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Abstract 

We characterize the structure of graph G and the integers k for which 

the kth power of the graph kGG,  is ( )2,2 -bipartite, whenever the 

graph G is among cycle, n-cube and tree. 

1. Introduction 

Graphs considered in this paper are connected, simple and without self-
loops unless stated otherwise. For a graph ( )GVG,  refers to the set of 
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vertices. Adjacency between two vertices u and v in the graph G is denoted 
by ,~ vu G  and nonadjacency by .~ vu G/  For a subset S of ( ) SGV ,  

refers to the subgraph of G induced by S. For any two vertices u and v in a 
graph G, ( )vudG ,  represents the distance between u and v, i.e., the length of 

a shortest path between them. The subscripts in GG ~,~ /  and Gd  are 

conveniently ignored when the graph under discussion is clear from the 
context. The eccentricity ( )ve  of a vertex v in a graph G is the 

( ){ }.,max vudGu∈  The radius of a graph G is ( )veGv∈min  and the diameter 

of G is ( ).max veGv∈  A vertex v in a graph G is said to be a central vertex if 

its eccentricity is same as the radius of G, and the center of G is the set of all 

central vertices. The notations nn PKG ,,  and nC  refer to complement of G, 

complete graph on n vertices, path on n vertices and cycle on n vertices, 
respectively. For a graph G and a positive integer k, the kth power of the 

graph G, denoted by ,kG  is a simple graph with ( )kGV  same as ( )GV  and 

vu kG
~  if and only if ( )vudG ,  is at most k. In particular, GGk =  for 

1=k  and n
k KG =  for ( ).diameter Gk ≥  

The study of kth power of graph is found useful in several branches of 
applied graph theory. For example, in [1], authors have found that,                             
a variation of frequency assignment problem considers kth powers, 

( )...,2,1=kGk  of a given graph G. In [4], using chromatic properties of 

graphs, authors have proposed a new approach for placing the resources in 
symmetric networks. In [6], it has been observed that the induced subgraph 
of the kth power of a tree, induced by leaves of the tree, may be recognized 
in polynomial time and this problem has applications in phylogeny. 

In [5], inspired by the notion of bipartite graphs, authors have introduced 
the concept of ( )2,2 -bipartite graphs in which no two vertices from the same 

partite set are at distance two from each other. (The definitions and relevant 
results are given in Section 2). 
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In this paper, we consider the graph G to be any of cycle, tree and          

n-cube, and characterize k and the structure of the graph G for which kG  is 
( )2,2 -bipartite. Throughout this paper, ⎡ ⎤x  represents the smallest integer 

not smaller than x (i.e., ceiling of x), and similarly ⎣ ⎦x  represents the greatest 

integer not greater than x (i.e., floor of x). Readers are referred to [2] for all 
elementary notations and definitions not described but used in this paper. 

2. Definitions and Preliminaries 

In the following, we recall some definitions and results related to ( )2,2 -

bipartite graphs. 

Definition 2.1. A graph G is said to be an ( )nm, -bipartite graph (m and 

n are positive integers) if the vertex set ( )GV  can be partitioned into a pair of 

nontrivial subsets 1V  and 2V  such that no two vertices are at distance m from 

each other in 1V  and no two vertices are at distance n from each other in .2V  

If ,1== nm  the ( )1,1 -bipartite graph is the well-known bipartite graph. 

In [5], we have some characterizations of ( )2,2 -bipartite graphs. 

Remark 2.2. Each of the following statements appeared either as a 
remark or as a result in the paper [5]. 

  (i) With every bipartition of the vertex set as a choice of ( )2,2 -

bipartition, a complete graph nK  on ( )2≥n  vertices is a ( )2,2 -bipartite 

graph. Also, every totally disconnected graph is a ( )2,2 -bipartite graph. 

 (ii) Every path graph ( )2≥nPn  is ( )2,2 -bipartite. 

(iii) Any graph with 5C  or 3,1K  as an induced subgraph is not ( )2,2 -

bipartite. 

(iv) For ,3>n  a cycle graph nC  is a ( )2,2 -bipartite graph if and only 

if kn 4=  for some positive integer k. 3C  is a ( )2,2 -bipartite graph. 
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(v) A tree is a ( )2,2 -bipartite graph if and only if it is a path. 

(vi) The disjoint union of ( )2,2 -bipartite graphs is a ( )2,2 -bipartite 

graph. 

Now, we shall discuss some observations useful in the further discussion. 

Lemma 2.3. If a graph G is ( )2,2 -bipartite, then so is any induced 

subgraph of G. 

Proof. Let G be a ( )2,2 -bipartite graph with a ( )2,2 -bipartition 

{ }21, VV  and let H be any induced subgraph of G. Then a ( )2,2 -bipartition 

of ( )HV  is given by { },, 21 UU  where ( )HVVU ii ∩=  for .2,1=i   

Theorem 2.4. Given a graph G with diameter D, the diameter of kG  is 

given by .⎥⎥
⎤

⎢⎢
⎡

k
D  

Proof. If ,Dk ≥  then from the definition of kG  it follows that every 

pair of vertices are at distance one in .kG  In other words, kG  is a complete 
graph and hence the result follows. 

Now, consider the case where .Dk <  Choose any two vertices 1u  and 

2u  at distance D from each other in G, and a shortest path ,,: 211 vvuP =  

213 ...,, uvv D =+  of length D. From the definition of power graph, it follows 

that the distance between 1u  and 2u  in kG  is same as the diameter of .kG  

Let ,inkD +=  where ki <≤0  and n is some integer. Since P is a path                     

of shortest length in G, from the definition of ,kG  it is clear that 

( ) nvud nkGk =+11,  ( )inkDi +== in0where  and ( ) =++ 11, jnkG
vud k  

1+n  for every .0 kj <<  Therefore, ( ) ., 21 ⎥⎥
⎤

⎢⎢
⎡=⎥⎥

⎤
⎢⎢
⎡ += k

D
k

inkuud kG
  

The observation in the following remark is straightforward from the 
definition of ( )2,2 -bipartite graphs. 
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Remark 2.5. A bipartition { }21, VV  of vertex set of a graph G is not a 

( )2,2 -bipartition if there exist vertices 21,, vvv  in ( )GV  such that ,1 iVv ∈  

jijiVv j ≠=∈ ,2,1,,2  and ( ) ( ) .2,, 21 == vvdvvd  

3. Characterization 

In this main section of ‘characterization’, we consider three cases of G 
being cycle, n-cube and tree. In the first two cases, the graphs are self 
centered in which every vertex is a central vertex and the diameter of the 
graph is same as the radius of the graph. In the third case, where the graph is 
a tree, the graph has at most two central vertices and the radius is the largest 
integer not greater than half the diameter. In each of the cases, we find close 
association between the center, diameter, radius and the integer k for which 
kth power of graph is ( )2,2 -bipartite. 

3.1. Power of cycle graph 

Note that every vertex v in the cycle graph nC  has the same eccentricity, 

and hence the graph is a self centered graph. Since the diameter of a cycle 

graph nC  is k
nCn ,2 ⎥⎦

⎥
⎢⎣
⎢  is a complete graph for every ,2 ⎥⎦

⎥
⎢⎣
⎢≥ nk  and therefore, 

it is ( )2,2 -bipartite. 

In [5], authors have proved that ( )1where, =kCC k
nn  is ( )2,2 -bipartite 

if and only if n is 4k for some positive integer k. Now, we will consider the 

case of ,k
nC  where .2≥k  In an attempt to characterize k for which kth 

power of nC  is ( )2,2 -bipartite, we have the following. 

Theorem 3.1. Let nCG =  be the cycle on n vertices with diameter D 

and let .2≥k  Then the following statements are equivalent. 

  (i) kG  is ( )2,2 -bipartite. 

 (ii) For any vertex v in ,nC  there exists at most one vertex at distance 

1+k  or more from v. 
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(iii) .12 −⎥⎥
⎤

⎢⎢
⎡≥ nk  

In case of any of the above statements holds, we have the following 
situation. k could be 1−D  or more only when n is even, in which case 

1−DG  is a cocktail party graph on n vertices and DG  is the complete graph 
on n vertices. In other case, whenever n is odd, then k could be only D or 

more in which case kG  is a complete graph. 

Proof. Consider ( ) { }nvvvGV ...,,, 21=  such that 1~ +iGi vv  for ,1=i  

( )1...,,3,2 −n  and .~ 1vv Gn  

(i) ⇒ (ii) Let kG  be ( )2,2 -bipartite with a ( )2,2 -bipartition { }., 21 VV  

Suppose that there are two distinct vertices 2+kv  and knv −  at distance 

( )1+k  from 1v  in G. If ,11 Vv ∈  then 22 Vvk ∈+  as ( ) .2, 21 =+kG
vvd k  

Eventually, { ( ) } 111 ,...,, Vvvv nkn ⊆−−  and { } .,...,, 2212 Vvvv kk ⊆++  Since 

( ) ,1, 1 +=− kvvd knG  we have that ( ) 1,2 +=− kvvd knG  or .2+k  For the 

same reason ( ) ( ) 2,, 21 == −− knGknG
vvdvvd kk  as 2≥k  and 

( ) ( ) .1,, 2 ==− nGknnG
vvdvvd kk  

Now referring to Remark 2.5, we have a contradiction as 1v  and 2v  are in 

different partite sets. Hence (i) ⇒ (ii). 

(ii) ⇒ (i) If there is no vertex at distance 1+k  or more from any vertex 
v in G, then D, the diameter of G, is not more than k. Therefore, the graph 

kG  is complete and ( )2,2 -bipartite. 

Suppose that for any vertex in G, there exists exactly one vertex at 
distance 1+k  or more in G. Then ( ) 1, 21 +=+ kvvd kG  and ( )31, +kG vvd  

.k=  

Now, construct a bipartition { }21, VV  of kG  as follows. Without loss of 

generality, let .11 Vv ∈  Then put 2+kv  in 2V  as ( ) 1, 21 +=+ kvvd kG  and 
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( ) .2, 21 =+kG
vvd k  With the observation that ( ) kvvd jiG ≤,  and therefore, 

( ) 1, =jiG
vvd k  for all ,2,2 +≤≤ kji  put iv  in 2V  for all .22 +≤≤ ki  

Similarly, put all the vertices from { }nkk vvvv ...,,,, 431 ++  in 1V  as all those 

vertices are at distance k or lesser from each other in G, and are adjacent in 

.kG  Clearly, { }21, VV  is a ( )2,2 -bipartition for .kG  

The statements (ii) and (iii) are equivalent as (ii) holds with exact one 
vertex at distance 1+k  from v if and only if n is even, in which case, 

⎥⎦
⎥

⎢⎣
⎢=⎥⎥

⎤
⎢⎢
⎡

22
nn  and in other case .212 ⎥⎦

⎥
⎢⎣
⎢=−⎥⎥

⎤
⎢⎢
⎡ nn  

Further remark is easily verified from the construction of a bipartition 
given in the proof of (ii) ⇒ (i).  

Note 3.2. In Theorem 3.1 with n is even, ( )1−DG  is clearly a graph with 
diameter two. Further, if G is a cycle graph on n vertices given by ~~ 21 vv  

,~~ 1vvn  then ( ) HG D =−1  is the graph such that jHi vv ~/  if and only 

if ( ),mod kji =  where .2
nk =  

Remark 3.3. The statement (ii) of Theorem 3.1 may be rewritten as 
‘given a central vertex v there exists at most one vertex at distance 1+k  
from v’. Interestingly, we find in Subsection 3.2 that the same statement 

provides a necessary and sufficient condition for kG  to be ( )2,2 -bipartite, 

whenever G is n-cube. Further in the case of G is a tree, we observe that it is 
a necessary condition, as we see in Subsection 3.3. 

3.2. Power of n-cubes 

Another important class of self centered graphs is that of n-cubes. In this 
subsection, we provide different definitions of n-cubes and discuss some 
basic properties before characterizing k for which kth power of n-cube is a 
( )2,2 -bipartite graph. For the definitions and several properties discussed in 

the following, readers are referred to Harary et al. [3]. 
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Definition 3.4. For ,2≥n  an n-cube denoted by nQ  is recursively 

defined as follows: 

21 KQ =   and  .12 −×= nn QKQ  

We have yet another definition of n-cube using the binary sequences of 
length n with appropriate adjacency relation. 

Definition 3.5. The hypercube (n-cube) nQ  is a graph whose vertex set 

is { } ,1,0 n  and two vertices are adjacent in nQ  if the corresponding binary 

sequences differ exactly at one coordinate. 

Remark 3.6. Given an n-cube graph ,nQ  many of the following 

properties follow directly from Definitions 3.4 and 3.5. 

  (i) nQ  is an n-regular graph on n2  vertices and with 12 −nn  edges. 

 (ii) The neighborhood of any vertex v in nQ  is an independent set, i.e., 

any two vertices in the neighborhood of v are not adjacent and, in fact, are at 
distance two from each other. 

(iii) The diameter of the n-cube is n, and for every vertex v of the graph 
there exists unique corresponding vertex at distance n. In fact, the mapping 
of each vertex to its eccentric vertex, in the set of vertices, is a bijective map 

on the set of vertices. Further, 1−n
nQ  is a ( )22 −n -regular graph. 

(iv) Two vertices in nQ  are at distance r from each other if and only if 

the binary sequences representing the vertices differ at r coordinates. Hence 

for any vertex v, there are r
nC  vertices at distance r from it, .1 nr ≤≤  

 (v) Let S be a set of 12 −n  vertices from nQ  which induces .1−nQ  Then 

there exists exactly one ( )nii ≤≤1,  such that the ith coordinate of every 

vertex in S is same. This may be easily verified by using the following facts: 

(a) Given any two diametrically opposite vertices u and v in an n-cube 
and w is any other vertex, there exists a shortest path between u and v passing 
through w. 
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(b) Consider any two diametrically opposite vertices in the graph induced 
by S which is isomorphic to ( )1−n -cube. These vertices can have common 

entry at exact one coordinate and, without loss of generality, let the vertices 
be ( )0,0...,,0,0=v  and ( ).0,1...,,1,1=w  Now, for any shortest path 

between u and w, a vertex before w on the path is of the form 
( ),0,...,,, 121 −nkkk  where exactly one of 121 ...,,, −nkkk  is zero. In fact, 

continuing this way, we find that all vertices on the path are with nth 
coordinate equal to 0. 

(vi) In the n-cube ,nQ  if a subset S of ( )nQV  induces a ,1−nQ  then its 

complement SV \  also induces a .1−nQ  

(vii) The n-cube nQ  has n pairs of vertex disjoint 1−nQ -subgraphs. 

Lemma 3.7. The graph 1−n
nQ  is ( )2,2 -bipartite, and if { }21, VV  is any 

( )2,2 -bipartition of ,1−n
nQ  then each of 1V  and 2V  induces a complete 

graph on 12 −n  vertices. Further, k
nQ  is ( )2,2 -bipartite for .1−≥ nk  

Proof. From the definition, .12 −×== nn QKQG  So, we have a set 

( )GVS ⊂  such that S  is 1−nQ  in G. Write SV =1  and ( ) .\2 SGVV =  

Clearly, both 1V  and 2V  are 1−nQ  in G and therefore, both 1V  and 2V  

induce complete graph on 12 −n  vertices in .1−n
nQ  So, 1V  and 2V  provide a 

( )2,2 -bipartition for ,1−nG  as the distance between any two vertices from 

1V  and 2V  is at most n in G and at most 2 in .1−nG  

Since the mapping of a vertex with its eccentric vertex (at distance n) in 
G defines a one-one mapping, no set of vertices with cardinality more than 

12 −n  can induce a complete graph in .1−nG  Further, the diameter of 1−nG  is 
two implies that every partite set in any ( )2,2 -bipartition induces a complete 

graph and therefore, both the partite sets have the same cardinality .2 1−n  

The second part of the lemma follows as the diameter of nQ  is n.  
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The concept of distance r sequence (in short, rd -sequence) in a given 

graph is useful in proving the next results. 

Definition 3.8. A sequence { }kvvv ...,,, 21  of k vertices of graph G is 

said to be a rd -sequence in G if ( ) rvvd iiG =+1,  for every .11, −≤≤ kii  

Remark 3.9. In the graph given in Figure 3.1, the sequence 
{ }7641 ,,, vvvv  is a 2d -sequence. 

 

Figure 3.1 

Lemma 3.10. Let G be a ( )2,2 -bipartite graph with ( )2,2 -bipartition 

{ }21, VV  and let { }rvvv ...,,, 21  be a 2d -sequence of vertices of G. Then the 

vertices indexed with odd integers are in one partite set and the rest are in 
other partite set. 

Proof follows from the definition of 2d -sequence and definition of 

( )2,2 -bipartite graph. 

Remark 3.11. Consider a connected graph G and a 2d -sequence 

{ }rvvv ...,,, 21  of r vertices of G. If both i and j are even (similarly, odd), 

then ( ) 2, =ji vvd  implies that G is not ( )2,2 -bipartite. 

Lemma 3.12. The power graph 2−n
nQ  is not ( )2,2 -bipartite for any 

.3≥n  
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Proof. To prove the result, we construct a 2d -sequence of vertices in 

,2−= n
nQH  say { },...,,, 21 rvvv  such that ( ) 2, =jiH vvd  for some ji ≠  

with same parity. 

Take ( )0...,,0,01 =v  and then construct iv  recursively by keeping 

( ) th1−i  coordinate of 1−iv  as it is and switching the rest of the coordinates. 

n is even. Let kn 2=  for some integer k. From the choice of vertices, 
observe that ( )th12 +k  vertex in the sequence is the one with all coordinates 

equal to 1 and therefore, it is at distance two from 1v  in H (they are at 

distance n in nQ  and .)3≥n  So, we have that 1 and 12 +k  are odd integers 

but 1v  and 12 +kv  are at distance two from each other in H. Referring to 

Remark 3.11, we have that H is not ( )2,2 -bipartite. 

n is odd. Let 12 += kn  for some integer k. In this case, 
( )1...,,1,1,02 =v  and ( )0...,,0,0,022 =+kv  which are at distance two 

from each other in H, which leads to the conclusion that H is not ( )2,2 -

bipartite as in the earlier case. 

Hence the proof.  

Example 3.13. In the present example, we demonstrate the construction 
of 2d -sequences which help us in concluding that 4

6Q  and 5
7Q  are not 

( )2,2 -bipartite. 

First, consider the graph ,2−n
nQ  where .6=n  For ( ),0,0,0,0,0,01 =v  

construct 2v  by fixing the first coordinate and switching the other 

coordinates, we get ( ).1,1,1,1,1,02 =v  Clearly, 1v  and 2v  are at distance 

5 from each other in 6Q  and at distance 2 in .4
6Q  Similarly, continue to get a 

2d  sequence with 

( ),0,0,0,0,1,13 =v  ( ),1,1,1,0,0,04 =v  ( ),0,0,1,1,1,15 =v  

( ),1,0,0,0,0,06 =v  and ( ).1,1,1,1,1,17 =v  
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Clearly, 1v  and 7v  are at distance 2 from each other in 4
6Q  and therefore, 

4
6Q  is not ( )2,2 -bipartite. 

In the case of ,7=n  we shall start with ( )0,0,0,0,0,0,01 =v  and 

continue to get 

( ) ( ) ( ),1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0 432 === vvv  

( ) ( ) ( ),0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1 765 === vvv  

and ( ),0,0,0,0,0,0,018 == vv  a 2d  sequence in .5
7Q  Again, 8v  and 2v  

are at distance 2 from each other in ,5
7Q  which concludes that 5

7Q  is not a 

( )2,2 -bipartite graph. 

Since every ( )2−≤ nmQm
n  has an induced m

mQ 2+  subgraph, the 

following theorem is immediate from Lemmas 3.7 and 3.12, and the 
understanding that every induced subgraph of a ( )2,2 -bipartite graph is 

( )2,2 -bipartite. 

Theorem 3.14. For every positive integer ,2≥n  the power graph m
nQ  

is ( )2,2 -bipartite if and only if .1−≥ nm  

Now, we have the following corollary. 

Corollary 3.15. An n-cube graph nQ  is ( )2,2 -bipartite if and only if 

.2=n  

3.3. Power of trees 

In the earlier parts of the section, we have considered cycles and 
hypercubes, in which cases every vertex is a central vertex. Now, we 
consider a tree graph for our study, in which case the center of the graph is 
not trivial. By definition of a central vertex, it is a vertex with minimal 
eccentricity (radius of graph), and the number of such vertices in a tree is at 
most two. For our convenience, we say the vertices x and y in a tree graph are 



Power of Graph with ( )2,2 -bipartition 63 

diagonally opposite if the unique path between them passes through all the 
central vertices. Given a noncentral vertex z in a tree graph G, define the split 
of graph G with reference to z by subgraphs zB  and ,zC  where zB  is the 

maximal connected subgraph that contains z but not every central vertices, 
and .\ zz BGC =  Note that zC  has exactly one central vertex irrespective of 

the cases whether the tree G is unicentral or bicentral. 

In the following, we characterize k for which kG  is ( )2,2 -bipartite 

whenever G is a tree. 

Theorem 3.16. Let G be tree and 2≥k  be any integer. Then the 
following statements are equivalent: 

 (i) kG  is ( )2,2 -bipartite. 

(ii) No three vertices are with mutual distance 1+k  or more in G. 

Proof. Let kG  be a ( )2,2 -bipartite graph. (i) ⇒ (ii) holds trivially as we 

cannot have three vertices with mutual distance 2 or more in any ( )2,2 -

bipartite graph. 

(ii) ⇒ (i) Let no three vertices be with mutual distance 1+k  or more. 
Consider a path of maximal length which passes through all the central 
vertices and with end vertices x and y. Note that x and y must be among 
pendant vertices in the tree G. 

Without loss of generality, let ( ) ( )uyduxd GG ,, ≤  for a central vertex 

u. If the strict inequality holds, then there exists another central vertex v such 
that ( ) ( ).,, vxdvyd GG ≤  Now, consider the partition 1V  and 2V  of ( )GV  

given by the set of vertices of yB  and ,yC  respectively. Since ( )uxdG ,  

( )uydG ,≤  and, x and y are pendant vertices, irrespective of the case whether 

G is unicentral or bicentral, central vertex u and x are in ( ).2 yCVV =  Since 

x and y are eccentric vertices of each other, (ii) implies that one of the 
following holds: 



K. Manjunatha Prasad, G. Sudhakara and K. V. Soumya 64 

(a) ( ) ,1, +≥ kyxdG  in which case no vertex from 1V  is at distance 

1+k  from y and no vertex from 2V  is at distance 1+k  from x. This is 

because ( ) ( ) ( ) ( ) ( ) ( )ywdyuduwdxuduwdxwd ,,,,,, =+≤+≤  for all 

,2Vw ∈  and similarly, ( ) ( )xzdyzd ,, ≤  for all .1Vz ∈  So, 1V  and 2V  

induce complete graphs in ,kG  and hence kG  is ( )2,2 -bipartite. 

(b) ( ) ,, kyxdG ≤  in which case kG  is a complete graph and hence kG  

is ( )2,2 -bipartite.  

The proof of following corollary is immediate from the above Theorem 
3.16 and the fact that there exists exactly one pair of pendant vertices with 
distance 1−n  from each other in a path graph on n vertices. 

Corollary 3.17. Let nPG =  be a path graph on n vertices. Then kG  is 

( )2,2 -bipartite if and only if .12 −⎥⎥
⎤

⎢⎢
⎡≥ nk  

Remark 3.18. From Theorem 3.16, we could relate r, the radius of tree 
graph G on n vertices, to some extent with the k for which kth power of G is 
(not!) ( )2,2 -bipartite, as given below: 

 (i) If ,2−≤ rk  then kG  is not a ( )2,2 -bipartite graph. 

(ii) If 1−= rk  and the diameter is even, in which case the graph is 
unicentral, we find three vertices with mutual distance 1+= kr  in the 
graph. Examples for such vertices are the central vertex and diagonally 

opposite pendant vertices on a path of maximal length. So in this case, kG  is 
not a ( )2,2 -bipartite graph. 

(iii) If 1−= rk  and the diameter is odd, in which case the graph is 
bicentral, we are not in a position to make any affirmative statement different 
from the one in Theorem 3.16. For example, in the case of G is path graph on 

even number of vertices we have that kG  is a ( )2,2 -bipartite graph. At the 
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same time, one may easily construct an example of a tree graph G with 
diameter equals to an odd integer, but one of the central vertices having 

degree three or more, in which case kG  is not a ( )2,2 -bipartite graph. 

(iv) If ,dkr <≤  where d is the diameter of tree, we refer only to 
Theorem 3.16. For each such k, we have examples of tree graphs satisfying 
(also, not satisfying) the conditions given in Theorem 3.16. 
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