Advances and Applications in Discrete Mathematics
© 2015 Pushpa Publishing House, Allahabad, India Published Online: August 2015

POWER OF GRAPH WITH (2, 2)-BIPARTITION

K. Manjunatha Prasad ${ }^{1}$, G. Sudhakara ${ }^{2}$ and K. V. Soumya ${ }^{2}$
${ }^{1}$ Department of Statistics
Manipal University
Manipal-576 104, India
e-mail: km.prasad@manipal.edu
kmprasad63@gmail.com
${ }^{2}$ Department of Mathematics
Manipal Institute of Technology
Manipal-576 104, India
e-mail: sudhakaraadiga@yahoo.co.in
soumya.kv@manipal.edu

Abstract

We characterize the structure of graph G and the integers k for which the k th power of the graph G, G^{k} is $(2,2)$-bipartite, whenever the graph G is among cycle, n-cube and tree.

1. Introduction

Graphs considered in this paper are connected, simple and without selfloops unless stated otherwise. For a graph $G, V(G)$ refers to the set of

Received: February 3, 2015; Revised: April 15, 2015; Accepted: April 29, 2015
2010 Mathematics Subject Classification: 05C75, 05C38.
Keywords and phrases: $(2,2)$-bipartite graphs, n-cubes, power of a graph, d_{2}-sequence, center of a graph.

Communicated by K. K. Azad
vertices. Adjacency between two vertices u and v in the graph G is denoted by $u \sim_{G} v$, and nonadjacency by $u \not \psi_{G} v$. For a subset S of $V(G),\langle S\rangle$ refers to the subgraph of G induced by S. For any two vertices u and v in a graph $G, d_{G}(u, v)$ represents the distance between u and v, i.e., the length of a shortest path between them. The subscripts in \sim_{G}, ψ_{G} and d_{G} are conveniently ignored when the graph under discussion is clear from the context. The eccentricity $e(v)$ of a vertex v in a graph G is the $\max _{u \in G}\{d(u, v)\}$. The radius of a graph G is $\min _{v \in G} e(v)$ and the diameter of G is $\max _{v \in G} e(v)$. A vertex v in a graph G is said to be a central vertex if its eccentricity is same as the radius of G, and the center of G is the set of all central vertices. The notations \bar{G}, K_{n}, P_{n} and C_{n} refer to complement of G, complete graph on n vertices, path on n vertices and cycle on n vertices, respectively. For a graph G and a positive integer k, the k th power of the graph G, denoted by G^{k}, is a simple graph with $V\left(G^{k}\right)$ same as $V(G)$ and $u \sim{ }_{G^{k}} v$ if and only if $d_{G}(u, v)$ is at most k. In particular, $G^{k}=G$ for $k=1$ and $G^{k}=K_{n}$ for $k \geq \operatorname{diameter}(G)$.

The study of k th power of graph is found useful in several branches of applied graph theory. For example, in [1], authors have found that, a variation of frequency assignment problem considers k th powers, $G^{k}(k=1,2, \ldots)$ of a given graph G. In [4], using chromatic properties of graphs, authors have proposed a new approach for placing the resources in symmetric networks. In [6], it has been observed that the induced subgraph of the k th power of a tree, induced by leaves of the tree, may be recognized in polynomial time and this problem has applications in phylogeny.

In [5], inspired by the notion of bipartite graphs, authors have introduced the concept of $(2,2)$-bipartite graphs in which no two vertices from the same partite set are at distance two from each other. (The definitions and relevant results are given in Section 2).

In this paper, we consider the graph G to be any of cycle, tree and n-cube, and characterize k and the structure of the graph G for which G^{k} is (2, 2)-bipartite. Throughout this paper, $\lceil x\rceil$ represents the smallest integer not smaller than x (i.e., ceiling of x), and similarly $\lfloor x\rfloor$ represents the greatest integer not greater than x (i.e., floor of x). Readers are referred to [2] for all elementary notations and definitions not described but used in this paper.

2. Definitions and Preliminaries

In the following, we recall some definitions and results related to $(2,2)$ bipartite graphs.

Definition 2.1. A graph G is said to be an (m, n)-bipartite graph (m and n are positive integers) if the vertex set $V(G)$ can be partitioned into a pair of nontrivial subsets V_{1} and V_{2} such that no two vertices are at distance m from each other in V_{1} and no two vertices are at distance n from each other in V_{2}.

If $m=n=1$, the $(1,1)$-bipartite graph is the well-known bipartite graph. In [5], we have some characterizations of $(2,2)$-bipartite graphs.

Remark 2.2. Each of the following statements appeared either as a remark or as a result in the paper [5].
(i) With every bipartition of the vertex set as a choice of $(2,2)$ bipartition, a complete graph K_{n} on $n(\geq 2)$ vertices is a $(2,2)$-bipartite graph. Also, every totally disconnected graph is a $(2,2)$-bipartite graph.
(ii) Every path graph $P_{n}(n \geq 2)$ is (2, 2)-bipartite.
(iii) Any graph with C_{5} or $K_{1,3}$ as an induced subgraph is not $(2,2)$ bipartite.
(iv) For $n>3$, a cycle graph C_{n} is a (2,2)-bipartite graph if and only if $n=4 k$ for some positive integer $k . C_{3}$ is a $(2,2)$-bipartite graph.
(v) A tree is a (2, 2)-bipartite graph if and only if it is a path.
(vi) The disjoint union of (2, 2)-bipartite graphs is a (2, 2)-bipartite graph.

Now, we shall discuss some observations useful in the further discussion.
Lemma 2.3. If a graph G is $(2,2)$-bipartite, then so is any induced subgraph of G.

Proof. Let G be a $(2,2)$-bipartite graph with a $(2,2)$-bipartition $\left\{V_{1}, V_{2}\right\}$ and let H be any induced subgraph of G. Then a (2, 2)-bipartition of $V(H)$ is given by $\left\{U_{1}, U_{2}\right\}$, where $U_{i}=V_{i} \cap V(H)$ for $i=1,2$.

Theorem 2.4. Given a graph G with diameter D, the diameter of G^{k} is given by $\left\lceil\frac{D}{k}\right\rceil$.

Proof. If $k \geq D$, then from the definition of G^{k} it follows that every pair of vertices are at distance one in G^{k}. In other words, G^{k} is a complete graph and hence the result follows.

Now, consider the case where $k<D$. Choose any two vertices u_{1} and u_{2} at distance D from each other in G, and a shortest path $P: u_{1}=v_{1}, v_{2}$, $v_{3}, \ldots, v_{D+1}=u_{2}$ of length D. From the definition of power graph, it follows that the distance between u_{1} and u_{2} in G^{k} is same as the diameter of G^{k}. Let $D=n k+i$, where $0 \leq i<k$ and n is some integer. Since P is a path of shortest length in G, from the definition of G^{k}, it is clear that $d_{G^{k}}\left(u_{1}, v_{n k+1}\right)=n \quad($ where $i=0$ in $D=n k+i)$ and $d_{G^{k}}\left(u_{1}, v_{n k+j+1}\right)=$ $n+1$ for every $0<j<k$. Therefore, $d_{G^{k}}\left(u_{1}, u_{2}\right)=\left\lceil\frac{n k+i}{k}\right\rceil=\left\lceil\frac{D}{k}\right\rceil$.

The observation in the following remark is straightforward from the definition of (2, 2)-bipartite graphs.

Remark 2.5. A bipartition $\left\{V_{1}, V_{2}\right\}$ of vertex set of a graph G is not a $(2,2)$-bipartition if there exist vertices v, v_{1}, v_{2} in $V(G)$ such that $v_{1} \in V_{i}$, $v_{2} \in V_{j}, i, j=1,2, i \neq j$ and $d\left(v, v_{1}\right)=d\left(v, v_{2}\right)=2$.

3. Characterization

In this main section of 'characterization', we consider three cases of G being cycle, n-cube and tree. In the first two cases, the graphs are self centered in which every vertex is a central vertex and the diameter of the graph is same as the radius of the graph. In the third case, where the graph is a tree, the graph has at most two central vertices and the radius is the largest integer not greater than half the diameter. In each of the cases, we find close association between the center, diameter, radius and the integer k for which k th power of graph is $(2,2)$-bipartite.

3.1. Power of cycle graph

Note that every vertex v in the cycle graph C_{n} has the same eccentricity, and hence the graph is a self centered graph. Since the diameter of a cycle graph C_{n} is $\left\lfloor\frac{n}{2}\right\rfloor, C_{n}^{k}$ is a complete graph for every $k \geq\left\lfloor\frac{n}{2}\right\rfloor$, and therefore, it is (2, 2)-bipartite.

In [5], authors have proved that $C_{n}\left(C_{n}^{k}\right.$, where $\left.k=1\right)$ is $(2,2)$-bipartite if and only if n is $4 k$ for some positive integer k. Now, we will consider the case of C_{n}^{k}, where $k \geq 2$. In an attempt to characterize k for which k th power of C_{n} is $(2,2)$-bipartite, we have the following.

Theorem 3.1. Let $G=C_{n}$ be the cycle on n vertices with diameter D and let $k \geq 2$. Then the following statements are equivalent.
(i) G^{k} is (2, 2)-bipartite.
(ii) For any vertex v in C_{n}, there exists at most one vertex at distance $k+1$ or more from v.
(iii) $k \geq\left\lceil\frac{n}{2}\right\rceil-1$.

In case of any of the above statements holds, we have the following situation. k could be $D-1$ or more only when n is even, in which case G^{D-1} is a cocktail party graph on n vertices and G^{D} is the complete graph on n vertices. In other case, whenever n is odd, then k could be only D or more in which case G^{k} is a complete graph.

Proof. Consider $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such that $v_{i} \sim_{G} v_{i+1}$ for $i=1$, $2,3, \ldots,(n-1)$ and $v_{n} \sim_{G} v_{1}$.
(i) \Rightarrow (ii) Let G^{k} be (2, 2)-bipartite with a (2, 2)-bipartition $\left\{V_{1}, V_{2}\right\}$. Suppose that there are two distinct vertices v_{k+2} and v_{n-k} at distance $(k+1)$ from v_{1} in G. If $v_{1} \in V_{1}$, then $v_{k+2} \in V_{2}$ as $d_{G^{k}}\left(v_{1}, v_{k+2}\right)=2$. Eventually, $\left\{v_{n-(k-1)}, \ldots, v_{n}, v_{1}\right\} \subseteq V_{1}$ and $\left\{v_{2}, \ldots, v_{k+1}, v_{k+2}\right\} \subseteq V_{2}$. Since $d_{G}\left(v_{n-k}, v_{1}\right)=k+1$, we have that $d_{G}\left(v_{2}, v_{n-k}\right)=k+1$ or $k+2$. For the same reason $d_{G^{k}}\left(v_{1}, v_{n-k}\right)=d_{G^{k}}\left(v_{2}, v_{n-k}\right)=2$ as $k \geq 2$ and

$$
d_{G^{k}}\left(v_{n}, v_{n-k}\right)=d_{G^{k}}\left(v_{2}, v_{n}\right)=1 .
$$

Now referring to Remark 2.5, we have a contradiction as v_{1} and v_{2} are in different partite sets. Hence (i) \Rightarrow (ii).
(ii) \Rightarrow (i) If there is no vertex at distance $k+1$ or more from any vertex v in G, then D, the diameter of G, is not more than k. Therefore, the graph G^{k} is complete and (2,2)-bipartite.

Suppose that for any vertex in G, there exists exactly one vertex at distance $k+1$ or more in G. Then $d_{G}\left(v_{1}, v_{k+2}\right)=k+1$ and $d_{G}\left(v_{1}, v_{k+3}\right)$ $=k$.

Now, construct a bipartition $\left\{V_{1}, V_{2}\right\}$ of G^{k} as follows. Without loss of generality, let $v_{1} \in V_{1}$. Then put v_{k+2} in V_{2} as $d_{G}\left(v_{1}, v_{k+2}\right)=k+1$ and
$d_{G^{k}}\left(v_{1}, v_{k+2}\right)=2$. With the observation that $d_{G}\left(v_{i}, v_{j}\right) \leq k$ and therefore, $d_{G^{k}}\left(v_{i}, v_{j}\right)=1$ for all $2 \leq i, j \leq k+2$, put v_{i} in V_{2} for all $2 \leq i \leq k+2$. Similarly, put all the vertices from $\left\{v_{1}, v_{k+3}, v_{k+4}, \ldots, v_{n}\right\}$ in V_{1} as all those vertices are at distance k or lesser from each other in G, and are adjacent in G^{k}. Clearly, $\left\{V_{1}, V_{2}\right\}$ is a (2,2)-bipartition for G^{k}.

The statements (ii) and (iii) are equivalent as (ii) holds with exact one vertex at distance $k+1$ from v if and only if n is even, in which case, $\left\lceil\frac{n}{2}\right\rceil=\left\lfloor\frac{n}{2}\right\rfloor$ and in other case $\left\lceil\frac{n}{2}\right\rceil-1=\left\lfloor\frac{n}{2}\right\rfloor$.

Further remark is easily verified from the construction of a bipartition given in the proof of (ii) \Rightarrow (i).

Note 3.2. In Theorem 3.1 with n is even, $G^{(D-1)}$ is clearly a graph with diameter two. Further, if G is a cycle graph on n vertices given by $v_{1} \sim v_{2} \sim$ $\cdots \sim v_{n} \sim v_{1}$, then $G^{(D-1)}=H$ is the graph such that $v_{i} \not_{H} v_{j}$ if and only if $i=j(\bmod k)$, where $k=\frac{n}{2}$.

Remark 3.3. The statement (ii) of Theorem 3.1 may be rewritten as 'given a central vertex v there exists at most one vertex at distance $k+1$ from v '. Interestingly, we find in Subsection 3.2 that the same statement provides a necessary and sufficient condition for G^{k} to be (2, 2)-bipartite, whenever G is n-cube. Further in the case of G is a tree, we observe that it is a necessary condition, as we see in Subsection 3.3.

3.2. Power of n-cubes

Another important class of self centered graphs is that of n-cubes. In this subsection, we provide different definitions of n-cubes and discuss some basic properties before characterizing k for which k th power of n-cube is a (2, 2)-bipartite graph. For the definitions and several properties discussed in the following, readers are referred to Harary et al. [3].

Definition 3.4. For $n \geq 2$, an n-cube denoted by Q_{n} is recursively defined as follows:

$$
Q_{1}=K_{2} \text { and } Q_{n}=K_{2} \times Q_{n-1}
$$

We have yet another definition of n-cube using the binary sequences of length n with appropriate adjacency relation.

Definition 3.5. The hypercube (n-cube) Q_{n} is a graph whose vertex set is $\{0,1\}^{n}$, and two vertices are adjacent in Q_{n} if the corresponding binary sequences differ exactly at one coordinate.

Remark 3.6. Given an n-cube graph Q_{n}, many of the following properties follow directly from Definitions 3.4 and 3.5.
(i) Q_{n} is an n-regular graph on 2^{n} vertices and with $n 2^{n-1}$ edges.
(ii) The neighborhood of any vertex v in Q_{n} is an independent set, i.e., any two vertices in the neighborhood of v are not adjacent and, in fact, are at distance two from each other.
(iii) The diameter of the n-cube is n, and for every vertex v of the graph there exists unique corresponding vertex at distance n. In fact, the mapping of each vertex to its eccentric vertex, in the set of vertices, is a bijective map on the set of vertices. Further, Q_{n}^{n-1} is a $\left(2^{n}-2\right)$-regular graph.
(iv) Two vertices in Q_{n} are at distance r from each other if and only if the binary sequences representing the vertices differ at r coordinates. Hence for any vertex v, there are ${ }^{n} C_{r}$ vertices at distance r from it, $1 \leq r \leq n$.
(v) Let S be a set of 2^{n-1} vertices from Q_{n} which induces Q_{n-1}. Then there exists exactly one $i,(1 \leq i \leq n)$ such that the i th coordinate of every vertex in S is same. This may be easily verified by using the following facts:
(a) Given any two diametrically opposite vertices u and v in an n-cube and w is any other vertex, there exists a shortest path between u and v passing through w.
(b) Consider any two diametrically opposite vertices in the graph induced by S which is isomorphic to $(n-1)$-cube. These vertices can have common entry at exact one coordinate and, without loss of generality, let the vertices be $v=(0,0, \ldots, 0,0)$ and $w=(1,1, \ldots, 1,0)$. Now, for any shortest path between u and w, a vertex before w on the path is of the form $\left(k_{1}, k_{2}, \ldots, k_{n-1}, 0\right)$, where exactly one of $k_{1}, k_{2}, \ldots, k_{n-1}$ is zero. In fact, continuing this way, we find that all vertices on the path are with nth coordinate equal to 0 .
(vi) In the n-cube Q_{n}, if a subset S of $V\left(Q_{n}\right)$ induces a Q_{n-1}, then its complement $V \backslash S$ also induces a Q_{n-1}.
(vii) The n-cube Q_{n} has n pairs of vertex disjoint Q_{n-1}-subgraphs.

Lemma 3.7. The graph Q_{n}^{n-1} is (2, 2)-bipartite, and if $\left\{V_{1}, V_{2}\right\}$ is any (2, 2)-bipartition of Q_{n}^{n-1}, then each of V_{1} and V_{2} induces a complete graph on 2^{n-1} vertices. Further, Q_{n}^{k} is (2, 2)-bipartite for $k \geq n-1$.

Proof. From the definition, $G=Q_{n}=K_{2} \times Q_{n-1}$. So, we have a set $S \subset V(G)$ such that $\langle S\rangle$ is Q_{n-1} in G. Write $V_{1}=S$ and $V_{2}=V(G) \backslash S$. Clearly, both $\left\langle V_{1}\right\rangle$ and $\left\langle V_{2}\right\rangle$ are Q_{n-1} in G and therefore, both V_{1} and V_{2} induce complete graph on 2^{n-1} vertices in Q_{n}^{n-1}. So, V_{1} and V_{2} provide a (2,2)-bipartition for G^{n-1}, as the distance between any two vertices from V_{1} and V_{2} is at most n in G and at most 2 in G^{n-1}.

Since the mapping of a vertex with its eccentric vertex (at distance n) in G defines a one-one mapping, no set of vertices with cardinality more than 2^{n-1} can induce a complete graph in G^{n-1}. Further, the diameter of G^{n-1} is two implies that every partite set in any $(2,2)$-bipartition induces a complete graph and therefore, both the partite sets have the same cardinality 2^{n-1}.

The second part of the lemma follows as the diameter of Q_{n} is n.

The concept of distance r sequence (in short, d_{r}-sequence) in a given graph is useful in proving the next results.

Definition 3.8. A sequence $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ of k vertices of graph G is said to be a d_{r}-sequence in G if $d_{G}\left(v_{i}, v_{i+1}\right)=r$ for every $i, 1 \leq i \leq k-1$.

Remark 3.9. In the graph given in Figure 3.1, the sequence $\left\{v_{1}, v_{4}, v_{6}, v_{7}\right\}$ is a d_{2}-sequence.

Figure 3.1
Lemma 3.10. Let G be a $(2,2)$-bipartite graph with (2, 2)-bipartition $\left\{V_{1}, V_{2}\right\}$ and let $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ be a d_{2}-sequence of vertices of G. Then the vertices indexed with odd integers are in one partite set and the rest are in other partite set.

Proof follows from the definition of d_{2}-sequence and definition of (2, 2)-bipartite graph.

Remark 3.11. Consider a connected graph G and a d_{2}-sequence $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ of r vertices of G. If both i and j are even (similarly, odd), then $d\left(v_{i}, v_{j}\right)=2$ implies that G is not (2,2)-bipartite.

Lemma 3.12. The power graph Q_{n}^{n-2} is not (2, 2)-bipartite for any $n \geq 3$.

Proof. To prove the result, we construct a d_{2}-sequence of vertices in $H=Q_{n}^{n-2}$, say $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$, such that $d_{H}\left(v_{i}, v_{j}\right)=2$ for some $i \neq j$ with same parity.

Take $v_{1}=(0,0, \ldots, 0)$ and then construct v_{i} recursively by keeping ($i-1$)th coordinate of v_{i-1} as it is and switching the rest of the coordinates.
n is even. Let $n=2 k$ for some integer k. From the choice of vertices, observe that $(2 k+1)$ th vertex in the sequence is the one with all coordinates equal to 1 and therefore, it is at distance two from v_{1} in H (they are at distance n in Q_{n} and $n \geq 3$). So, we have that 1 and $2 k+1$ are odd integers but v_{1} and $v_{2 k+1}$ are at distance two from each other in H. Referring to Remark 3.11, we have that H is not $(2,2)$-bipartite.
n is odd. Let $n=2 k+1$ for some integer k. In this case, $v_{2}=(0,1,1, \ldots, 1)$ and $v_{2 k+2}=(0,0,0, \ldots, 0)$ which are at distance two from each other in H, which leads to the conclusion that H is not $(2,2)$ bipartite as in the earlier case.

Hence the proof.
Example 3.13. In the present example, we demonstrate the construction of d_{2}-sequences which help us in concluding that Q_{6}^{4} and Q_{7}^{5} are not (2, 2)-bipartite.

First, consider the graph Q_{n}^{n-2}, where $n=6$. For $v_{1}=(0,0,0,0,0,0)$, construct v_{2} by fixing the first coordinate and switching the other coordinates, we get $v_{2}=(0,1,1,1,1,1)$. Clearly, v_{1} and v_{2} are at distance 5 from each other in Q_{6} and at distance 2 in Q_{6}^{4}. Similarly, continue to get a d_{2} sequence with

$$
\begin{aligned}
& v_{3}=(1,1,0,0,0,0), v_{4}=(0,0,0,1,1,1), v_{5}=(1,1,1,1,0,0), \\
& v_{6}=(0,0,0,0,0,1), \text { and } v_{7}=(1,1,1,1,1,1) .
\end{aligned}
$$

Clearly, v_{1} and v_{7} are at distance 2 from each other in Q_{6}^{4} and therefore, Q_{6}^{4} is not (2, 2)-bipartite.

In the case of $n=7$, we shall start with $v_{1}=(0,0,0,0,0,0,0)$ and continue to get

$$
\begin{aligned}
& v_{2}=(0,1,1,1,1,1,1), v_{3}=(1,1,0,0,0,0,0), v_{4}=(0,0,0,1,1,1,1), \\
& v_{5}=(1,1,1,1,0,0,0), v_{6}=(0,0,0,0,0,1,1), v_{7}=(1,1,1,1,1,1,0),
\end{aligned}
$$

and $v_{8}=v_{1}=(0,0,0,0,0,0,0)$, a d_{2} sequence in Q_{7}^{5}. Again, v_{8} and v_{2} are at distance 2 from each other in Q_{7}^{5}, which concludes that Q_{7}^{5} is not a (2, 2)-bipartite graph.

Since every $Q_{n}^{m}(m \leq n-2)$ has an induced Q_{m+2}^{m} subgraph, the following theorem is immediate from Lemmas 3.7 and 3.12, and the understanding that every induced subgraph of a (2,2)-bipartite graph is (2, 2)-bipartite.

Theorem 3.14. For every positive integer $n \geq 2$, the power graph Q_{n}^{m} is (2, 2)-bipartite if and only if $m \geq n-1$.

Now, we have the following corollary.
Corollary 3.15. An n-cube graph Q_{n} is (2, 2)-bipartite if and only if $n=2$.

3.3. Power of trees

In the earlier parts of the section, we have considered cycles and hypercubes, in which cases every vertex is a central vertex. Now, we consider a tree graph for our study, in which case the center of the graph is not trivial. By definition of a central vertex, it is a vertex with minimal eccentricity (radius of graph), and the number of such vertices in a tree is at most two. For our convenience, we say the vertices x and y in a tree graph are
diagonally opposite if the unique path between them passes through all the central vertices. Given a noncentral vertex z in a tree graph G, define the split of graph G with reference to z by subgraphs B_{z} and C_{z}, where B_{z} is the maximal connected subgraph that contains z but not every central vertices, and $C_{z}=G \backslash B_{z}$. Note that C_{z} has exactly one central vertex irrespective of the cases whether the tree G is unicentral or bicentral.

In the following, we characterize k for which G^{k} is $(2,2)$-bipartite whenever G is a tree.

Theorem 3.16. Let G be tree and $k \geq 2$ be any integer. Then the following statements are equivalent:
(i) G^{k} is (2,2)-bipartite.
(ii) No three vertices are with mutual distance $k+1$ or more in G.

Proof. Let G^{k} be a (2, 2)-bipartite graph. (i) \Rightarrow (ii) holds trivially as we cannot have three vertices with mutual distance 2 or more in any (2, 2)bipartite graph.
(ii) \Rightarrow (i) Let no three vertices be with mutual distance $k+1$ or more. Consider a path of maximal length which passes through all the central vertices and with end vertices x and y. Note that x and y must be among pendant vertices in the tree G.

Without loss of generality, let $d_{G}(x, u) \leq d_{G}(y, u)$ for a central vertex u. If the strict inequality holds, then there exists another central vertex v such that $d_{G}(y, v) \leq d_{G}(x, v)$. Now, consider the partition V_{1} and V_{2} of $V(G)$ given by the set of vertices of B_{y} and C_{y}, respectively. Since $d_{G}(x, u)$ $\leq d_{G}(y, u)$ and, x and y are pendant vertices, irrespective of the case whether G is unicentral or bicentral, central vertex u and x are in $V_{2}=V\left(C_{y}\right)$. Since x and y are eccentric vertices of each other, (ii) implies that one of the following holds:
(a) $d_{G}(x, y) \geq k+1$, in which case no vertex from V_{1} is at distance $k+1$ from y and no vertex from V_{2} is at distance $k+1$ from x. This is because $d(w, x) \leq d(w, u)+d(u, x) \leq d(w, u)+d(u, y)=d(w, y)$ for all $w \in V_{2}$, and similarly, $d(z, y) \leq d(z, x)$ for all $z \in V_{1}$. So, $\left\langle V_{1}\right\rangle$ and $\left\langle V_{2}\right\rangle$ induce complete graphs in G^{k}, and hence G^{k} is $(2,2)$-bipartite.
(b) $d_{G}(x, y) \leq k$, in which case G^{k} is a complete graph and hence G^{k} is $(2,2)$-bipartite.

The proof of following corollary is immediate from the above Theorem 3.16 and the fact that there exists exactly one pair of pendant vertices with distance $n-1$ from each other in a path graph on n vertices.

Corollary 3.17. Let $G=P_{n}$ be a path graph on n vertices. Then G^{k} is (2, 2)-bipartite if and only if $k \geq\left\lceil\frac{n}{2}\right\rceil-1$.

Remark 3.18. From Theorem 3.16, we could relate r, the radius of tree graph G on n vertices, to some extent with the k for which k th power of G is (not!) $(2,2)$-bipartite, as given below:
(i) If $k \leq r-2$, then G^{k} is not a $(2,2)$-bipartite graph.
(ii) If $k=r-1$ and the diameter is even, in which case the graph is unicentral, we find three vertices with mutual distance $r=k+1$ in the graph. Examples for such vertices are the central vertex and diagonally opposite pendant vertices on a path of maximal length. So in this case, G^{k} is not a (2, 2)-bipartite graph.
(iii) If $k=r-1$ and the diameter is odd, in which case the graph is bicentral, we are not in a position to make any affirmative statement different from the one in Theorem 3.16. For example, in the case of G is path graph on even number of vertices we have that G^{k} is a $(2,2)$-bipartite graph. At the
same time, one may easily construct an example of a tree graph G with diameter equals to an odd integer, but one of the central vertices having degree three or more, in which case G^{k} is not a $(2,2)$-bipartite graph.
(iv) If $r \leq k<d$, where d is the diameter of tree, we refer only to Theorem 3.16. For each such k, we have examples of tree graphs satisfying (also, not satisfying) the conditions given in Theorem 3.16.

References

[1] Andreas Brandstädt, Faodor F. Dragan, Yang Xiang and Chenyu Yan, Generalized Powers of Graphs and their Algorithmic Use, L. Arge and R. Freivalds, eds., SWAT 2006, LNCS 4059, 2006, pp. 423-434.
[2] Douglas B. West, Introduction to Graph Theory, Pearson Education, Inc., 2001.
[3] Frank Harary, John P. Hayes and Horng-Jyh Wu, A survey of the theory of Hypercube graphs, Comput. Math. Appl. 15(4) (1988), 277-289.
[4] N. Imani, H. Sarbazi-Azad, S. G. Akl and P. Moinzadeh, Chromatic sets of power graphs and their application to resource placement in multicomputer networks, ELSEVIER, Comput. Math. Appl. 58 (2009), 403-413.
[5] K. Manjunatha Prasad, G. Sudhakara and H. S. Sujatha, Partition of a graph with its complete sub-graphs, Adv. Appl. Discrete Math. 10(1) (2012), 1-22.
[6] Nishimura Naomi, Prabhakar Ragde and Dimitrios M. Thilikos, On graph powers for leaf-labeled trees, J. Algorithms 42(1) (2002), 69-108.

