}_{\tau}(\alpha_i; \beta_{\ell})\right]^{(\tau)} g\right)(z)}.$$

Then, by Theorem 1.1, Theorem 3.1 is proved.

Theorem 3.2. Let $\mathcal{T}_{\alpha_l;\beta_\ell}(h,\lambda;\tau)$ be as defined in (1.12) with h convex in U, a=r! and $\Re\{h(z)\}>0$. Then

$$f \in \mathcal{T}_{\alpha_{i};\beta_{\ell}}(h,\lambda;\tau) \Rightarrow q(z) = \frac{\left[\mathcal{H}_{\tau}(\alpha_{i};\beta_{\ell})\right]^{(\tau-1)}(z)}{z}$$

$$\forall v(z) = z \left(\frac{-\gamma}{\kappa}\right) \gamma \kappa \int_{0}^{z} h(\xi) \xi^{\left(\frac{\gamma}{\kappa}\right) - 1} d\xi.$$
 (3.2)

The function v is convex and the best $(\tau!, \kappa)$ *-dominant.*

Proof. Assume $f \in \mathcal{T}_{\alpha_i; \beta_\ell}(h, \lambda; \tau)$ and $q(z) = \frac{[\mathcal{H}_{\tau}(\alpha_i; \beta_\ell)]^{(\tau-1)}(z)}{z}$. Then the subordination

holds. Applying Theorem 1.1 to (3.3) gives the proof of Theorem 3.2. \Box

Theorem 3.3. Let $\mathcal{R}_{\alpha_l;\beta_\ell}(h,\lambda;\tau)$ be as defined in (1.13) with h convex in U, $a = \tau!$ and $\Re\{h(z)\} > 0$. Then

(i)

$$f \in \mathcal{R}_{\alpha_i; \beta_\ell}(h, \lambda; \tau) \Rightarrow q(z) = \left[\mathcal{H}_{\tau}(\alpha_i; \beta_\ell)\right]^{(\tau)} \prec \nu(z)$$
$$= z \left(\frac{-\gamma}{\kappa}\right) \gamma \kappa \int_0^z h(\xi) \xi^{\left(\frac{\gamma}{\kappa}\right) - 1} d\xi, \tag{3.4}$$

(ii)

$$f \in \mathcal{R}_{\alpha_t; \beta_\ell}(h, \lambda; \tau) \Rightarrow q(z) \prec v(z) = z \left(\frac{-\gamma}{\kappa}\right) \gamma \kappa \int_0^z h(\xi) \xi^{\left(\frac{\gamma}{\kappa}\right) - 1} d\xi,$$

where

$$q(z) = (1 - \alpha) \frac{\left[\mathcal{H}_{\tau}(\alpha_i; \beta_{\ell})\right]^{(\tau - 1)}(z)}{z} + \alpha z \left[\mathcal{H}_{\tau}(\alpha_i; \beta_{\ell})\right]^{(\tau)}(z).$$

The function v is convex and the best $(\tau!, \kappa)$ *-dominant.*

Proof. Let
$$f \in \mathcal{R}_{\alpha_i; \beta_\ell}(h, \lambda; \tau)$$
 and $q(z) = [\mathcal{H}_{\tau}(\alpha_i; \beta_\ell)]^{(\tau)}(z)$. Then
$$q(z) + z\alpha q'(z) \prec h(z) \tag{3.5}$$

and application of Theorem 1.1 to (3.5) yields Theorem 3.3(i).

Let
$$f \in \mathcal{R}_{\alpha_i;\beta_\ell}(h, \lambda; \tau)$$
 and

$$q(z) = (1 - \alpha) \frac{\left[\mathcal{H}_{\tau}(\alpha_i; \beta_{\ell})\right]^{(\tau - 1)}(z)}{z} + \alpha \left[\mathcal{H}_{\tau}(\alpha_i; \beta_{\ell})\right]^{(\tau)}(z).$$

Then the subordination $q(z) + zq'(z) \prec h(z)$ holds, application of Theorem 1.1 with $\gamma = 1$ concludes the proof of the theorem.

3.2. Conclusion

We calculated some choices of

$$\mathcal{P}_{\alpha_i;\beta_\ell}(h(z),\lambda;\tau+1), \quad \mathcal{T}_{\alpha_i;\beta_\ell}(h(z),\lambda;\tau) \quad \text{and} \quad \mathcal{R}_{\alpha_i;\beta_\ell}(h(z),\lambda;\tau+1)$$

with their corresponding v(z) for Theorems 3.1-3.3 as follows:

• Let
$$f \in \mathcal{P}_{\alpha_{\ell};\beta_{\ell}}\left(\frac{z}{1-\tau z}, 0; \tau+1\right), h \in \mathcal{S}(\tau, \alpha)$$
. Then

$$([\mathcal{H}_{\tau}(\alpha_{i}; \beta_{\ell})]^{(\tau)}g)(z) \prec \nu(z) = \tau! \left(\frac{1}{1-\tau z}\right)^{\tau}, \quad \nu \in \mathcal{S}(\tau, \alpha).$$

• Let
$$f \in \mathcal{T}_{\alpha_i;\beta_\ell}\left(\frac{\tau! + (1-2\alpha)(2-\tau z)z}{(1-\tau z)^2}, 1; \tau\right), h \in \mathcal{C}(\tau, \alpha), \gamma = 1.$$

Then

$$\frac{\left[\mathcal{H}_{\tau}(\alpha_{i};\,\beta_{\ell})\right]^{(\tau-1)}(z)}{z} \prec \nu(z) = \left(\frac{\tau! + (1-2\alpha)z}{(1-\tau z)^{2}}\right), \quad \nu \in \mathcal{C}(\tau,\,\alpha).$$

• Let
$$f \in \mathcal{R}_{\alpha_i;\beta_\ell}\left(\frac{\tau! + (2 - \tau z)z}{(1 - \tau z)^2}, 1; \tau\right), h \in \mathcal{C}(\tau, \alpha), \gamma = 1$$
. Then

$$[\mathcal{H}_{\tau}(\alpha_{i}; \beta_{\ell})]^{(\tau-1)}(z) \prec \nu(z) = \left(\frac{\tau! + z}{(1-\tau_{z})^{2}}\right), \quad \nu \in \mathcal{C}(\tau, \alpha).$$

Acknowledgment

The work presented here was partially supported by AP-2013-009.

References

- [1] U. A. Ezeafulukwe and M. Darus, Some properties of certain class of analytic functions, Int. J. Math. Math. Sci. 2014 (2014), Article ID 358467, 5 pp.
- [2] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999), 1-13.

- [3] Z. Shareef, S. Hussain and M. Darus, Convolution operators in the geometric function theory, J. Inequal. Appl. 2012 (2012), 213, 11 pp.
- [4] Ö. Özkan and O. Altıntaş, Applications of differential subordination, Appl. Math. Lett. 19 (2006), 728-734.
- [5] L. Trojnar-Spelina, On certain applications of the Hadamard product, Appl. Math. Comput. 199 (2008), 653-662.
- [6] Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, Some applications of differential subordination and the Dziok-Srivastava convolution operator, Appl. Math. Comput. 230 (2014), 496-508.
- [7] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984), 737-745.
- [8] R. Aghalary, S. B. Joshi, R. N. Mohapatra and V. Ravichandran, Subordinations for analytic functions defined by the Dziok-Srivastava linear operator, Appl. Math. Comput. 187 (2007), 13-19.
- [9] N. E. Cho and I. H. Kim, Inclusion properties of certain classes of meromorphic functions associated with generalized hypergeometric function, Appl. Math. Comput. 187 (2007), 115-121.
- [10] J. Dziok, On some applications of the Briot-Bouquet differential subordinations,J. Math. Anal. Appl. 328 (2007), 295-301.
- [11] J. Dziok, On the convex combination of the Dziok-Srivastava operator, Appl. Math. Comput. 188 (2007), 1214-1220.
- [12] J.-L. Liu and H. M. Srivastava, Classes of meromorphically multivalent functions associated with the generalized hypergeometric function, Math. Comput. Modelling 39 (2004), 21-34.
- [13] J.-L. Liu and H. M. Srivastava, Certain properties of the Dziok-Srivastava operator, Appl. Math. Comput. 159 (2004), 485-493.
- [14] J. Patel, A. K. Mishra and H. M. Srivastava, Classes of multivalent analytic functions involving the Dziok-Srivastava operator, Comput. Math. Appl. 54 (2007), 599-616.
- [15] C. Ramachandran, T. N. Shanmugam, H. M. Srivastava and A. Swaminathan, A unified class of *k*-uniformly convex functions defined by the Dziok-Srivastava linear operator, Appl. Math. Comput. 190 (2007), 1627-1636.
- [16] K. Piejko and J. Sokól, On the Dziok-Srivastava operator under multivalent analytic functions, Appl. Math. Comput. 177 (2006), 839-843.

- [17] H. M. Srivastava, N.-Eng Xu and Ding-Gong Yang, Inclusion relations and convolution properties of a certain class of analytic functions associated with the Ruscheweyh derivatives, J. Math. Anal. Appl. 331 (2007), 686-700.
- [18] H. M. Srivastava, D.-G. Yang and N.-E. Xu, Subordinations for multivalent analytic functions associated with the Dziok-Srivastava operator, Integral Transforms Spec. Funct. 20 (2009), 581-606.
- [19] D. J. Hallenbeck and St. Ruscheweyh, Subordination by convex functions, Proc. Amer. Math. Soc. 52 (1975), 191-195.
- [20] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Marcel Dekker Inc., 2000.
- [21] T. J. Suffridge, Some remarks on convex maps of the unit disc, Duke Math. J. 37 (1970), 775-777.
- [22] H. M. Srivastava and Shigeyoshi Owa, Univalent Functions, Fractional Calculus, and their Applications, Ellis Horwood, 1989.