
 

JP Journal of Algebra, Number Theory and Applications 
© 2015 Pushpa Publishing House, Allahabad, India 
Published Online: July 2015 
http://dx.doi.org/10.17654/JPANTAJun2015_241_258 
Volume 36, Number 3, 2015, Pages 241-258 ISSN: 0972-5555 

 

Received: March 9, 2015;  Accepted: May 28, 2015 
2010 Mathematics Subject Classification: Primary 06D20, 03G25, 08A35, 08B26. 
Keywords and phrases: (strong) endomorphism kernel property, congruence relation, direct 
sum, factorable congruences. 
While working on this paper, the author was supported by VEGA grant No. 1/0608/13 of 
Slovak Republic. 
Communicated by K. K. Azad 

STRONG ENDOMORPHISM KERNEL PROPERTY FOR 
BROUWERIAN ALGEBRAS 

Jaroslav Guričan 

Faculty of Mathematics, Physics and Informatics 
Comenius University Bratislava 
Mlynská Dolina, 842 48 Bratislava 
Slovakia 
e-mail: gurican@fmph.uniba.sk 

Abstract 

We shall show that endomorphism kernel property (EKP) and strong 
endomorphism kernel property (SEKP) are for some classes of 
universal algebras preserved by finite direct products and also by a 
special form of infinite direct sum construction. Full characterization 
of finite relative Stone algebras and L-algebras which have SEKP is 
given and a wide class of infinite relative Stone algebras which 
possess SEKP is described. 

1. Introduction 

Blyth and Silva in the paper [2] defined a strong endomorphism kernel 
property (SEKP) for a universal algebra (see Definition 2.2). They 
considered the case of Ockham algebras and in particular of MS-algebras. 
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They proved, e.g., that a finite Boolean algebra has SEKP if and only if it is 2 
element BA, a finite bounded distributive lattice possesses SEKP if and only 
if it is a chain and proved full characterization of MS-algebras having SEKP. 
Blyth et al. in [3] proved a full characterization of finite distributive double 
p-algebras and finite double Stone algebras having SEKP. SEKP for 
distributive p-algebras and Stone algebras has been studied and fully 
characterized by Fang and Fang in [4]. Fang and Sun fully characterized 
semilattices with SEKP in [5]. Guričan and Ploščica fully characterized 
unbounded distributive lattices which posses SEKP in [9]. The main 
approach in papers [2-4] is done by regarding algebras in question as 
Ockham algebras and using the duality theory of H. Priestley. 

There is one important universal assumption in the original paper [2] of 
Blyth and Silva, namely, all algebras considered in this paper must contain 
two nullary operations (denoted by 0 and 1, .)10 ≠  This assumption is 

necessary to prove all important statements in their paper and therefore it 
seems to be impossible to directly adapt their methods to algebras which do 
not satisfy this assumption (e.g., { }1 -lattices or unbounded lattices). Let us 

mention three of these results: 

Theorem 1.1 [2, Theorem 1]. If an algebra A has SEKP, then it has at 
most one maximal congruence. 

Corollary 1.2 [2, Corollary 1]. A finite algebra that has SEKP is directly 
indecomposable. 

Theorem 1.3 [2, Theorem 3]. A semisimple algebra has SEKP if and 
only if it is simple. 

As it is easy to check, { }21,0  considered as 4 element distributive lattice 

with a top element { }( )lattice-1  has SEKP and none of these statements is 
true for this algebra. 

2. Preliminaries 

Let A be a universal algebra. We denote ( ){ }AaaaA ∈=ω ;,  and =ιA  
,AA ×  trivial and universal congruences on A. 
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Next definition defines the notion of EKP (see [1]). 

Definition 2.1. An algebra A has the endomorphism kernel property 
(EKP for shortening) if every congruence relation on A different from the 
universal congruence Aι  is the kernel of an endomorphism on A. In addition, 

we say that ( )Af End∈  is associated to ( ),Con A∈θ  if ( ).ker f=θ  

Next important notion is strong endomorphism property defined in [2]. 
Let A be a universal algebra, AAf →:  be an endomorphism, ( )ACon∈θ  

be a congruence on A. f is compatible with θ iff ( ) ( ) ( )( )baba ϕϕ⇒θ∈ ,,  

.θ∈  Endomorphism f is strong (on A), if it is compatible with every 
congruence ( ).Con A∈θ  

Definition 2.2. An algebra A has the strong endomorphism kernel 
property (SEKP for shortening) iff every congruence relation on A different 
from the universal congruence Aι  is the kernel of a strong endomorphism on 

A. In addition, we say that ( )Af End∈  is associated to ( ),Con A∈θ  if =θ  

( ).ker f  

Let us recall the definition of weak direct product (see Definition 22.1 in 
chapter 3, [6]) 

Definition 2.3. Let ( ),, FAi  Ii ∈  be algebras of the same type. Take the 

direct product ( )∏ ∈= .; IiAP i  Let .PB ⊆  ( )FB,  is called a weak direct 

product of algebras iA  if: 

(1) ( )FB,  is a subalgebra of P, 

(2) if ,, Bgf ∈  then the set ( ) ( ){ }igifIi ≠∈ ;  is finite, 

(3) if ,Bf ∈  ( )∏ ∈∈ IiAg i ,  and the set ( ) ( ){ }igifIi ≠∈ ;  is finite, 

then .Bg ∈  

This type of product need not exist and/or be uniquely determined. Every 
weak direct product is a subdirect product. Zlatoš in [14] used the name 
“direct sum” for a weak direct product. 
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Let us start with some definitions (see, e.g., paragraph 4.4 of [12]). 

Definition 2.4. Let ( ),, FA  ( )FB,  be algebras of the same type. The 

product BA ×  has factorable congruences, if every congruence ∈θ  
( )BA ×Con  has the form ,21 θ×θ  where ( )ii ACon∈θ  for every .2,1=i  

An algebra A has factorable congruences, if whenever ∏ == n
i iAA 1 ,  

then every congruence ( )ACon∈θ  has the form ∏ = θn
i i1 ,  where ∈θi  

( )iACon  for every ....,,1 ni =  

A variety V is said to have factorable congruences, if every algebra 
VA ∈  has factorable congruences. 

Let ( )FB,  be a direct sum of algebras ,iA  Ii ∈  from V. ( )FB,  has 

factorable congruences, if every congruence ( )BCon∈θ  has the form ∩2B  

( )∏ ∈θ ,; Iii  where ( )ii ACon∈θ  for every .Ii ∈  

It is known that the factorability of congruences does not extend to 
infinite direct products. Zlatoš [14] considered a direct sum construction to 
be more fitting for this purpose, he proved the following: 

Theorem 2.5 [14, Theorem 2]. Let V be a variety of algebras. The 
following conditions are equivalent: 

(1) V has factorable congruences, 

(2) every direct sum of algebras from V has factorable congruences. 

3. A Construction 

We shall describe a special type of a direct sum now. Let V be a variety. 
Let ,iA  Ii ∈  be algebras from V such that they all have one element 

subalgebra and we have chosen (distinguished) elements iA Ae i ∈  such that 

{ }iAe  is one element subalgebra of .iA  (The situation is easier if the one 

element algebra is given by a nullary operation in V - no choice is needed in 
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this case. If not, then we may require some other properties of distinguished 
elements later.) 

We denote ( ) { ( ) }
iAeififsupp ≠= ;  for ( )∏ ∈∈ ., IiAf i  Now let us 

consider the following subset B of ( )∏ ∈ :, IiAi  

( ) ( ) .finiteis;,
⎭⎬
⎫

⎩⎨
⎧ ∈∈= ∏ fsuppIiAfB i  

It is easy to check that B is a subalgebra of a direct product ( )∏ ∈ IiAi ,  

and in fact that it is a direct sum of algebras .iA  We shall denote it as 

(( ) )∑ ∈ .;, IieA
iAi  

It is clear that for finite index set I, we do not need distinguished 
elements for the definition and the algebra (( ) )∑ ∈ IieA iAi ;,  is standard 

direct product. But (distinguished) elements which form one element 
subalgebras are still necessary for our proofs also in the case of finite index 
set I. 

Examples. (1) Let V be a variety of groups, ii Ge ∈  be an identity 

element. Then (( ) )∑ ∈ IieG ii ;,  is a direct sum of groups (in a usual way). 

(2) Let V be a variety of distributive lattices with top element 
{ }( ),lattices-1  ii A∈1  be a top element. Then (( ) )∑ ∈ IiA ii ;1,  is a direct 

sum of these lattices. It is easy to see that if we take { }1,0=iA  for ,Ii ∈  

then the map ϕ defined by ( ) ( ){ }1; =∈=ϕ ifIif  is an isomorphism 

between this direct sum and the lattice of all cofinite subsets of the set I. 

(3) Let V be a variety of unbounded distributive lattices. Let us take 
lattices { }1,,03 aCLi ==  (3 element chains). Then (( ) )∑ ∈ IiaLi ;,  is a 

direct sum of these lattices (it means that a is a distinguished element in each 
.)iL  

(4) Let V be a variety of Brouwerian algebras. Let us take algebras 
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{ }1,...,,,0 21 −==
ii nni aaCL  in(  element chains). Take 1=ie  (greatest 

element) for each iL  (as { }1  is the only one element subalgebra, there is no 

other option). Then (( ) )∑ ∈ IieL ii ;,  is a direct sum of these algebras. 

We can state theorem which provides the main information for direct 
sums over finite and also infinite index sets. 

Theorem 3.1. Let V be a variety with factorable congruences in which 
every algebra A has one element subalgebra, ,VAi ∈  Ii ∈  be algebras 

with distinguished elements iAe  (it means that { }iAe  are subalgebras of iA  

for .)Ii ∈  

If all ,iA  Ii ∈  have SEKP and for every ( ),Con iA A
i

∈θ≠ι  there is a 

strong endomorphism ϕ such that ( )
ii AA ee =ϕ  and ( ) ,ker θ=ϕ  then 

(( ) )∑ ∈ IieA
iAi ;,  has SEKP. 

Conversely, if (( ) )∑ ∈ IieA
iAi ;,  has SEKP, then each ,iA  Ii ∈  has 

SEKP. 

Proof. Let us use denote (( ) )∑ ∈= .;, IieAB
iAi  Let ( ).Con BB ∈θ≠ι  

Our assumptions and Theorem 2.5 imply that there are congruences ∈θi  

( )iACon  such that ( )∏ ∈θ=θ .;2 IiB i∩  For every Ii ∈  such that ≠θi  

,iAι  take ( )ii AEnd∈ϕ  which is strong on ,iA  ( ) ii θ=ϕker  and ( ) =ϕ
iAi e  

.
iAe  

If ,
iAi ι=θ  then we can take iii AA →ϕ :  in such a way that for ∈x  

,iA  ( ) .
iAi ex =ϕ  It is clear that ( ),End ii A∈ϕ  ( ) ,ker iAi i

θ=ι=ϕ  iϕ  is 

strong on iA  and also ( ) .
ii AAi ee =ϕ  

Let .Bf ∈  Then it means that ( )fsupp  is finite. Take a map →ϕ B:  

( )∏ ∈ IiAi ;  is given by ( ) ( ) ( )( ).ifif iϕ=ϕ  It is easy to see that 
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( )( ) ( ),fsuppfsupp ⊆ϕ  because for all ,Ii ∈  we have ( )
ii AAi ee =ϕ  so that 

( )( )fsupp ϕ  is finite. Moreover, we know that all projections ii AB →π :  

are surjective. Therefore, ϕ is in fact a map .: BB →ϕ  

Clearly, ϕ is an endomorphism of B. Let ., Bgf ∈  Then we have 

( ) ( ) ( ) ( ) ( )( ) ( )iigifIigf ϕ∈∈∀⇔ϕ∈ ker,ker,  

( ) ( ) ( )( ) iigifIi θ∈∈∀⇔ ,  

( ) ., θ∈⇔ gf  

Now, let ( ),Con Bb ∈Φ≠ι  ( )ii ACon∈Φ  be such that ∩2B=Φ  

( )∏ ∈Φ .; Iii  

Let ( ) ., Φ∈gf  Let .Ii ∈  Then ( ) ( )( ) iigif Φ∈,  and therefore ( ( )( ),ifiϕ  

( )( )) ,ii ig Φ∈ϕ  because each iϕ  is strong on iA  so that ( ) ( )( ) ., Φ∈ϕϕ gf  

For the converse, let (( ) )∑ ∈= IieAC
iAi ;,  has SEKP. Let .Ii ∈  It is 

clear that (( ) { })∑ ∈×≅ .\;, iIjeAAC
jAji  

Denote iAA =  and (( ) { })∑ ∈= .\;, iIjeAB
jAj  Let BA ×  has SEKP. 

We shall prove that A (B, respectively) has SEKP. Let A and B have more 
than one element. It is clear that B has one element subalgebra, namely, 

{ }( )∏ ∈∈= iIiAfb i \,  such that for { },\ iIi ∈  we have ( ) .
iAeif =  

Let ( ).Con AA ∈θ≠ι  Then Bι×θ  is a non-trivial congruence on .BA ×  

Therefore, we have an endomorphism ( )BAf ×∈ End  which is strong on 

BA ×  and ( ) .ker Bf ι×θ=  

Let { }b  be one element subalgebra of B. Then every basic n-ary operation 

g of B is idempotent on an element b, it means that ( ) ....,, bbbg =  Therefore, 

BAAinjb ×→:  given by ( ) ( )bxxinjb ,=  is a homomorphism. Let :Apr  

ABA →×  be a projection, i.e., ( ) ., xyxprA =  
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Let AAf →:1  be a composition .1 bA injfprf DD=  Then it means that 

( ) ( )( ).,1 bxfprxf A=  As a composition of homomorphisms, ( ).End1 Af ∈  

Let us check that ( ) .ker 1 θ=f  If ( ) ,, θ∈yx  then ( ) ( )( ) ∈bybx ,,,  

.Bι×θ  Therefore, ( ) ( )byfbxf ,, =  and also ( ) ( )( ) == bxfprxf A ,1  

( )( ) ( )., 1 yfbyfprA =  It means that ( ).ker 1f⊆θ  

For the other inclusion, we shall start with a small consideration. By the 
assumption, f is strong on ,BA ×  it means that for the congruence ,BA ω×ι  

the following holds: if ( ) ( )( ) ,,,, BAbybx ω×ι∈  then ( ) ( )( ) ∈byfbxf ,,,  

.BA ω×ι  This means that for any ,, Ayx ∈  we have ( )( ) =bxfprB ,  

( )( ) BB prbyfpr −,  is a projection BBAprB →×:  here. 

Now, let ( ) ( )1ker, fyx ∈  so that 

( )( ) ( ) ( ) ( )( ).,, 11 byfpryfxfbxfpr AA ===  

By the previous arguments, we have also ( )( ) ( )( )byfprbxfpr BB ,, =  and 

therefore ( ) ( ).,, byfbxf =  This means that ( ) ( )( ) Bbybx ι×θ∈,,,  and 

by this, we have ( ) .ker 1 θ⊆f  

We shall prove that 1f  is strong on A now. Let ( ),Con A∈Φ  ( ) ., Φ∈yx  

Then ( ) ( )( ) .,,, Bbybx ω×Φ∈  As f is strong on ,BA ×  we have ( ( ),, bxf  

( )) ., Bbyf ω×Φ∈  This means that 

( ) ( )( ) ( )( )( ( )( )) Φ∈= byfprbxfpryfxf AA ,,,, 11  

(we can use any congruence on B instead of Bω  here). ~ 

For varieties where one element subalgebras are defined by a nullary 
operation, we have 

Corollary 3.2. Let V be a variety with factorable congruences with one 
nullary operation e in which every algebra A has one element subalgebra 
given by a value Ae  of the nullary operation e in A. Then it means that 

distinguished elements are .Ae  
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Let ,VAi ∈  .Ii ∈  Then (( ) )∑ ∈ IieA
iAi ;,  has SEKP in the variety V 

if and only if each ,iA  Ii ∈  has SEKP in the variety V. 

Proof. Homomorphisms in this variety must preserve nullary operation 
and therefore the special condition required by Theorem 3.1 concerning 
strong endomorphisms and distinguished elements is automatically satisfied. 

 ~ 

As an example, let us take { },1,0=iA  Ii ∈  in the variety of distributive 

lattices with top element, it is easy to see that each iA  has SEKP and 

therefore (( ) )∑ ∈ IiAi ;1,  has SEKP. As it is mentioned in the example 

(2), (( ) )∑ ∈ IiAi ;1,  is isomorphic to the lattice of all cofinite subsets of 

the set I (and dually to the lattice of all finite subsets for { }0 -lattices). In fact, 

unbounded distributive lattices and SEKP would be good candidate to 
consider, but these were fully characterized in [9] by means of a Priestley 
duality. 

Let us turn to the case of EKP now. Blyth et al. have Theorems 2 and 3 
in [1] which state: 

Theorem 3.3 [1, Theorem 2]. Let V be a variety that has factorable 
congruences and let nAA ...,,1  be algebras in V such that for any ,ji ≠  

there exists a homomorphism .: jiij AAf →  Then if each iA  has EKP so 

also does ∏ =
n
i iA1 .  

Theorem 3.4 [1, Theorem 3], see also [8, Theorem 4]. Let V be a variety 
that has factorable congruences and in which every subalgebra of a directly 
indecomposable algebra is also directly indecomposable. If nAA ...,,1  are 

non-trivial directly indecomposable algebras in V, then the following 
statements are equivalent: 

 (i) ∏ =
n
i iA1  has EKP, 
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(ii) each iA  has EKP and there exists a homomorphism jiij AAf →:  

for each .ji ≠  

As an analog of Theorem 3.3, we can state 

Theorem 3.5. Let V be a variety with factorable congruences in which 
every algebra A has one element subalgebra, ,VAi ∈  Ii ∈  be algebras 

with distinguished elements 
iAe  (it means that { }iAe  are subalgebras of iA  

for .)Ii ∈  

If all ,iA  Ii ∈  have EKP and for every ( ),Con ia A
i

∈θ≠ι  there is an 

endomorphism ϕ such that ( )
ii AA ee =ϕ  and ( ) ,ker θ=ϕ  then (( )∑ ;,

iAi eA  

)Ii ∈  has EKP. 

Proof. Proof is almost identical to the proof of the first part of Theorem 
3.1, we only need to omit the word “strong” where appropriate. It is also not 
necessary to check compatibility of constructed endomorphisms with other 
congruences. ~ 

We also have a simplification for varieties where one element 
subalgebras are defined by a nullary operation. 

Corollary 3.6. Let V be a variety with factorable congruences with one 
nullary operation e in which every algebra A has one element subalgebra 
given by a value 

iAe  of the nullary operation e in .iA  Then it means that 

distinguished elements are .
iAe  

Let ,VAi ∈  .Ii ∈  If each ,iA  Ii ∈  has EKP in the variety V, then 

(( ) )∑ ∈ IieA
iAi ;,  has EKP in the variety V. 

As an example, we can take finite chains ,
inC  Ii ∈  with top elements       

in the variety of distributive lattices with top element. By [1, Example 1],          
each 

inC  has EKP as { }1 -lattice (even as a bounded lattice). Therefore, 

(( ) )IiC
in ∈∑ ;1,  has EKP as { }1 -lattice. 
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4. Brouwerian and Relative Stone Algebras 

We are going to show that all finite relative Stone algebras have SEKP. 

Brouwerian algebra is an algebra ( )1,,,, ∗∧∨L  of type ( )0,2,2,2  

such that ( )∧∨,,L  is (necessarily distributive) lattice with greatest element 

1 and ba ∗  is a greatest element of the set { }bxaLx ≤∧∈ ;  (a relative 

pseudocomplement of a in b). 

Brouwerian algebras form a variety with factorable congruences 
(because of the lattice reduct) with one element subalgebras { },1  therefore 

this variety is suitable for Theorems 3.1 and 3.5. 

Brouwerian algebra is called relative Stone algebra, if every its (closed) 
interval is a Stone algebra or equivalently, if it satisfies the equality 

( ) ( ) 1=∗∨∗ xyyx  

(see [11]). By the results in [10], relative Stone algebras form a variety 
denoted by ∞K  and the lattice of subvarieties of ∞K  is a chain 

∞⊂⊂⊂⊂⊂ KKKK "" n21  

of length .1+ω  Here ( )2≥∈ nL nK  if and only if L satisfies the equation 

:nE  

( ) ( ) ( ) .113221 =∗∨∨∗∨∗ +nn xxxxxx "  

Heyting algebra is an algebra ( )1,0,,,, ∗∧∨L  of type ( )0,0,2,2,2  

such that ( )1,,,, ∗∧∨L  is a Brouwerian algebra and 0 is the smallest element 

of the lattice ( ).,, ∧∨L  

L-algebra is a Heyting algebra ( ),1,0,,,, ∗∧∨L  for which ( )1,,,, ∗∧∨L  

is a relative Stone algebra. By the results in [10], L-algebras form a variety 
denoted by ∞L  and the lattice of subvarieties of ∞L  is a chain 

∞⊂⊂⊂⊂⊂ LLLL "" n21  

of length 1+ω  and similarly as for relative Stone algebras, ( )2≥∈ nL nL  

if and only if L satisfies the equation .nE  
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We can define a unary operation ∗ on a Heyting algebra by putting 

.0∗=∗ xx  An element x of a Heyting algebra L is closed, if ∗∗= xx  and 

dense, if .0=∗x  

The set ( ) { }∗∗=∈= aaLaLC ;  of all closed elements is considered as 

an algebra ( )( ),1,0,,,, ∗∧LC  where ∧, ∗, 0, 1 are restrictions of 

corresponding operations from L and ( )∗∗∗ ∧= baba  is a Boolean 

algebra. 

The set ( ) { }0; =∈= ∗aLaLD  of all dense elements is a filter of L 

which itself is a Brouwerian algebra, more precisely Brouwerian subalgebra 
of original Heyting algebra L. 

The following theorem will be useful. 

Theorem 4.1 [10, Theorem 5]. Let L be a Heyting algebra. Then 
( )2≥∈ nL nL  if and only if the following two conditions are fulfilled: 

(1) ( )LC  is a subalgebra of L, 

(2) ( ) .1−∈ nLD K  

The characterization of congruences of a Brouwerian algebra was given 
in [13] as 

Lemma 4.2. Let L be a Brouwerian algebra. If θ is a congruence on L, 
then [ ] ( ){ }θ∈∈=θ 1,;1 xLx  is a filter on L and 

( ) θ∈yx,  if and only if dydx ∧=∧  for some [ ]θ∈ 1d  

and conversely, if F is a filter on L, then the relation Fθ  given by 

( ) Fyx θ∈,  if and only if dydx ∧=∧  for some Fd ∈  

is a congruence on L with [ ] .1 FF =θ  

Let nC  be an n element chain 10 21 <<<< −naa "  considered as a 
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Brouwerian algebra (it means that if ,ba ≤  then ,1=∗ ba  if ,ba >  then 

.)bba =∗  Let ( ),Con L∈θ  denote [ ] .1 θ=F  F is a filter, it means that 

there exists nCa ∈  such that [ ) { }.; xaCxaF n ≤∈==  Clearly, blocks of 

the congruence θ (congruence classes) are singletons { }b  for ab <  and the 

set [ ).a  We can take a mapping nna CCf →:  defined by 

( )
[ )⎩

⎨
⎧

∈

<
=

.if1,
,if,

ax
axx

xfa  

It is easy to see that af  is an endomorphism, ( ) .ker θ=af  For every ,Lx ∈  

we have ( ),xfx ≤  therefore it is compatible with every other congruence of 

L (given  by another filter [ ))b  which means that it is a strong endomorphism. 

Therefore, nC  has SEKP as a Brouwerian algebra and also as a Heyting 

algebra. By Theorem 3.1, we know that any finite product and even any 
direct sum of finite chains with 1 as distinguished elements considered as a 
Brouwerian algebra have SEKP (which is not true for a finite product of at 
least two non-trivial finite chains considered as a Heyting algebra by 
Corollary 1.2). As we shall see later, any finite Brouwerian algebras can be 
used in place of finite chains in this example. 

It is known that a non-trivial algebra L is subdirectly irreducible 
Brouwerian algebra if and only if it has exactly one coatom and L is 
subdirectly irreducible relative Stone algebra if and only if it is a chain with a 
coatom. 

Lemma 4.3. Let L be a finite subdirectly irreducible Brouwerian algebra 
which is not relative Stone. Then L does not have EKP (SEKP). 

Proof. Algebra L is not a chain and it has one coatom. Let a be the 
element such that [ )a  is a chain and there are elements 21 aa ≠  such that a 

covers both ,1a  2a  (it means that 11 aaa ∨=  and L can be written as a 

glued sum ( ] [ )aaL =  - see [6, p. 8], a is the greatest element of L which 

is not join irreducible). Take [ )aF =  and the congruence .Fθ  Blocks of this 
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congruence are singletons { }x  for ax <  and the set [ ).a  Therefore, we have 

( ],aL ≅θ  but clearly, ( ]a  is not (isomorphic to) a subalgebra of L. By [1, 

Theorem 1], L does not have EKP. ~ 

Let L be a Brouwerian algebra with the smallest element 0. We shall call 
it dense if L has exactly one atom. If L is finite, then this is equivalent to the 
fact that ( ) { }0\LLD =  or to the fact that ( ) { }.1,0=LC  

Next structure theorem is an analog of the structure theorem for finite 
Stone algebras ([6, Corollary 213], originally in [7]). 

Theorem 4.4. Let L be a non-trivial finite relative Stone algebra. Then it 
is a product of finitely many dense relative Stone algebras. If nL L∈  

( ),nL K∈  then all components of this direct product also belong to 

( ).nn KL  

Proof. As L is finite, it has smallest element, therefore we can consider it 
as a Heyting algebra, as it is relative Stone, it is in fact an L-algebra. For a 
finite L-algebra L, we have n such that .nL L∈  By Theorem 4.1, Boolean 

algebra ( )LC  is a subalgebra of L. Let L be not dense. Take ( ),LCa ∈  ≠0  

.1≠a  Then a, ∗a  is a pair of complemented elements, therefore ≅L  
( ] [ )aa ×  as a distributive lattice. 

Every finite distributive lattice can be converted (in a unique way) to a 
Brouwerian (and also to a Heyting) algebra - the operation ∗ is uniquely 
determined by the lattice structure of L on L, by the lattice structure of ( ]a  on 

( ]a  and by the lattice structure of [ )a  on [ ).a  Therefore, the Heyting algebra 

L is a product of Heyting algebras ( ]a  and [ ).a  But this means that both 

Heyting algebras ( ]a  and [ )a  are homomorphic images of a relative Stone 

algebra (L-algebra, in fact) L and therefore both are relative Stone algebras 
(L-algebras) which belong to the same variety .nL  We can continue with 

this process until we get algebras with ( ) { }.1,0=−C  Therefore, L is a 

product of dense algebras which all belong to ( ).nn KL  ~ 
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Now we will examine congruences on a dense Brouwerian algebra L. 

Lemma 4.5. Let L be a dense Brouwerian algebra, La ∈  be a unique 
atom of L. If ( )LCon∈θ  is such that ( ) ,,0 θ∈a  then .Lι=θ  

Proof. The only element Ld ∈  with the property dad ∧=∧0  is 
0=d  and therefore by Lemma 4.2, [ ]θ∈ 10  which means that .Lι=θ  ~ 

Now, let L be a dense Brouwerian algebra, La ∈  be a unique atom of L. 
Then it means that ( ) [ ).aLD =  ( )LDL =1  is a Brouwerian subalgebra of L, 

we can write L using an ordered sum (see [6, p. 8]) as { } .0 1LL +=  

Let ( ).Con 1L∈θ  Then [ ] 11 L⊆θ  is also a filter on L and therefore =θ  

( ){ }0,0∪θ  is a congruence on L. 

Let ( ),Con L∈θ  .Lι≠θ  Then [ ] 11 L⊆θ  and therefore 2
1L∩θ=θ  is a 

congruence on .1L  

Using this, we can prove a lemma. 

Lemma 4.6. Let L be a dense Brouwerian algebra, ( ).1 LDL =  If a 

Brouwerian algebra 1L  has SEKP, then also a Brouwerian algebra L has 

SEKP (even as a Heyting algebra). 

Proof. If La ∈  is the atom, then ( ) [ )aLDL ==1  and { } [ ).0 aL +=  

Let ( ),Con L∈θ  .Lι≠θ  Take .2L∩θ=θ  1L  has SEKP, therefore for 

the congruence 
1Lι≠θ  of ,1L  there is a strong endomorphism 11: LLf →  

such that ( ) ,ker θ=f  for ,
1Lι=θ  we can take 11: LLf →  defined by 

( ) 1=xf  for all .1Lx ∈  This f is also a strong endomorphism with the 

property ( ) .ker θ=f  Take LLf →:  defined by 

( )
( ) [ )

⎩
⎨
⎧

=

∈
=

.0if0,
,if,

x
axxf

xf  

Routine computations show that f  is an endomorphism of L and ( ) .ker θ=f  
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We shall show that it is compatible with every (other) congruence. Let 
( ).Con L∈Ψ  If ,Lι=Ψ  then clearly, f  is compatible with .Ψ  

Let ,Lι≠Ψ  we know that ( ){ },0,0∪Ψ=Ψ  where .2
1L∩Ψ=Ψ  Let 

( ) ., Ψ∈cb  If ,0 cb ==  then ( ) ( ),0 cfbf ==  it means that ( ( ) ( ))cfbf ,  

.Ψ∈  

Let .0 cb ≠≠  Then ( ) ( ) 1, Lcfbf ∈  and as f is a strong endomorphism 

on ,1L  we see that ( ) ( ) ( ) ( ),cfcfbfbf =≡= Ψ  it means that ( ( ) ( ))cfbf ,  

.Ψ∈  ~ 

We are ready to prove the main result of this section. 

Theorem 4.7. Let L be a non-trivial finite relative Stone algebra. Then it 
has SEKP. 

Proof. We shall combine previous statements and proceed by an 
induction. 

If a relative Stone algebra L is finite, then there is n such that .nL K∈  

The induction will go through n. 

Let ,2=n  .2K∈L  As L has the smallest element, in fact, we know 

that ,2L∈L  and by Theorem 4.1, ( ) 1K∈LD  which means that ( )LD  is 

trivial and ( )LCL =  which is a Boolean algebra. It means that a Brouwerian 

algebra L is a finite product of some copies of 2C  considered as a Brouwerian 

algebra. We see that L has SEKP by Theorem 3.1. 

For the induction. Let every finite algebra in nK  has SEKP (it means 

as a Brouwerian algebra). Let 1+∈ nL K  be finite. We can consider it as an 

L-algebra, .1+∈ nL L  

By Theorem 4.4, we can write ,1 kLLL ××≅ "  where each iL  is dense 

and ( )....,,1for1 kiL ni =∈ +L  



Strong Endomorphism Kernel Property for Brouwerian Algebras 257 

By Theorem 4.1, we know that ( ) niLD K∈  for ,...,,1 ki =  therefore 

each ( )iLD  has SEKP by an induction assumption. By Lemma 4.6, each iL  

has SEKP as well. Therefore, L has SEKP by Theorem 3.1. ~ 

Corollary 4.8. Let L be a non-trivial finite L-algebra. Then L has SEKP 
if and only if it is dense. 

Proof. A non-trivial finite L-algebra has two nullary operations 10 ≠  
and by Corollary 1.2, if L has SEKP, then L is directly indecomposable. 
Therefore, L is dense by Theorem 4.4. 

Let L be a dense L-algebra. Then ( )LD  is a finite relative Stone algebra 

which has SEKP by Theorem 4.7 and therefore L has SEKP by Lemma 4.6. 
 ~ 
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