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Abstract

Nonlinear semidefinite programming, as a generalization of nonlinear
programming, has received considerable attention in recent years. In
this paper, we consider the conjugate duality of nonlinear semidefinite
programming and its weakly and strongly duality. At last, we present
the conjugate dual problem of a semidefinite least-squares problem.

0. Introduction

Semidefinite programming (SDP) is aimed to minimize (or maximize) a
linear function of a matrix variable X over an affine subspace of symmetric
matrices subject to the constraint that X be positive semidefinite. Recently,
SDP has received more and more attention. One of the main reasons is the
large variety of applications leading to SDP. However, in many cases, the
mathematical models lead to problems, which cannot be formulated as linear,
but as nonlinear semidefinite programming problems (NSDP).
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Duality is an important aspect of optimization theory. There are several
dualities, such as the classical Lagrange duality, Fenchel duality and
Fenchel-Lagrange duality. Conjugate duality is of great importance for the
three types. In this paper, we consider the conjugate dual of NSDP.

1. Conjugate Duality

The nonlinear semidefinite programming (NSDP) is
min f(x)

(NSDP)s.t. h(x) =0,

g(x) e ST,

Xe X,

where f : X - R, h: X = R™ g: X — S! are known functions, x € X

is the decision variables, g(x) € S means g(x) is a semidefinite matrix, X

is a finite dimensional Hilbert space. The parameterized problem of (NSDP),
is

min f(x)
xeX

(Py a)st.h(x)—a =0,
g(x)— Aesh,

where a € R™, A e S" are any given parameters. Denote v(a, A) is the
optimal solution function of (P; o) on (a, A). Obviously, if a=0, A=0,

(Py, a) is the problem (NSDP) and v(0, 0) is the optimal value of (NSDP),
denoted P;".

Definition 1. The problem

(CD) sup, _gm g gn{-V'(¥: )}
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is called the conjugate dual of (NSDP), where v* is the conjugate function

of v. Denote the optimal solution of (CD) as d..
Conjugate function of f(x) is definedas f*(x) = sup {(x, y) - f(y)}
yeRn
We have the following results on conjugate dual of NSDP.

Theorem 1. (i) Weakly duality holds for conjugate duality.

(ii) If dg is finite, then the corresponding optimal solution set is the

subdifferential of v**, &v**(0, 0).

(iii) If v(a, A) is subdifferentiable at (0, 0), then P =d; and the
optimal solution set of (CD) is ov(0, 0).

(iv) If P =d; and is finite, then the optimal solution set of (CD) is
ov(0, 0), (where the subdifferentiable is defined as of (x) = {& e R"| f(y) >
f(x)+ (€, y—x), vy e R™}).

Proof. (i) By the definition of conjugate function, for any y € R™,

S e S" we have

-V(y,S)=-sup {y,a)+(S, Ay -v(a, A)}
acR™, Aes"
= inf (A= (y. )~ (S, A)
acR™, AeS"

- inf {f(x)=(y,a)—(S, A):h(x)=a, g(x)-Ae Sy}

aeRm,AeSn,XeX

- Xig({f(x)—(y, h(x)) = (S, g(x))}

+ inf {(h(x)—a, y)+{g(x)— A, S)}
acR™, AeS" h(x)=a, g(x)-AeS,
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inf {L(x, y, S) + inf {{a(x) - A, S)}}
xeX acR™, g(x)-AeS;

inf {L(x, y, S)},ifS e S;;
xeX

—oo, otherwise,
where L(x, y, S) = f(x)—(y, h(x)) = (S, g(x)) is Lagrange function.
Then if d is finite,
SupyERm,SESn{_V*(y’ S)} = SUpyERm,SESn IanEX {L(X’ y' S)} = d:
Notice that

sup  {=V(y,S)t= sup {0, y)+(0, S)—v*(y, S)} =v*(0, 0).
yeR™ sest yeR™, ses!

By the conjugate theorem, P." = v(0, 0) > v**(0, 0) = d..
(ii) By the definition of conjugate function and subdifferential, we have

*

dg =v7(0,0) =sup _om o _on{=V"(y, S),
v™(0,0) ={(y,S) e R"xS" : v**(a, A)-v™(0, 0) > (a, y) + (S, A),
vae R™ vAeS"). (1)
Then (¥, S) € &v*™(0, 0) is equivalent to

(0,0)earg  min  {v“(a, A)- (¥, a) - (S, A)}
aeRM, Acs”

= arg maxaeRm‘Aesn{—v**(a, A)+(y, a)+ (S, A).

Combined with v*™*(y,S)=  sup  {(a ¥)+(A S)-v™(a, A)} and
aeR™, Aes"

skkok

v = v*, we know that
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v**(0,0) = v (¥, S) < (7, S) € &v**(0, 0). (2)
By (i), (ii) is proved.
(iii) If there exists (¥, S) e av(0, 0), that is,
v(a, A)-v(0,0)>(a, y)+(A S), vaeR™ VAeS",

which equivalent to (0, 0) € arg maxaeRm’Aesn{(y, a)+ (S, A) - v(a, A)}.

By the definition of conjugate function, we have

Vi(§,S)=  max {7, a)+ (S, A -v(a, A)}.

acR™ Aes"
Then
v(0, 0) = ~v*(§, S) < (¥, S) e av(0, 0). ©)
Notice that —v*(§, S) < v**(0, 0), and the property of conjugate function
v(0, 0) > v*™(0, 0), we have v(0,0)=v*"(0,0). Then P =d: and
(¥, S) € arg max__em Aesn{—v*(y, S)}. By the equivalence of (3), ov(0, 0)
is the optimal solution of (CD).
(iv) If P = dg and is finite, by (2) and (3) ov(0, 0) = &v**(0, 0). Then
(iii) can yield (iv). O

2. Example

Example 1. Semidefinite least-squares problem has a wide application in
finance, control and image processing. Here we will compute its conjugate
dual:

.1 2
m|n§|| X -C|g
(SDLS)s.t. (A, X)y=bj, i=1..,m,

X e S
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It can be easily verified that f(X) = %” X-C ||,2: is convex function,

h(X)=((Ay, X), ..., (An, X))T —b is affine function, where b = (b, ..., by),
g(X)= X is matrix convex function. So this problem is a convex

semidefinite programming. By the proof of Theorem 1, we need to calculate
the corresponding Lagrange function:

L(X, Y, S) =%|| X -CJ2 - =y (A, X) =) - (S, X), (4)

XeSE, yeRm, SeSE.

As L(X,y,S) is the strictly convex quadratic function on X, its
minimizer is obtained at VyL(X,y,S)=0. Let 0=VyxL(X,y,S)=

X —C -z y; A —S. Substituting it into (4) yields
L(X, v, s):%n X -CE - ENyiA, X)+ (b, y) - (S, X)
1 2 1 2 ¢
SSIxE 31 (o By x) oy
=3I X IR +3IC I = (X, X)+ (b y)
= —3IX I +ZICIE +b. y)

1 2 1 2
=518 +(C+2LyiA) [ +FIC s + b, y).
Then the conjugate dual problem is

max {inf L(X, vy, S)}
yeR™ sesl! X

1 2 1 2
—max_n ¢ gn{ 515+ C + Ly [E + ICIE + b, )]

: 1 2 _1ly~p2
- min_en {315+ (€ + 2y 2 - FIC I - (b, )
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So this problem is equivalent to

min, _n{31S +(C + =ayiA) [2 - b, )

| @)mn IF = V2t 2 aﬁ denotes the Frobenius norm of the matrix.
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