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Abstract

We shall show that endomorphism kernel property (EKP) and strong
endomorphism kernel property (SEKP) are for some classes of
universal algebras preserved by finite direct products and also by a
special form of infinite direct sum construction. Full characterization
of finite relative Stone algebras and L-algebras which have SEKP is
given and a wide class of infinite relative Stone algebras which
possess SEKP is described.

1. Introduction

Blyth and Silva in the paper [2] defined a strong endomorphism kernel
property (SEKP) for a universal algebra (see Definition 2.2). They
considered the case of Ockham algebras and in particular of MS-algebras.
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They proved, e.g., that a finite Boolean algebra has SEKP if and only if it is 2
element BA, a finite bounded distributive lattice possesses SEKP if and only
if it is a chain and proved full characterization of MS-algebras having SEKP.
Blyth et al. in [3] proved a full characterization of finite distributive double
p-algebras and finite double Stone algebras having SEKP. SEKP for
distributive p-algebras and Stone algebras has been studied and fully
characterized by Fang and Fang in [4]. Fang and Sun fully characterized
semilattices with SEKP in [5]. Gurican and Ploscica fully characterized
unbounded distributive lattices which posses SEKP in [9]. The main
approach in papers [2-4] is done by regarding algebras in question as
Ockham algebras and using the duality theory of H. Priestley.

There is one important universal assumption in the original paper [2] of
Blyth and Silva, namely, all algebras considered in this paper must contain
two nullary operations (denoted by O and 1, 0 #1). This assumption is
necessary to prove all important statements in their paper and therefore it
seems to be impossible to directly adapt their methods to algebras which do

not satisfy this assumption (e.g., {1} -lattices or unbounded lattices). Let us

mention three of these results:

Theorem 1.1 [2, Theorem 1]. If an algebra A has SEKP, then it has at
most one maximal congruence.

Corollary 1.2 [2, Corollary 1]. A finite algebra that has SEKP is directly
indecomposable.

Theorem 1.3 [2, Theorem 3]. A semisimple algebra has SEKP if and
only if it is simple.

As it is easy to check, {0, 1}* considered as 4 element distributive lattice
with a top element ({l}-lattice) has SEKP and none of these statements is

true for this algebra.

2. Preliminaries

Let A be a universal algebra. We denote wa = {(a, a); a € A} and 15 =

A x A, trivial and universal congruences on A.
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Next definition defines the notion of EKP (see [1]).

Definition 2.1. An algebra A has the endomorphism kernel property
(EKP for shortening) if every congruence relation on A different from the

universal congruence 1, is the kernel of an endomorphism on A. In addition,

we say that f € End(A) is associated to 6 € Con(A), if 6 = ker(f).

Next important notion is strong endomorphism property defined in [2].

Let A be a universal algebra, f : A — A be an endomorphism, 6 € Con(A)
be a congruence on A. f is compatible with 0 iff (a, b) € 6 = (¢(a), ¢(b))

€ 6. Endomorphism f is strong (on A), if it is compatible with every

congruence 0 € Con(A).

Definition 2.2. An algebra A has the strong endomorphism kernel
property (SEKP for shortening) iff every congruence relation on A different

from the universal congruence 1, is the kernel of a strong endomorphism on
A. In addition, we say that f € End(A) is associated to 8 € Con(A), if 0 =
ker(f).

Let us recall the definition of weak direct product (see Definition 22.1 in
chapter 3, [6])

Definition 2.3. Let (A, F), i € | be algebras of the same type. Take the
direct product P = JJ(A; i € ). Let B < P. (B, F) is called a weak direct
product of algebras A if:

(1) (B, F) is a subalgebra of P,
(2)if f, g € B, thentheset {i e I; f(i) = g(i)} is finite,

(3)if f eB, g e [[(A,iel)andtheset {i € I; f(i) = g(i)} is finite,
then g € B.
This type of product need not exist and/or be uniquely determined. Every

weak direct product is a subdirect product. Zlato§ in [14] used the name
“direct sum” for a weak direct product.
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Let us start with some definitions (see, e.g., paragraph 4.4 of [12]).

Definition 2.4. Let (A, F), (B, F) be algebras of the same type. The
product Ax B has factorable congruences, if every congruence 6 e
Con(A x B) has the form 0; x 06,, where 6; € Con(A;) for every i =1, 2.

An algebra A has factorable congruences, if whenever A = Hin:1 A,

then every congruence 6 € Con(A) has the form Hi”:lei, where 0j €
Con(A) forevery i =1, ..., n.

A variety V is said to have factorable congruences, if every algebra
A €V has factorable congruences.

Let (B, F) be a direct sum of algebras A, i€ | from V. (B, F) has
factorable congruences, if every congruence 6 € Con(B) has the form B2 N

[1(6i:i €1), where 6; € Con(A) forevery i € I.

It is known that the factorability of congruences does not extend to
infinite direct products. Zlato$ [14] considered a direct sum construction to

be more fitting for this purpose, he proved the following:

Theorem 2.5 [14, Theorem 2]. Let V be a variety of algebras. The
following conditions are equivalent:

(1) V has factorable congruences,

(2) every direct sum of algebras from V has factorable congruences.
3. A Construction

We shall describe a special type of a direct sum now. Let V be a variety.

Let A, i€l be algebras from V such that they all have one element

subalgebra and we have chosen (distinguished) elements e A €A such that
{eAi} is one element subalgebra of A;. (The situation is easier if the one

element algebra is given by a nullary operation in V - no choice is needed in
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this case. If not, then we may require some other properties of distinguished

elements later.)
We denote supp(f) = {i; f(i) = ep } for f e [T(A.iel). Now let us
consider the following subset B of [J (A, i€ 1):

B = {f e [ [(A. i€ 1) supp(f) s ﬁnite}.

It is easy to check that B is a subalgebra of a direct product H(AI ,iel)

and in fact that it is a direct sum of algebras A;. We shall denote it as

It is clear that for finite index set I, we do not need distinguished

elements for the definition and the algebra )" ((A;, e A )s i€ 1) is standard

direct product. But (distinguished) elements which form one element
subalgebras are still necessary for our proofs also in the case of finite index
set I.

Examples. (1) Let V be a variety of groups, € € Gj be an identity

element. Then ) ((Gj, € ); i € ) is a direct sum of groups (in a usual way).

(2) Let V be a variety of distributive lattices with top element
({1}-lattices), 1j € Ay be a top element. Then Z((A,, lj); i el) is a direct
sum of these lattices. It is easy to see that if we take A; = {0, 1} for i € I,
then the map ¢ defined by ¢(f)={iel; f(i)=1} is an isomorphism
between this direct sum and the lattice of all cofinite subsets of the set I.

(3) Let V be a variety of unbounded distributive lattices. Let us take
lattices Lj = C3 = {0, a, 1} (3 element chains). Then Z((Li, ayiel)isa
direct sum of these lattices (it means that a is a distinguished element in each

L).

(4) Let V be a variety of Brouwerian algebras. Let us take algebras
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Li =Cp =10, @, ..., 8y, _, I} (n; element chains). Take € =1 (greatest
element) for each L; (as {l} is the only one element subalgebra, there is no

other option). Then »_ ((Lj, €); i € I) is a direct sum of these algebras.

We can state theorem which provides the main information for direct
sums over finite and also infinite index sets.

Theorem 3.1. Let V be a variety with factorable congruences in which
every algebra A has one element subalgebra, A €V, ie | be algebras

with distinguished elements e, (it means that {e } are subalgebras of A;
foriel).
Ifall A, i€l have SEKP and for every 15 # 0 € Con(A)), there is a

strong endomorphism ¢ such that (p(eAi):eAi and ker(p) =6, then
Y ((Ai,ea ) iel) has SEKP.

Conversely, if > (A, e ) i € 1) has SEKP, then each A, iel has
SEKP.

Proof. Let us use denote B = ) (A}, ep)siel). Letig # 6 e Con(B).
Our assumptions and Theorem 2.5 imply that there are congruences 0; €
Con(A) such that 6 = B> [1(6i:i el). Forevery i e | such that 6; =
L take @; € End(A;) which is strong on Aj, ker(¢j) = 0; and ¢j(ep ) =
eAi .

If 0j = 14, then we can take ¢; : Aj = A in such a way that for x €
A, ¢j(x) =ep. Itis clear that ¢; € End(A), ker(p;) =15 =0, ¢; is
strong on Ay and also @j(ep ) = €p-

Let f € B. Then it means that supp(f) is finite. Take a map ¢ : B —
[T(Asiel) is given by o(f)(i)=i(f(i)). It is easy to see that
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supp(e(f)) < supp(f), because for all i I, we have @j(ep ) = ep so that

supp(o(f)) is finite. Moreover, we know that all projections ; : B — A

are surjective. Therefore, ¢ is in factamap ¢ : B —> B.
Clearly, ¢ is an endomorphism of B. Let f, g € B. Then we have
(f. 9) € ker(e) = (Vi e 1)(f(i). 9(i)) € ker(¢;)
< (Viel)(f(i), g(i)) € 6

< (f,g)eb.

Now, let 1, # ® € Con(B), ®; € Con(A) be such that ® = B
H((Di; ie |).

Let (f, g)e ®. Leti e I. Then (f(i), g(i)) € ®; and therefore (o;( f(i)),
0;(g(i))) € @j, because each @; is strong on A so that ((f), ¢(g)) € D.

For the converse, let C = Y (A, ep)siel) has SEKP. Let i € I. Itis
clear that C = Aj x D" ((Aj, €A, ), § e I\{i}).

Denote A= A and B = Z((Aj, €A ); j € I\{i}). Let Ax B has SEKP.

We shall prove that A (B, respectively) has SEKP. Let A and B have more
than one element. It is clear that B has one element subalgebra, namely,

b=1f e[](A.ieI\{i}) suchthat for i e I\{i}, wehave f(i)= en-

Let tp # 6 € Con(A). Then 6 x 1g is a non-trivial congruence on A x B.
Therefore, we have an endomorphism f € End(A x B) which is strong on

Ax B and ker(f)=0x1p.

Let {b} be one element subalgebra of B. Then every basic n-ary operation
g of B is idempotent on an element b, it means that g(b, ..., b) = b. Therefore,
injp : A — Ax B given by inj,(X) = (x, b) is a homomorphism. Let prp :

A x B — A be aprojection, i.e., pra(x, y) = x.
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Let f; : A— A be acomposition f; = prp o f oinj,. Then it means that
fi(x) = pra(f(x, b)). As a composition of homomorphisms, f; € End(A).

Let us check that ker(f;)=6. If (x, y)e 6, then ((x,b), (y, b)) e
0 x 1g. Therefore, f(x,b)= f(y,b) and also f(x)= pra(f(x, b)) =

pra(f(y, b)) = fi(y). It means that 6 < ker(f;).

For the other inclusion, we shall start with a small consideration. By the
assumption, f is strong on A x B, it means that for the congruence 15 x ®g,
the following holds: if ((x, b), (y, b)) € 1o x ®g, then (f(x, b), f(y, b)) e
1o x ®g. This means that for any X,y € A, we have prg(f(x, b)) =

prg(f(y, b)) — prg is a projection prg : Ax B — B here.
Now, let (X, y) € ker(f;) so that

pra(f(x, b)) = fi(x) = fi(y) = pra(f(y, b)).
By the previous arguments, we have also prg(f(x, b)) = prg(f(y, b)) and

therefore f(x, b) = f(y, b). This means that ((x, b), (y, b)) € 6 x 1g and
by this, we have ker(f;) < 6.

We shall prove that f; is strong on A now. Let ® € Con(A), (X, y) € @.
Then ((x, b), (y, b)) € ® x wg. As fis strong on A x B, we have (f(x, b),
f(y, b)) € ® x og. This means that

(fi(x), f1(y)) = (pra(f(x, b)), pra(f(y, b)) e @
(we can use any congruence on B instead of wg here). O

For varieties where one element subalgebras are defined by a nullary
operation, we have

Corollary 3.2. Let V be a variety with factorable congruences with one
nullary operation e in which every algebra A has one element subalgebra
given by a value ep of the nullary operation e in A. Then it means that

distinguished elements are ep.
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Let A eV, iel Then D ((A,ep); iel) has SEKP in the variety V
if and only if each A;, i e | has SEKP in the variety V.

Proof. Homomorphisms in this variety must preserve nullary operation
and therefore the special condition required by Theorem 3.1 concerning
strong endomorphisms and distinguished elements is automatically satisfied.

O

As an example, let us take A; = {0, 1}, i € | in the variety of distributive
lattices with top element, it is easy to see that each A; has SEKP and
therefore > ((Aj, 1); i € 1) has SEKP. As it is mentioned in the example
(2), D ((A, 1) i e 1) is isomorphic to the lattice of all cofinite subsets of

the set | (and dually to the lattice of all finite subsets for {0} -lattices). In fact,

unbounded distributive lattices and SEKP would be good candidate to
consider, but these were fully characterized in [9] by means of a Priestley

duality.

Let us turn to the case of EKP now. Blyth et al. have Theorems 2 and 3
in [1] which state:

Theorem 3.3 [1, Theorem 2]. Let V be a variety that has factorable
congruences and let A, ..., A, be algebras in V such that for any i # j,

there exists a homomorphism fj; : Ay — A;. Then if each A has EKP so
n
also does [ [._, A

Theorem 3.4 [1, Theorem 3], see also [8, Theorem 4]. Let V be a variety
that has factorable congruences and in which every subalgebra of a directly
indecomposable algebra is also directly indecomposable. If A, ..., A, are
non-trivial directly indecomposable algebras in V, then the following
statements are equivalent:

() [T, A has EKP,
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(ii) each A; has EKP and there exists a homomorphism fj; : Aj — A;
foreach i = j.

As an analog of Theorem 3.3, we can state

Theorem 3.5. Let V be a variety with factorable congruences in which
every algebra A has one element subalgebra, A €V, ie | be algebras

with distinguished elements e, (it means that {e, } are subalgebras of A;
foriel).

Ifall A, i<l have EKP and for every 1, # 0 € Con(A;), there is an
endomorphism ¢ such that g(ep, ) = ea and ker() = 0, then DA, en);
i € 1) has EKP.

Proof. Proof is almost identical to the proof of the first part of Theorem
3.1, we only need to omit the word “strong” where appropriate. It is also not
necessary to check compatibility of constructed endomorphisms with other

congruences. U

We also have a simplification for varieties where one element
subalgebras are defined by a nullary operation.

Corollary 3.6. Let V be a variety with factorable congruences with one
nullary operation e in which every algebra A has one element subalgebra
given by a value en of the nullary operation e in  Aj. Then it means that

distinguished elements are en-

Let A eV, iel. Ifeach A, iel has EKP in the variety V, then
2 (A, ea ) i € 1) has EKP in the variety V.

As an example, we can take finite chains Cp,., i € | with top elements

in the variety of distributive lattices with top element. By [1, Example 1],
each C, has EKP as {l}-lattice (even as a bounded lattice). Therefore,

Z((Cni ,1); i € 1) has EKP as {I}-lattice.
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4. Brouwerian and Relative Stone Algebras

We are going to show that all finite relative Stone algebras have SEKP.

Brouwerian algebra is an algebra (L, v, A, %, 1) of type (2, 2, 2, 0)
such that (L, v, A) is (necessarily distributive) lattice with greatest element
1 and a*b is a greatest element of the set {x € L; a A X < b} (a relative
pseudocomplement of a in b).

Brouwerian algebras form a variety with factorable congruences
(because of the lattice reduct) with one element subalgebras {1}, therefore

this variety is suitable for Theorems 3.1 and 3.5.

Brouwerian algebra is called relative Stone algebra, if every its (closed)
interval is a Stone algebra or equivalently, if it satisfies the equality
(x*y)v(y*x)=1
(see [11]). By the results in [10], relative Stone algebras form a variety

denoted by ., and the lattice of subvarieties of %, is a chain
M CHy o Hy T K
of length ® + 1. Here L € %, (n > 2) if and only if L satisfies the equation
Eq:
(X1 % X)) v (Xg * X3) v+ v (Xg * Xpyp) = 1.

Heyting algebra is an algebra (L, v, A, *, 0, 1) of type (2, 2, 2, 0, 0)
such that (L, v, A, *, 1) is a Brouwerian algebra and 0 is the smallest element
of the lattice (L, v, A).

L-algebra is a Heyting algebra (L, v, A, *, 0, 1), for which (L, v, A, *, 1)

is a relative Stone algebra. By the results in [10], L-algebras form a variety

denoted by %, and the lattice of subvarieties of %, is a chain
%C%C"'C%C'.'ng
of length ® + 1 and similarly as for relative Stone algebras, L € %4, (n > 2)

if and only if L satisfies the equation E.
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We can define a unary operation * on a Heyting algebra by putting
x* = x*0. An element X of a Heyting algebra L is closed, if x = x™* and

dense, if x* = 0.

The set C(L) = {a e L; a = a""} of all closed elements is considered as

an algebra (C(L), L, A, *, 0,1), where A, %, 0, 1 are restrictions of

corresponding operations from L and allb =(a" Ab")" is a Boolean

algebra.

The set D(L)={a e L;a" =0} of all dense elements is a filter of L

which itself is a Brouwerian algebra, more precisely Brouwerian subalgebra
of original Heyting algebra L.

The following theorem will be useful.

Theorem 4.1 [10, Theorem 5]. Let L be a Heyting algebra. Then
L € %, (n>2) if and only if the following two conditions are fulfilled:

(1) C(L) is a subalgebra of L,
(2) D(L) € Hq1.

The characterization of congruences of a Brouwerian algebra was given
in[13] as

Lemma 4.2. Let L be a Brouwerian algebra. If 0 is a congruence on L,
then [1]0 = {x € L; (x, 1) € 0} is afilter on L and

(x, y)e 0 ifandonlyif x Ad =y Ad forsome d e [1]0
and conversely, if F is a filter on L, then the relation 6 given by

(x, y)e 6 ifandonlyif xAd =y Ad forsome d e F
is a congruence on L with [1]0g = F.

Let C, be an n element chain 0 < a; <:-- < a,_, <1 considered as a
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Brouwerian algebra (it means that if a < b, then a*b =1, if a > b, then
a*b=Db). Let 0 € Con(L), denote F =[1]0. F is a filter, it means that
there exists a € Cp, such that F = [a) = {x € C,;; a < X}. Clearly, blocks of
the congruence 0 (congruence classes) are singletons {b} for b < a and the

set [a). We can take a mapping f, : C,, — C,, defined by

X, if x<a,
1, if xe|a).

fa(4) = {

It is easy to see that f, is an endomorphism, ker(f,) = 6. Forevery x € L,
we have x < f(x), therefore it is compatible with every other congruence of
L (given by another filter [b)) which means that it is a strong endomorphism.
Therefore, C,, has SEKP as a Brouwerian algebra and also as a Heyting

algebra. By Theorem 3.1, we know that any finite product and even any
direct sum of finite chains with 1 as distinguished elements considered as a
Brouwerian algebra have SEKP (which is not true for a finite product of at
least two mnon-trivial finite chains considered as a Heyting algebra by
Corollary 1.2). As we shall see later, any finite Brouwerian algebras can be
used in place of finite chains in this example.

It is known that a non-trivial algebra L is subdirectly irreducible
Brouwerian algebra if and only if it has exactly one coatom and L is
subdirectly irreducible relative Stone algebra if and only if it is a chain with a

coatom.

Lemma 4.3. Let L be a finite subdirectly irreducible Brouwerian algebra
which is not relative Stone. Then L does not have EKP (SEKP).

Proof. Algebra L is not a chain and it has one coatom. Let a be the

element such that [a) is a chain and there are elements a; # a, such that a
covers both a;, a, (it means that a = a; v a; and L can be written as a
glued sum L = (a] + [a) - see [6, p. 8], a is the greatest element of L which

is not join irreducible). Take F = [a) and the congruence 0. Blocks of this



254 Jaroslav Gurican

congruence are singletons {X} for X < a and the set [a). Therefore, we have
L/6 = (a], but clearly, (a] is not (isomorphic to) a subalgebra of L. By [I,
Theorem 1], L does not have EKP. O

Let L be a Brouwerian algebra with the smallest element 0. We shall call

it dense if L has exactly one atom. If L is finite, then this is equivalent to the
fact that D(L) = L\{0} or to the fact that C(L) = {0, 1}.

Next structure theorem is an analog of the structure theorem for finite
Stone algebras ([6, Corollary 213], originally in [7]).

Theorem 4.4. Let L be a non-trivial finite relative Stone algebra. Then it
is a product of finitely many dense relative Stone algebras. If L € £,
(L € ), then all components of this direct product also belong to
£ ().

Proof. As L is finite, it has smallest element, therefore we can consider it

as a Heyting algebra, as it is relative Stone, it is in fact an L-algebra. For a
finite L-algebra L, we have n such that L € 4,. By Theorem 4.1, Boolean

algebra C(L) is a subalgebra of L. Let L be not dense. Take a € C(L), 0 #

a=1. Then a, a* is a pair of complemented elements, therefore L =

(a] x [a) as a distributive lattice.

Every finite distributive lattice can be converted (in a unique way) to a
Brouwerian (and also to a Heyting) algebra - the operation * is uniquely

determined by the lattice structure of L on L, by the lattice structure of (a] on
(a] and by the lattice structure of [@) on [@). Therefore, the Heyting algebra
L is a product of Heyting algebras (a] and [a). But this means that both
Heyting algebras (a] and [a) are homomorphic images of a relative Stone

algebra (L-algebra, in fact) L and therefore both are relative Stone algebras

(L-algebras) which belong to the same variety .4,. We can continue with
this process until we get algebras with C(-) = {0, 1}. Therefore, L is a
product of dense algebras which all belong to %, (%,). O
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Now we will examine congruences on a dense Brouwerian algebra L.
Lemma 4.5. Let L be a dense Brouwerian algebra, a € L be a unique

atom of L. If 6 € Con(L) is such that (0, a) € 6, then 6 =1 .

Proof. The only element d € L with the property 0 Ad =aAd is
d = 0 and therefore by Lemma 4.2, 0 € [1]0 which means that 6 =1, . O

Now, let L be a dense Brouwerian algebra, a € L be a unique atom of L.
Then it means that D(L) = [a). L; = D(L) is a Brouwerian subalgebra of L,

we can write L using an ordered sum (see [6, p. 8]) as L = {0} + L.

Let 6 € Con(L;). Then [1]6 < L; is also a filter on L and therefore 6 =
0 U {(0, 0)} is a congruence on L.

Let © € Con(L), 0 # 1. Then [1]0 < L and therefore 6 = 6 ) L7 isa
congruence on L.
Using this, we can prove a lemma.

Lemma 4.6. Let L be a dense Brouwerian algebra, L; = D(L). If a
Brouwerian algebra L; has SEKP, then also a Brouwerian algebra L has
SEKP (even as a Heyting algebra).

Proof. If a € L is the atom, then L; = D(L) =[a) and L = {0} + [a).

Let O € Con(L), 6 # 1. Take 6 = 6 L2. L; has SEKP, therefore for
the congruence 6 # 1, of Ly, there is a strong endomorphism f : L; — L
such that ker(f)=0, for 6 =1, we can take f:L; — L; defined by

f(x)=1 for all x e L;. This f is also a strong endomorphism with the
property ker(f)=0. Take f : L — L defined by

-0

Routine computations show that f is an endomorphism of L and ker(f) = 6.
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We shall show that it is compatible with every (other) congruence. Let

¥ e Con(L). If ¥ = 1|, then clearly, f is compatible with ¥.

Let ¥ # 1, we know that ¥ = ¥ U {(0, 0)}, where ¥ = ¥ ( L?. Let
(b,c)e ¥.If b=0=c, then f(b)=0 = f(c), it means that (f(b), f(c))
e V.

Let b # 0 = c. Then f(b), f(c) e L; and as f is a strong endomorphism
on Ly, we see that f(b) = f(b) =y f(c)= f(c), it means that (f(b), f(c))
eV U

We are ready to prove the main result of this section.

Theorem 4.7. Let L be a non-trivial finite relative Stone algebra. Then it
has SEKP.

Proof. We shall combine previous statements and proceed by an

induction.

If a relative Stone algebra L is finite, then there is n such that L € .
The induction will go through n.

Let n=2, L e ;. As L has the smallest element, in fact, we know
that L € %, and by Theorem 4.1, D(L) € J# which means that D(L) is
trivial and L = C(L) which is a Boolean algebra. It means that a Brouwerian

algebra L is a finite product of some copies of C, considered as a Brouwerian

algebra. We see that L has SEKP by Theorem 3.1.

For the induction. Let every finite algebra in %}, has SEKP (it means
as a Brouwerian algebra). Let L € ;| be finite. We can consider it as an

L-algebra, L € £4,.;.

By Theorem 4.4, we can write L = L; x--- x Ly, where each L; is dense

and Lj € %, (fori=1,.., k).
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By Theorem 4.1, we know that D(L;) € J#;, for i =1, ..., k, therefore

each D(L;j) has SEKP by an induction assumption. By Lemma 4.6, each L;
has SEKP as well. Therefore, L has SEKP by Theorem 3.1. O

Corollary 4.8. Let L be a non-trivial finite L-algebra. Then L has SEKP

if and only if it is dense.

Proof. A non-trivial finite L-algebra has two nullary operations 0 # 1

and by Corollary 1.2, if L has SEKP, then L is directly indecomposable.
Therefore, L is dense by Theorem 4.4.

Let L be a dense L-algebra. Then D(L) is a finite relative Stone algebra

which has SEKP by Theorem 4.7 and therefore L has SEKP by Lemma 4.6.
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