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Abstract 

Nonlinear semidefinite programming, as a generalization of nonlinear 
programming, has received considerable attention in recent years. In 
this paper, we consider the conjugate duality of nonlinear semidefinite 
programming and its weakly and strongly duality. At last, we present 
the conjugate dual problem of a semidefinite least-squares problem. 

0. Introduction 

Semidefinite programming (SDP) is aimed to minimize (or maximize) a 
linear function of a matrix variable X over an affine subspace of symmetric 
matrices subject to the constraint that X be positive semidefinite. Recently, 
SDP has received more and more attention. One of the main reasons is the 
large variety of applications leading to SDP. However, in many cases, the 
mathematical models lead to problems, which cannot be formulated as linear, 
but as nonlinear semidefinite programming problems (NSDP). 
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Duality is an important aspect of optimization theory. There are several 
dualities, such as the classical Lagrange duality, Fenchel duality and 
Fenchel-Lagrange duality. Conjugate duality is of great importance for the 
three types. In this paper, we consider the conjugate dual of NSDP. 

1. Conjugate Duality 

The nonlinear semidefinite programming (NSDP) is 

( )xfmin  

(NSDP)s.t. ( ) ,0=xh  

( ) ,nSxg +∈  

,Xx ∈  

where nm SXgRXhRXf +→→→ :,:,:  are known functions, Xx ∈  

is the decision variables, ( ) nSxg +∈  means ( )xg  is a semidefinite matrix, X 

is a finite dimensional Hilbert space. The parameterized problem of (NSDP), 
is 

( )xf
Xx∈

min  

( ) ( ) ,0.s.t, =− axhP Aa  

( ) ,nSAxg +∈−  

where ,mRa ∈  nSA ∈  are any given parameters. Denote ( )Aav ,  is the 

optimal solution function of ( )AaP ,  on ( )., Aa  Obviously, if ,0,0 == Aa  

( )AaP ,  is the problem (NSDP) and ( )0,0v  is the optimal value of (NSDP), 

denoted .∗cP  

Definition 1. The problem 

(CD) { ( )}Syvnm SSRy
,sup

,
∗

∈∈
−  
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is called the conjugate dual of (NSDP), where ∗v  is the conjugate function 

of v. Denote the optimal solution of (CD) as .∗cd  

Conjugate function of ( )xf  is defined as ( ) ( ){ }.,sup yfyxxf
nRy

−=
∈

∗  

We have the following results on conjugate dual of NSDP. 

Theorem 1. (i) Weakly duality holds for conjugate duality. 

  (ii) If ∗
cd  is finite, then the corresponding optimal solution set is the 

subdifferential of ( ).0,0, ∗∗∗∗ ∂vv  

(iii) If ( )Aav ,  is subdifferentiable at ( ),0,0  then ∗∗ = cc dP  and the 

optimal solution set of (CD) is ( ).0,0v∂  

(iv) If ∗∗ = cc dP  and is finite, then the optimal solution set of (CD) is 

( ),0,0v∂  (where the subdifferentiable is defined as ( ) { ( ) ≥|∈ξ=∂ yfRxf n  

( ) } .),, nRyxyxf ∈∀−ξ+  

Proof. (i) By the definition of conjugate function, for any ,mRy ∈  

,nSS ∈  we have 

( ) ( ){ }AavASaySyv
nm SARa

,,,sup,
,

−+−=−
∈∈

∗  

( ){ }ASayAav
nm SARa

,,,inf
,

−−=
∈∈

 

{ ( ) ( ) ( ) }+
∈∈∈

∈−=−−= n
XxSARa

SAxgaxhASayxf
nm

,:,,inf
,,

 

( ) ( ) ( ){ }xgSxhyxf
Xx

,,inf −−=
∈

 

( ) ( )
( ) ( ){ }SAxgyaxh

n
nm SAxgaxhSARa

,,inf
,,,

−+−+
+∈−=∈∈
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{ ( )
( )

( ){ }}SAxgSyxL
n

m SAxgRaXx
,inf,,inf

,
−+=

+∈−∈∈
 

( ){ }

⎪⎩

⎪
⎨
⎧

∞−

∈
=

+

∈

,otherwise,

;if,,,inf n
Xx

SSSyxL
 

where ( ) ( ) ( ) ( )xgSxhyxfSyxL ,,,, −−=  is Lagrange function. 

Then if ∗
cd  is finite, 

{ ( )} ( ){ } .,,infsup,sup
,,

∗
∈∈∈

∗
∈∈

==− cXxSSRySSRy
dSyxLSyv nmnm  

Notice that 

{ ( )} { ( )} ( ).0,0,,0,0sup,sup
,,

∗∗∗

∈∈

∗

∈∈
=−+=−

++

vSyvSySyv
nmnm SSRySSRy

 

By the conjugate theorem, ( ) ( ) .0,00,0 ∗∗∗∗ =≥= cc dvvP  

(ii) By the definition of conjugate function and subdifferential, we have 

( ) { ( )},,sup0,0
,

Syvvd nm SSRyc
∗

∈∈
∗∗∗ −==  

( ) {( ) ( ) ( ) ,,,0,0,:,0,0 ASyavAavSRSyv nm +≥−×∈=∂ ∗∗∗∗∗∗  

}., nm SARa ∈∀∈∀  (1) 

Then ( ) ( )0,0, ∗∗∂∈ vSy  is equivalent to 

( ) { ( ) }ASayAav
nm SARa

,,,minarg0,0
,

−−∈ ∗∗

∈∈
 

{ ( ) }.,,,maxarg
,

ASayAavnm SARa
++−= ∗∗

∈∈
 

Combined with ( ) { ( )}AavSAyaSyv
nm SARa

,,,sup,
,

∗∗

∈∈

∗∗∗ −+=  and 

,∗∗∗∗ = vv  we know that 
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( ) ( ) ( ) ( ).0,0,,0,0 ∗∗∗∗∗ ∂∈⇔−= vSySyvv  (2) 

By (i), (ii) is proved. 

(iii) If there exists ( ),0,0ˆ,ˆ vSy ∂∈  that is, 

( ) ( ) ( ) ,,,,,0,0, nm SARaSAyavAav ∈∀∈∀+≥−  

which equivalent to ( ) { ( )}.,,,maxarg0,0
,

AavASaynm SARa
−+∈

∈∈
 

By the definition of conjugate function, we have 

( ) { ( )}.,,,maxˆ,ˆ
,

AavASaySyv
nm SARa

−+=
∈∈

∗  

Then 

( ) ( ) ( ) ( ).0,0ˆ,ˆˆ,ˆ0,0 vSySyvv ∂∈⇔−= ∗  (3) 

Notice that ( ) ( ),0,0ˆ,ˆ ∗∗∗ ≤− vSyv  and the property of conjugate function 

( ) ( ),0,00,0 ∗∗≥ vv  we have ( ) ( ).0,00,0 ∗∗= vv  Then ∗∗ = cc dP  and 

( ) { ( )}.,maxargˆ,ˆ
,

SyvSy nm SARa
∗

∈∈
−∈  By the equivalence of (3), ( )0,0v∂  

is the optimal solution of (CD). 

(iv) If ∗∗ = cc dP  and is finite, by (2) and (3) ( ) ( ).0,00,0 ∗∗∂=∂ vv  Then 

(iii) can yield (iv).  

2. Example 

Example 1. Semidefinite least-squares problem has a wide application in 
finance, control and image processing. Here we will compute its conjugate 
dual: 

2
2
1min FCX −  

(SDLS)s.t. ,...,,1,, mibXA ii ==  

.nSX +∈  
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It can be easily verified that ( ) 2
2
1

FCXXf −=  is convex function, 

( ) ( ) bXAXAXh T
m −= ,...,,,1  is affine function, where ( ),...,,1 mbbb =  

( ) XXg =  is matrix convex function. So this problem is a convex 

semidefinite programming. By the proof of Theorem 1, we need to calculate 
the corresponding Lagrange function: 

( ) ( ) ,,,2
1,, 1

2 XSbXAyCXSyXL iii
m
iF −−Σ−−= =  (4) 

.,, nmn SSRySX ++ ∈∈∈   

As ( )SyXL ,,  is the strictly convex quadratic function on X, its 

minimizer is obtained at ( ) .0,, =∇ SyXLX  Let ( ) =∇= SyXLX ,,0  

.1 SAyCX ii
m
i −Σ−− =  Substituting it into (4) yields 

( ) XSybXAyCXSyXL ii
m
iF ,,,2

1,, 1
2 −+Σ−−= =  

ybXSAyCCX ii
m

i
FF ,,2

1
2
1

1

22 ++∑+−+=
=

 

ybXXCX FF ,,2
1

2
1 22 +−+=  

ybCX FF ,2
1

2
1 22 ++−=  

( ) .,2
1

2
1 22

1 ybCAyCS FFii
m
i ++Σ++−= =  

Then the conjugate dual problem is  

 { ( )}SyXL
XSSRy nm

,,infmax
, +∈∈

 

( )
⎭⎬
⎫

⎩⎨
⎧ ++Σ++−= =∈∈ +

ybCAyCS FFii
m
iSSRy nm ,2

1
2
1max 22

1,
 

( ) .,2
1

2
1min 22

1 ⎭⎬
⎫

⎩⎨
⎧ −−Σ++= =∈

ybCAyCS FFii
m
iRy m  
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So this problem is equivalent to  

( ) .,2
1min 2

1 ⎭⎬
⎫

⎩⎨
⎧ −Σ++ =∈

ybAyCS Fii
m
iRy m  

( ) 2
11 ij

n
j

m
iFmnij aa == ∑∑=  denotes the Frobenius norm of the matrix. 
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