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Abstract

We prove some common fixed point theorems for non-self mappings
(v, @)-weak contractive conditions of integral type in symmetric

spaces by changing the contractive conditions which generalize the
results of Kutbi et al. [14].

1. Introduction

The celebrated Banach contraction principle is indeed the most
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fundamental result of metrical fixed point theory, which states that a
contraction mapping of a complete metric space into itself has a unique fixed
point. This theorem is very efficiently utilized to establish the existence of
solutions of non-linear Volterra integral equations, Fredholm integral
equations, and nonlinear integrodifferential equations in Banach spaces
besides supporting the convergence of algorithms in computational
mathematics.

The concept of weak contraction was introduced by Alber and Guerre-
Delabriere [1] in 1997 wherein authors introduced the following notion for
mappings defined on a Hilbert space H.

Consider the following set of real functions:
® = {¢: [0, ©) - [0, ) : ¢ is lower semi-continuous and ¢ 1({0}) = {0}}.

M)

A mapping T : X — X is called a ¢-weak contraction if there exists a
function @ € @ such that

d(Tx, Ty) < d(x, y)—o(d(x, y)), VX, ye X. )

However, the main fixed point theorem for a self-mapping satisfying (v, ¢) -

weak contractive conditions contained in Dutta and Choudhury [2] is given
below, but, before that, we consider the following set of real functions:

¥ = {y : [0, ©) - [0, ») : y is continuous nondecreasing y1({0}) = {0}}.

@)
Theorem 1.1 (See [14]). Let (X, d) be a complete metric space and let

T : X — X be a self-mapping satisfying
w(d(Tx, Ty)) < w(d(x, y)) - @(d(x, y)) 4)

for some w e ¥ and ¢ € @ and all x, y € X. Then T has a unique fixed

point in X.
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The object of this paper is to prove some integral type common fixed
point theorems for two pairs of nonself weakly compatible mappings
satisfying generalized (v, ¢)-contractive conditions by using the common

limit range property in symmetric spaces.
2. Preliminaries

A common fixed point result generally involves conditions on
commutativity, continuity, and contraction along with a suitable condition on
the containment of range of one mapping into the range of the other. Hence,
one is always required to improve one or more of these conditions in order to
prove a new common fixed point theorem. It can be observed that in the case
of two mappings A, S : X — X, where (X, d) is metric space (or symmetric
space), one can consider the following classes of mappings for the existence
and uniqueness of common fixed points:

d(Ax, Ay) < F(m(x, y)), (5)

where F is some function and m(x, y) is the maximum of one of the sets.
Thus,

M3 s(x y)

= {d(Sx, Sy), d(Sx, Ax), d(Sy, Ay), d(Sx, Ay), d(Sy, Ax)},
MZ s (X y)
= {d(SX, Sy), d(Sx, Ax), d(Sy, Ay), %(d(Sx, Ay) + d(Sy, AX))},
MR s(x y)
— {d(5x 5y), 5 (@(5x, M%)+ d(5y, Ay)). 5 (d(Sx, Ay)+ d(Sy, A}, ©)

A further possible generalization is to consider four mappings instead of
two and ascertain analogous common fixed point theorems. In the case of
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four mappings A, B, S, T : X — X, where (X, d) is metric space (or
symmetric space), the corresponding sets take the form

MR,B,S,T(Xa y)

= [{dz(Sx, Ty), dz(Sx, Ax), d(By, Ty), d(Sx, Ty),

d(Sx, By), d(Sx, Ty), d(By, Ty), d?(By, Ty)}]%-

MA B,s.1(X )

- HdZ(SX, Ty), d?(Sx, Ax), d(By, Ty), d(Sx, Ty), d(Sx, By),

1
5(@(5%Ty) + d(By. Ty)), a2(By, T)} [

M3 g s.7(X Y)

_ Hdz(Sx, Ty), d2(Sx, Ax), d(By, Ty), %(d(Sx, Ty) + d(Sx, By)),
1

5(@(5%.Ty) + d(By. Ty)), a2(By, Ty)} @

In this case, (5) is usually replaced by
d(Ax, By) < F(m(x, y)), ®)
where m(x, y) is the maximum of one of the M-sets.

A symmetric on a set X is a function d : X x X — [0, o) satisfying the

following conditions:
(1) d(x, y)=0 ifandonly if x =y for x, y € X,
(2) d(x, y) =d(y, x) forall x, y € X.

Let d be a symmetric on a set X and for r >0 and any x € X, let
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B(x, r)={y e X :d(x, y) < r}. Atopology t(d) on X is given by U e t(d)
if, and only if, for each x € U, B(x, r) < U for some r > 0. A symmetric d
is a semi-metric if for each x € X and each r > 0, B(x, r) is a neighbourhood
of x in the topology t(d). Note that lim d(x,, x) = 0 if and only if x, — X
Nn—o0
in the topology t(d).

The difference of a symmetric and a metric comes from the triangle
inequality. Since a symmetric space is not essentially Hausdorff, therefore in
order to prove fixed point theorems some additional axioms are required. The
following axioms, which are available in Wilson [3], Aliouche [4], and
Imdad et al. [5], are relevant to this presentation.

From now on symmetric space will be denoted by (X, d) whereas a

nonempty arbitrary set will be denoted by Y.
(W3) Given {xn}, andyin X, lim d(x,, x)=0 and lim d(x,, y)=0
n—oo N—0
imply x =y [3].
(Wy) Given {xp}, {yp}and xin X, lim d(x,, x)=0and lim d(x,, y,)
n—oo n—oo
=0 imply d(y,, x) =0 [3].
(HE) Given {x,}, {yn} and x in X, lim d(x,, x)=0and lim d(y,, x)
n—oo N—00
=0 imply d(x,, yn) =0 [4].
(A1C) A symmetric d is said to be 1-continuous if lim d(x,, x)=0
n—oo
implies lim d(x,, y) = d(x, y), where {x,} is a sequence in X and x, y
n—oo
e X [6].
(CC) A symmetric d is said to be continuous if lim d(x,, x) =0 and
N—o0
lim d(y,, y) =0 imply lim d(x,, y,)=d(x, y), where {x,} and {y,}
n—o N—0
are sequences in Xand x, y € X [6].

Here, it is observed that (CC) = (1C), (W,) = (W3), (1C) = (W3)
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but the converse implications are not true. In general, all other possible
implications amongst (W), (1C), and (HE) are not true. However, (CC)
implies all the remaining four conditions, namely, (W3), (W,), (HE), and
1c).

Definition 2.1 (See [14]). Let (A, S) be a pair of self-mappings defined

on a nonempty set X equipped with a symmetric d. Then the mappings A and
S are said to be

(1) commuting if ASx = SAx forall x € X,
(2) compatible [7] if lim d(ASx,, SAx,) =0 for each sequence {x,}
n—oo

inY such that lim Ax, = lim Sx,,
nN—o0 n—o

(3) noncompatible [8] if there exists a sequence {x,} in X such that
lim Ax, = lim Sx, but lim d(ASx,, SAx,) is either nonzero or
n—o0 n—oo n—oo
nonexistent,

(4) weakly compatible [9] if they commute at their coincidence points,
that is, ASx = SAx whenever Ax = Sx, for some x € X,

(5) satisfying the property (E.A) [10] if there exists a sequence {X,} in

Xsuch that lim Ax, = lim Sx,, = z, for some z € X.
n—o0 n—o0

Any pair of compatible as well as noncompatible self-mappings satisfies
the property (E.A) but a pair of mappings satisfying the property (E.A) needs
not be noncompatible.

Definition 2.2 (See [11]). Let Y be an arbitrary set and let X be a
nonempty set equipped with symmetric d. Then the pairs (A, S) and (B, T)
of mappings from Y into X are said to share the common property (E.A), if
there exist two sequences {x,} and {y,} in X such that

lim Ax, = lim Sx, = lim By, = lim Ty, =z 9)
n—oo n—oo n—oo nN—oo

forsome z € X.
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Definition 2.3 (See [12]). Let Y be an arbitrary set and let X be a
nonempty set equipped with symmetric d. Then the pairs (A, S) of mappings

from Y into X is said to have the common limit range property with respect to
the mappings S (denoted by (CLRg)) if there exist two sequence {x,} in X

such that

lim Ax, = lim Sx, =z (10)

n—oo n—o0
for some z e S(Y).

Definition 2.4 (See [14]). Let Y be an arbitrary set and let X be a
nonempty set equipped with symmetric d. Then the pairs (A, S) and (B, T)

of mappings from Y into X is said to have the common limit range property
with respect to the mappings S and T, (denoted by (CLRgr)) if there exist

two sequences {X,} and {y,} inY such that
lim Ax, = lim Sx, = lim By, = lim Ty, =z (11)
n—o n—o n—o0 N—oo

forsome z € S(Y)NT(Y).

Remark 2.1 (See [14]). It is clear that (CLRgT) property implies the

common property (E.A) but the converse is not true.

Definition 2.5 (See [14]). Two families of self-mappings {Ai}?ll and

{Sk }Ezl are said to be pairwise commuting if
(1) AAj = AjA foralli, je{l, 2, .., m},
(2) SiS| = 5S¢ forall k, 1 € {1, 2, ..., n},
(3) ASk = SkA forallie{l, 2,.., m}and k € {1, 2, ..., n}.
3. Results

Now we state and prove our main results for four mappings employing
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the common limit range property in symmetric spaces. Firstly, we prove the
following lemma.

Lemma 3.1 (See [14]). Let (X, d) be a symmetric space wherein d
satisfies the conditions (CC) whereas Y is an arbitrary nonempty set with
A B, Sand T :Y — X. Suppose that

(1) the pair (A, S) (or (B, T)) satisfies the (CLRg) (or (CLRt))
property,

(2) A(Y) = T(Y),

(3) T(Y) (or S(Y)) is aclosed subset of X,

(4) {By,} converges for every sequence {y,} in Y whenever {Ty,}
converges (or {Ax,} converges for every sequence {x,} in Y whenever

{Sx,} converges),

(5) there exists ¢ € ® and y € ¥ such that forall x, y € Y, we have

v, (B ¢(t>dtj < w[ [ ¢(t)dtj - q{ [ ”¢<t)dt] @

where
m(x, y) = max[{d(Sx, Ty), d(Sx, Ax), d(Ty, By), d(Sx, By), d(Ty, Ax)}]

and ¢ : [0, o) — [0, o] is a Lebesgue-integrable mapping which is summable

and nonnegative such that
€
jo o(t)dt > 0, (b)
forall € > 0.

Then the pairs (A, S) and (B, T) satisfy the (CLRg ) property.

Lemma 3.2. Let (X, d) be a symmetric space wherein d satisfies the

conditions (CC) whereas Y is an arbitrary nonempty set with A, B, S and
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T:Y — X. Suppose that
(1) the pair (A, S) (or (B, T)) satisfies the (CLRg) (or (CLRy))
property,
(2) AY) = T(Y),
(3) T(Y) (or S(Y)) is a closed subset of X,

(4) {By,} converges for every sequence {y,} in Y whenever {Ty,}
converges (or {Ax,} converges for every sequence {X,} in Y whenever

{Sx,} converges),

(5) there exists ¢ € ® and y € ¥ such that forall x, y € Y, we have

w( [ ¢(t)dtj < w[ " ”¢<t)dtj - cp[ [ y)cb(t)dtj, (12

where
m(x, y) = max M3 g 5.7(X, ¥) (13)

and ¢:[0,0)— [0, ) is a Lebesgue-integrable mapping which is summable

and nonnegative such that
I;¢(t)dt >0, (14)

forall € > 0.
Then the pairs (A, S) and (B, T) satisfy the (CLRgt ) property.
Proof. First, we show that the conclusion of this theorem holds for first

case. Since the pair (A, S) enjoy the (CLRg) property; therefore there exists

a sequence {X,} inY such that

lim Ax, = lim Sx, =z (15)
n—o0 n—o0

for some z € S(Y). Since A(Y) < T(Y), hence for each sequence {x,} there

exists a sequence {yp} inY such that Ax, = Ty,.
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Therefore, by closedness of T(Y),

lim Ty, = lim Ax, =z (16)

n—oo n—o0

for some zeT(Y) andinall ze S(Y)NT(Y). Thus, in all, we have Ax,
— 2, SX, > z and Ty, — z as n — . Since by (4), {By,} converges,
in all we need to show that {By,} — z as n — c. Assume this contrary, we
get {By,} — t(# z) as n — o. Now, using inequality (12) with x = x,,

Yy = Y,, we have

d X0, By, M (X, Yn M(Xn, Yn
\"Uo (A, By )q)(t)dt)S\VUO( ’ )¢(t)dtj—q>UO( ’ )¢(t)dtj, 17)

where

mM(X,, Yn) = max[{dZ(an, TYn) dZ(SXn, Axp), d(Byp, Typ), d(Sxp, Typ),

1
d(Sxy, Byn), d(SXn, Tyn), d(Byn, Tyn), d2(Byn, Tyn)iJ2. (18)

Taking limitas n — oo and using property (CC) in inequality (17), we get

i W(J.Od(Axn,Byn)d)(t)dtJ

n—oo

< lim w(jom(x”'y“)w)dtj— im (p(jom(x"'y“)¢(t)dtj, (19)

n—

that is,

m(Xn, Yn) . M(Xn, Yn)
¢(t)dtJ - (p(nll_r)noo IO <|)(t)dtj,

(20)
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where

lim m(x,, Yp)
= [max{dz(z, z), dz(z, z), d(t, 2), d(z, 2), d(z, t), d(z, 2),

1
d(t, z), d?(z, t)}]2

= [max{0, 0, d(z, t), 0, d(z, t), 0, d(z, t), dz(z, t)}]%
= d(Z, t) (21)

Hence inequality (20) implies

w( N (Z't)¢(t)dtj < w( [ Od(z’t)cb(t)dt} - q{ N (Z’t)cb(t)dtj; (22)

that is, @(j:(z’t)¢(t)dt) <0 and so (p“(;j(z't)d)(t)dtj =0 and, by the

property of the function ¢, we have d(z, t) = 0 or equivalently z =t, which
contradicts the hypothesis t # z. Hence both the pairs (A, S) and (B, T)
satisfy the (CLRg1 ) property.

In the second case, it is similar to the first case. So, in order to avoid
repetition, the details of the proof are omitted. This completes the proof.

Theorem 3.1 (See [14]). Let (X, d) be a symmetric space wherein d
satisfies the conditions (1C) and (HE) whereas Y is an arbitrary nonempty
set with A, B, S, T :Y — X which satisfy the inequalities (a) and (b) of
Lemma 3.1. Suppose that the pairs (A, S) and (B, T) satisfy the (CLRgT)
property. Then (A, S) and (B, T) have a coincidence point each. Moreover,
if Y =X, then A, B, Sand T have a unique common fixed point provided
both the pairs (A, S) and (B, T) are weakly compatible.

Theorem 3.2. Let (X, d) be a symmetric space wherein d satisfies the
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conditions (1C) and (HE) whereas Y is an arbitrary nonempty set with A, B,
S, T:Y — X, which satisfy the inequalities (12) and (14) of Lemma 3.2.
Suppose that the pairs (A, S) and (B, T) satisfy the (CLRgt ) property. Then
(A, S) and (B, T) have a coincidence point each. Moreover, if Y = X, then

A, B, S and T have a unique common fixed point provided both the pairs
(A, S) and (B, T) are weakly compatible.

Proof. Since the pairs (A, S) and (B, T) enjoy the (CLRg7 ) property,

there exist two sequences {x,} and {y,} in Y such that
lim d(Ax,, z) = lim d(Sx,, z) = lim d(By,, z) = lim d(Ty,, z) =0,
n—o n—oo n—oo N—00

(23)

for some z € S(Y)NT(Y). It follows from z € S(Y) that there exists a point
w €Y such that Sw = z. We assert that Aw = z. If not, then, using inequality
(12) with x =w and y = y,, one obtains

w( [ : . By”)¢(t)dtj < w( [ Om(w’ y”)<1>(t)dtj - cp( | Om(w’ y")¢(t)dtj, (24)

where

m(w, y,) = max[{d?(Sw, Ty,), d*(Sw, Aw), d(Byy, Ty,), d(Sw, Ty,),

1
2,

d(Sw, By, ), d(Sw, Typn), d(Byn, Tyn), d%(Byn, Tyn )12, (25)

Taking limit as n — oo and using properties (1C) and (HE) in inequality
(24), one obtains

. d(Aw, By,)
lim WUO d)(t)dtj

< lim W(jom(w' yn)q)(t)dtj - lim (p[ [ Om(w’ yn)q)(t)dtj, (26)
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that is,

\vUOd(A (t)dtj: ( j
( 0 [, e ¢(t)dtj—$[nlm1w Jom(w'yn)d)(t)dt),

(27)

")¢(t)dtj

where

nlﬂpw m(w, y,) = [max{dz(z, 2), d%(z, Aw), d(z, z), d(z, z), d(z, 2),

d(z, 2), d(z, z), d?(z, z)}]%

= [max{0, d?(z, Aw), 0, 0, 0, 0, 0, d?(z, z)}]%

=d(z, Aw). (28)

From inequality (27), one gets

w( o Z)¢(t)dtj < w[ o Z)¢<t)dtj - q{ [ ¢(t>dt} (29)

so that (p(js(AW'z)cl)(t)dt) = 0; thatis, d(Aw, z) = 0. Hence Aw = Sw =z
which shows that w is a coincidence point of the pair (A, S).

Also z e T(Y), there exists a point v e Y such that Tv = z. We assert
that Bv = z. If not, then, using inequality (12) with x = w, y = v, we have

w[ [ Bv)cb(t)dt] - w( o ¢(t)dtj
< w[ [ Om(w‘ . ¢(t)dtj - cp[jom(w' V)cb(t)dtj, (30)
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where

m(w, v) = [max{dz(Sw, Tv), d2(Sw, Aw), d(Bv, Tv), d(Sw, Tv),

d(Sw, Bv), d(Sw, Tv), d(Bv, Tv), d2(B, Tv)}]%

= [max{dz(z, 2), dz(z, z), d(Bv, z), d(z, z), d(z, Bv), d(z, z),

d(Bv, z), d%(Bv, z)}]%

= [max{0, 0, d(Bv, z), 0, d(z, Bv), 0, d(Bv, z), d?(Bv, z)}]%

= d(z, Bv). (31)

Hence inequality (30) implies
d(z,Bv d(z,Bv) d(z, Bv
o [, e <o [ b0 [ 0| @2

so that @(IS(Z'BV)¢(t)dt) =0; that is, d(z, Bv) =0. Therefore z = Bv = Tv
which shows that v is a coincidence point of the pair (B, T).

Consider Y = X. Since the pair (A, S) is weakly compatible and Aw =
Sw, hence Az = ASw = SAw = SZ. Now we assert that z is a common fixed
point of the pair (A, S). To accomplish this, using inequality (12) with x = z

and y = v, one gets

d(Az,z) . d(Az, Bv
\VUO ( ¢(t)dtj = ‘V[n'flo IO )¢(t)dtj

< w(ﬂli_r)n Iom(z’v)q)(t)dtj - (p(nli_r>n [ Om(z’v) ¢(t)dtj,

(33)
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where

m(z, v) = [max{dZ(Sz, Tv), d%(Sz, Az), d(Bv, Tv), d(Sz, Tv),

d(Sz, Bv), d(Sz, Tv), d(Bv, Tv), d?(Byv, Tv)}]%

= [max{d?(Az, z), d®(Az, Az), d(z, 2), d(Az, z), d(Az, z),

d(Sz, 2), d(z, ), d?(z, z)}]%

= d(Az, 2). (34)

From inequality (33), we have
d(Az,2) d(Az,z) d(Az,z)
\u[jo o ¢(t)dtj < "’Uo o ¢(t)dtj—cp(jo " ¢(t)dtj (35)

so that (p(.[s(Az'z)d)(t)dt) = 0; that is, d(Az, z) =0. Hence Az =Sz =z
which shows that z is a common fixed point of the pair (A, S).

Also the pair (B, T) is weakly compatible and Bv = Tv, hence Bz = BTv
= TBv = Tz. Using inequality (12) with x = w and y = z, we have

w[ [ Bz)cb(t)dtj _ w( o Bz)q»(t)dtj

< \v( iim | Om(w' Z)q)(t)dtj - (pUOm(W’ Z)q)(t)dtj,

n—oo
where

m(w, z) = [max{dZ(SW, Tz), dZ(Sw, Aw), d(Bz, Tz), d(Sw, Tz),

d(Sw, Bz), d(Sw, Tz), d(Bz, Tz), d?(Bz, Tz)}]%

= [max{d?(z, Bz), d%(z, z), d(Bz, Bz), d(z, Bz), d(z, Bz),
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d(z, Tz), d(Bz, Bz), d?(Bz, Bz)}]%

= d(z, Bz). (36)

From inequality (36), we have

w[ o Bv)cb(t)dtj N * Bv)cb(t)dtj - q{ [ ¢(t)dt} (37)

so that (p(js(z'Bz)d)(t)dt) = 0; that is, d(z, Bz)=0. Hence Bz =Tz = z

which shows that z is a common fixed point of the pair (B, T).

Hence z is a common fixed point of the pairs (A, S) and (B, T).
Moreover, if Y = X, then A, B, S and T have a unique common fixed point
provided AS = SA and BT = TB. This concludes the proof.

Example 3.1. Consider X =Y = [4,13) equipped with the symmetric
d(x, y)=(x- y)2 for all x, y e X which also satisfies (1C) and (HE).
Define the mappings A, B, Sand T by

_[4 if xe{4}U(7,13),
Ax = {7, if xe(4,7];

o {4, if x e {4}U(7,13),

6, if xe(4,7];
4, if xe4,

Sx =48, if xe(4,7],
5x +1 . )

0 if xe(7,13);

4 if x =4,

Tx =410, if x e (4, 7],
x-5 if xe(7,13);
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Then A(X) = {4, 7}, B(X) = {4, 6}, T(X)=[4, 10] and S(X):[4, 3—53)

U 8. Now, consider the sequences x,, = {7 + %} and y, = {4}. Then

lim Ax, = lim Sx, = rllﬂ)noo By, = r]IH)nOOTyn =4eS(X)NT(X) (38)

n—o0 nN—o0
that is, both the pairs (A, S) and (B, T) satisfy the (CLRg7 ) property. Let

Lebesgue-integrable ¢ : [0, ) — [0, ) defined by ¢(t) = e'. Take y e ¥
and ¢ € @ given by y(t) =2t and ¢(t) = (2/7)t. In order to check the
contractive condition (12), consider the following nine cases:

(i) x=y=4
(i) x=4,ye47]
(iii) x =4, y e (7,13),
(iv) xe (4,7 y=4
v) x ye(47]

i) xe(4,7) ye(7,13),
(vii) x € (7,13), y = 4,
(viii) x e (7,13), y e (4, 7],

(ix) X, y e (7,13).

In the cases (i), (iii), (vii) and (ix), we get that d(Ax, By) = 0 and (12) is
trivially satisfied.

In the cases (ii) and (viii), we have d(Ax, By) =4 and m(x, y) = 36.

Now we have

\V(Iod(Ax, By)(l)(t)dtj _ ‘VU: etdtj
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= y(e* -1)
= 2(e* -1)

s%%@%-43

=2@%—n—§@%—n

(o) o7

- wUOm(X' y)¢(t)dtj - cp( [ Om(x’ . ¢(t)dtj-

Therefore, we get the fact that (12) holds.

In the case (iv), we get d(Ax, By) =9 and m(x, y) = 16. Now we have

\VUS(AX' By)<1>(t)dtj - \v( J : etdtj

= y(e -1)

= 2(e” - 1)

<20
:z@w—n—éem—n
_ \vU:G etdtj ~ (pU;{) etdtJ

_ "’Uom(Xl Y)d)(t)dtj - q)( j Om(x' ) ¢(t)dtj.

This implies that (12) holds.
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In the case (vi), we get d(Ax, By) =9 and m(x, y) = 36. Now we have

\V(Iod(Ax, By>¢(t)dtj _ "’U; etdtj

= y(e® -1)
= 2% -1

L 12

= (936 _ 1)

— 230 —1) - %(e% 1)

SR

([ " ”¢(t>dtj | e o0at |

This implies that (12) holds.

Finally, in the case (v), we obtain d(Ax, By) =1 and m(x, y) = 16. Now

we have
W(J-Od(Ax, By)(l)(t)dtj _ \VU;etdtj
= y(e' - 1)
=2(e 1)

<Lt

=2@m—n—%@m—n

{J4a) {0
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_ \VU m(x, y)q)(t)dt) ~ (pUOm(x, y)q)(t)dtj

0

that is, the contractive condition (12) holds.

Hence, all the conditions of Theorem 3.2 are satisfied and 4 is a unique
common fixed point of the pairs (A, S) and (B, T) which also remains a
point of coincidence as well.

Corollary 3.1. Let (X, d) be a symmetric space wherein d satisfies the
conditions (CC) whereas Y is an arbitrary nonempty set with A, B, S,
T :Y — X which satisfying all the hypotheses of Lemma 3.2. Then (A, S)
and (B, T) have a coincidence point each. Moreover, if Y = X, then A, B, S
and T have a unique common fixed point provided both the pairs (A, S) and

(B, T) are weakly compatible.

Proof. Owing to Lemma 3.2, it follows that the pairs (A, S) and (B, T)
enjoy the (CLRgy ) property. Hence, all the conditions of Theorem 3.2 are

satisfied and A, B, S and T have a unique common fixed point provided both
the pairs (A, S) and (B, T) are weakly compatible.

Remark 3.1. The conclusions of Lemma 3.2, Theorem 3.2 and Corollary
3.1 remain true if we choose

m(x, y) = maxM4 g 5. 7(X, ¥) = maxM3 g 5 7(X, ¥).
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