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Abstract

In this paper, we consider a class of discrete Schrédinger systems. We
divide the discussion into two cases. In the first case, we consider
the system with unbounded potentials, the existence of a nontrivial
solution is obtained, both of its two components are nonzero. In the
second case, we consider the system with radially symmetric
coefficients, by proving a compactness result, we get the existence of a
nontrivial radially symmetric solution.

1. Introduction

Soliton solutions for discrete Schrodinger equations and systems on
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infinite lattices have been studied by many authors from the aspects
of mathematics in the last decades. In [17], the following equation was
considered

2
AuUpy + ayqUpyq + bnun — U, = GXn' Uy | Up, Ne& Z,

where a,, b, and y, are periodic, the author proved the existence of gap

solutions (standing waves with frequency ® in a spectral gap). This result
was improved in [18] by proving the existence of ground state solutions. In
[22], problems of the form

—Au, + g,u, —ou, = cy,g,u,)u,, neclZ,

were studied, where Au, =u, | +u,_1 — 2u,, €, and y, were assumed to

be periodic and the existence of soliton solutions when o is a lower edge of a
finite spectral gap was proved via the generalized linking method. In [25],

the following equation was considered:
Aty 4 + Ay Uy + by, — OU, = an(un)a nel,

where a,, and b, are periodic, the authors obtained the existence of soliton

solutions when ® is below some constant. In [24], discrete Schrodinger

equation in infinite m dimensional lattices of the form
—(Au), + vpip — 0up — oYy f(up) =0, neZ”

was considered, where A is the discrete Laplacian operator on Z" (see

(1.2) below) and I%m vp = . Under some growth conditions on f the
n|—o

author got the existence of the so-called nontrivial breather solutions. In [14],
the authors considered the following system:

1 2 3 2
{S(A(P)k + 800 — Vi +ViWir — a0k + a9 =0, ‘ez

3 2 3 2
e(AY), + ey — Vv +Viop — a3yy + axopyy = 0,

where lim ij =ow for j =1, 2, 3, they obtained the existence of standing
—0
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waves via the Nehari manifold approach. There are many other works or
survey on the discrete Schrodinger equations and systems, for example, [7, 8,
10, 11, 20, 23] and so on.

In this paper, we consider the following discrete Schrodinger system:

_(A”)n + Eplip = ”g = Bupvp,

1 2
_(Av)n + TpVn = §| Vn |Vn _%un’

neZz” (1.1)

Here the operator A is defined as
(AW)n “Vn-¢ tV¥Yn-e, T T Vn-e, ~ 2myy, + Yn+e
+Wniey ¥t Wnge,, s (1.2)

where ¢; = (0, ..., 1, ..., 0) the unit vector in R™ with the ith component 1

for i =1,.., m. For an element n = (ny, ny, ..., ny,) € Z", |n|=|n |+

[ [+t [ |-

The discrete Schrodinger system (1.1) can be viewed as the discretization
of some Schrodinger-KdV systems (see [13]). As for the continuous
Schrodinger-KdV system, there are many references, see, for example, [2, 3,
5,6,9,12, 13,15, 16, 19].

We assume the following conditions:

(Cl) lim g, =0, lim t, = and g, >0, t, > 0 forall

|n|—>o0 |n|—>o0
neZ"”.
(C2) €y =€, Tp = Ty When |n|=|m|, n,me Z".

(C3) ey > ap, ty = ap, VneZ™, a; >0,i=1,2 are constants.

Using the Nehari manifold technique, we first prove the following result

in the unbounded potential case.
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Theorem 1.1. If |B| >y, with the constant y; defined in (2.12),
problem (1.1) possesses a nontrivial solution {(uy, vy )}, gm under the
condition (C1).

Then we prove the following result in the radially symmetric case.

Theorem 1.2. Suppose the conditions (C2), (C3) hold. If |B| > vy, with
the comstant vy, defined in (3.15), problem (1.1) possesses a nontrivial

radially symmetric solution {(uy, vy )}, czm provided m > 2.

Remark. In Theorems 1.1 and 1.2, a nontrivial solution means a solution
(u, v) = {(uy, vy )} pegm With u # 0 and v # 0. We note that system (1.1)

possesses two nonzero solutions of the form (0, +v) by solving a single

equation (see Theorem 2.6 and Theorem 3.7 below).
2. The Unbounded Potential Case

2.1. Functional framework

In this subsection, we explain the framework of our problem. We adopt
the notation defined in [7, 11] and [24]. For a positive integer m, we consider
the real sequence spaces

1P = 1P(2")

={u = {uylyegm 1V € 27, uy e R Julp =| D uy |P| <o,

neZ™
Between /7 spaces, the following elementary embedding relation holds:
11 ci1?, |ulp <Clufq, 1<q<p<oo
Define LJ—\: 1> 1% foreach v = 1, .., m as

t
(Lvu)n = Upte, ~ Up-
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Note that (L%u, v)2 = (u, Livrv)lz, Yu,ve 12 , we can rewrite the operator

A as
m
(—Au, v)2 = Z(L’;u, Liv)2, Vu,ve 2.
v=1

Hence

0 < (—Au, u)p2 < 4m|u ||122, Vu e 12,

thus —A : 1? —> 1% is a bounded operator and o(—.A) < [0, 4m].
Let us denote V; ={g,},_ m, Vs ={1,},.zm and define H, = -A

+V, and Hy = —A +V, which are self-disjoint operators defined on / 2
Let

1 1
B =fuel|HRuel?), |ulg =|H2ula,

1 1
Ey={uel’|H}uel’}, |uly =|H}ulp.
Then, by Theorem 2.2 in [24], E; and E, are compactly embedded into /7
for p € [2, +o].
Define @ : £y x E; —> R as
@ (u, v)

1 1 1 1
ZE(HIL[, M)ZZ +§(H2V, V)IZ _Z Z uﬁ —g Z |Vn |3 +% Z u%vn.

nez™ nezZ™ nez™
Then, by the comments above, the sums in the definition of ®; are finite.

Moreover, we have ®; € C'(E, x E,, R).
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Define J; : E; x E5; —> R as
Jl (M, V)

= (Hu, )2 + (Hyv, v)p = Y uy Z v, 2+ 38 Z uv,

neZ™ neZm neZm
Then we can define the Nehari manifold as follows:
My ={(u, v) € E; x E\{(0, 0)}[J(u, v) = 0}

We have the following result on M;.

Lemma 2.1. M; is a c! complete manifold. For every (u, v) € E| x
E>\{(0, 0)}, there exists a unique t = t(u, v) > 0 such that (tu, tv) € M,.

Moreover, the maximum of g(t) = ®(tu, tv) for t > 0 is achieved at t.

Proof. For (u, v) € E; x E2\{(0, 0)}, we consider the equation on ¢ > 0:

Jy(tu, v) = *(Hyu, u)2 + 2(Hyv, V)2 - ¢t Z ult

neZ™

3 3
t 3t
) z v P+ 25 z vy =

neZ™ neZ™

Hence

o(t) = (Hyw, u)2 + (Hyv, v);2

SIS WA 2

neZ™ neZ™ neZ™
_ 412, 3B 3
=| = 2 > -5 X Pl
neZ™ neZm neZ™
+ (Hyu, u)2 + (Hpv, v)2 = 0. (2.3)

If- > u;‘ # 0, since 9(0) = (Hyu, u);2 + (Hyv, v);2 > 0, there is a unique

neZ™
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¢t > 0 such that (2.3) holds, that is to say, (fu, tv) e M;. If — Z ui =0,

neZ™

then v # 0, hence, there also exists a unique 7 =7(u, v) >0 such that
(tu, tv) e M;.
For any element (u, V) € M, it holds that

Jl(ﬁ, \7) = (Hllz~l, 17)[2 + (H2\7, 3)12

Y E L Y PR Y Ak, =0

neZ™ neZ™ neZ™
and
~ o~ 1 ~ ~ 1 ~ ~ 1 ~4
O (uy, ) = E(Hluv i) +€(H2v, V)2 + 7 u, . (2.4)
neZ™
Then

(Hy, u)2 + (Hyv, V)2

~4 1 ~ 3 3B ~D
= D iy 2 Wl =S ) w,
neZ™ neZ™ neZ™

3 3 3
~ 2 ~ o~ ~ T ~
Cl(Hlu, u)lz + Cz(HzV, V)lz2 + C3(H1u, u)lzz + C4(H2V, V)IZZ (25)

IN

So, by (2.4),
(Hyi, )2 + (Hyv, V)2 2 p forsome p >0 and @ (uy, i) > % (2.6)
Moreover, there holds
(i@, v), @, »))

~ ~ ~ ~ ~4 3 ~ 9 ~2
=2(Hyu, u)2 +2(Hyv, V)2 -4 Z u,f—z Z |V, |3+7B Z i,

neZ™ neZ™ neZ™

= ~(Hyii, W) = (Hy%, V)2 = Y iy < —p. 2.7)

neZ™
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Hence, by the implicit function theorem, M; = J| 10) is a €' complete
manifold.

Since

2 2 4
t t t 4
g([) = T(Hlu, M)IZ + 7([‘[2\/, V)IZ — Z Z Uy,
neZ”

3 3
t t
% Z |V |3+—2B Z UV,

neZ™ neZ™

gt) >0 as t >0, g(t)—> -0 as t >+ and g(f)= %p, so the
maximum of g(z) is achieved in the interior of [0, +o0]. Assume that
g(7) = max g(¢), then g'(f) = 0, hence
J\(Fu, Tv) = (®1(tu, tv), (fu, Tv)) =0,
sof =1. O
Lemma 2.2. (u, v) is a nontrivial critical point of ®; if and only if

(u, v) is a constrained critical point of ®; on M,.
Proof. Suppose @1 |y, (u, v) = 0. By the Lagrangian multiplier method,
one can write @7 |y, (u, v) = ®1(u, v) — @/Ji(u, v). So we have
(@ [y (s v), (u, v)) = (@7 (u, v), (u, v)) = o(Ji(u, v), (u, v)) = 0.
By the definition of M, it holds that
(@7 g, (s v), (, v)) = ~{J{(u, v), (u, v)) = 0.

From (2.7) in the proof of Lemma 2.1, » = 0. Thus, ®](u, v) = 0. If (u, v)
is a nontrivial critical point of @y, then it is, of course, a critical point of @,

constrained on M;. O

Lemma 2.3. ®; satisfies the Palais-Smale condition on M,.
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Proof. Suppose that {(uk, Wk )} is a Palais-Smale sequence. Then
®,(u*, vF) > ¢ and @f(u*, vk)|Ml—> ¢ for some c¢ e R. Then, from
(2.4), we can infer that (uk , Vv ) is bounded in Ej x E5. So we can suppose
that (u*, v%) — (u, v) for some (u, v) € Ej x E,. Since E; and E, can be

compactly embedded into /? for 2 < p < oo, we can infer that

uk —>u,vk —vin [P for 2< p < oo, u,li — Uy, V;’; - Vy
forany n e Z", (2.8)
Z (k) 1 ki3 3B kN2( k
) +5 2 bl =5 D))
neZ™ neZ™ nez™
4 1 3 3 2
> Xy Xl -
neZ™ neZ™ neZ™

and by (2.6) together with the definition of M, there holds

Souted S P2 w20

m m m
neZl neZl neZ

By the Lagrangian multiplier method, we have
vk k ook k ok k
(Dl(u > V )|M1 ZCDI(u >V )—(Dle(u , V )_)O
for a sequence of real numbers {wy }. Then it holds that
ro ko k k _k
<CDI(M , vV )|M1:(u , V )>
= (@1, V0, (0, V) — o (), W, ) 0.

By the definition of M, we have oy (J]u’, v), @*, vF)) - 0. From

(2.7), we can infer that ®; — 0.
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Denote

®,(u, v) = %(Hlu, u)p + %(sz, W2 = Flu, v) - G(u, v) + BT(u, v),

where F(u, v)=% > uy, Glu, V)=% 2 |3 and

neZ™ nez™
T(u, v) =% Z ulv,,
neZ™
then
(D'l(uk, vk) = (uk, vk) - F'(uk, vk) - G'(uk, vk) + BT'(uk, vk)
and

J{(uk, vk) = Z(uk, vk) - 4F'(uk, vk) - 3G'(uk, vk) + 3BT'(uk, vk).
Hence
(120 ) (*, VF) = (1= 4o ) F'(F, vF) + (1= 304) G'(F, VF)
+ (Boy — DRI, vF) + 0(1).

Now we prove that F', G' and T’ are compact operators. As k — +o0, by

(2.8), Sobolev embedding and Holder inequalities, we have

(Lo ®, V) = T (u, v), h)

Z (uﬁvﬁ _unvn)hn < Z |u£z€v}l1€ _unvn|'|hn|

neZ™ neZ™
k_k k k
< Z |unvn_”nvn|'|hn|+ Z |”nvn_unvn|'|hn|
neZ™ neZ™

Z |V1]§_Vn|'|”il1€|'|hn|+ Z |”i]1€_”n||vn||hn|

neZ™ neZ™
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e[ [mne]

neZ™ neZ™ neZ™
1 1 1
k 3 ° 3 : 3 °
+ Z |”n _“n| Z |vn| Z |hn| =0(1)||h||E1’
neZ™ neZ™ neZ™
VhEEl.

Similarly, we have VA € E,, it holds that

<Tl;(uk’ vk) - T\;(u’ V), h)

S R ) = S @ L

neZ™ neZ™

1

1
1 k2 22E 25
SE Z |(un) _(un) | Z |hn|

neZ™ neZ™

neZ™

1
2
<%{ z i)t = (u,)? l} I 2 lg,-

Since (uf)* +u} —|(@S)* —u}| > 0, we have

.. k\4 4 k\4 4
Z liminf((u, )" +u, —|(uy )" —u,|)
k—+0

neZ™

< liminf Z (@Y +ud =1 = ud))

k—+0
neZ™

andso lim )’ |(u,l§ Y = (u, )4| — 0 by (2.8). Thus,
k—+o0 o

(T ) = Ty, ), 1) = o) ],
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So we have proved the compactness of 7'. Similarly, we have VA € E|,
(FZ(uk,vk)——FZ(u,v),h>

= 3 (@Y i, < 3 1@ il by |

neZ™ neZ™
3 1
k\3 34Z 4Z
<| DM@y w3 || D A
neZ™ neZ™

neZ™

4
< c{ 2 )t = () |} 17 = ol Al

And, forany & € E,,

<G\,ﬂ(uk, vk) - G{/(u’ V), h)
1 1
=5 £|v£ _'|vn|vn)hn <5 ||V£|V£ _'|Vn |Vn||hn|
2 2 (v 2
neZ™ neZ™

1 1

ky k 27 2E
Z ||vn|vn _lvnlvnl Z |hn|

neZ™ neZ™

IA
| —

1

2
< > |(v,’;)4(vn)4lj 1,

neZ™

By the same reason as above, we can infer that (G, W*, v6) = G (u, v), h)

9 4
o[ 7] £, Here, we have used the fundamental inequality a? —bpP >

1
(a? -b%)p for a>b>0 and p >0, g>0. Thus, F' and G’ are also

compact operators.
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Hence (u*, V) > F'(u, v) + G'(u, v) - BT'(u, v), so
(u, v) = F'(u, v) + G'(u, v) = BT"(u, v).
Thus, (Hyu,u)z2 +(Hov,v)2 =4F(u,v)+3G(u,v)=3BT(u, v) which means
(u, v) e M;. O
2.2. On the equation —(Av), + t,v, = %| Vi [V
In this subsection, we study the equation
1
—(Av), + v, = §| Vi [V (2.9)
Similar to Subsection 2.1, we define a functional ¥; : £5 — R as follows:
W) = +(H 1 3
1(v) = 5( 2V, V)2 % Z | va [
neZ”

Then we have ¥, e CI(EZ, R). Define the Nehari manifold as follows:

1
Ny =1qve E\05|R(v) = (Hav, v)2 -5 Z v, |3 —ob

neZ™

On the Nehari manifold, we have the following lemma.

Lemma 24. N| is a C' nonempty manifold. For every v e E;\{0},
there exists a unique t =t(v) >0 such that tve Ny. The maximum of

g(t) =¥ (tv) for t > 0 is achieved at t.

Proof. For v € E£,\{0}, consider the equation on ¢ > 0,

3
2 t 3
B(tv) = t“(H,v, V)12_7 E [v,|” =0.
neZ™

Since Y |v, P %0, there exists a unique 7 =7(v)>0 such that

neZ™

tve Ny.
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For an element v € N, it holds that

~ ~ o~ 1 ~ 3
RW) =y, V)2 -5 Y, % F =0
neZ™

Then

3
- 1 ~ .
(H, V)p = 5 D15 P < sy, )3 (2.10)

neZ™

So (H,v,V)2 2p for some p>0 and ¥ (V)= %(Hﬁ, V)2 2 %p.

Moreover, it holds that
oy ~ ~ 3 ~ 3 ~ ~
(RE), V)= 2(Hy7, V)2 =5 D [Tl = ~(Hoo, V)2 <—p. (2.11)
neZ™
Hence N isa C! complete manifold.
Since

2 3
t ¢ 3
g([) = 2 (HQV’ V)l2 - 6 : |Vn | >

neZ™
gt) >0 as t >0, g(t) > -0 as t—> 4o and g(7)> %p, so the
maximum of g(¢) is achieved in the interior of [0, +o0]. Assume that
2(7) = maxg(t). Then g'()=0, hence R(7v)={(¥[(7v), 7v)=0, so
r=1i O
Lemma 2.5. Let v € E, be a minimizer of the functional Yy constrained

on the Nehari manifold N, that is, ¥;(v) = i/?/f Wi (w). Then v is a weak
1

solution to equation (2.9).

Proof. By the Lagrangian multiplier method, we can infer that v is a
critical point of the functional W;(w) + AB (w). Thus, VYw € E,, it holds that

(W((v), w) + MAV), w) = 0.
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Taking w = v, we have
(), v) + MAW), v) = 0.
So MP/(v), v) = 0. From (2.11), it holds that (P/(v), v) < 0, hence A = 0.

Therefore, Vw € E, (¥{(v), w) = 0. Thus, v is a weak solution of (2.9). [

Theorem 2.6. There exists a minimizer V' of the functional Y,

constrained on the Nehari manifold N, that is, ¥;(v') = i/{l/f Y, (v), then
1
V' is a weak solution to equation (2.9) by Lemma 2.5.
Proof. By Ekeland variational principle (see [4]), we can infer that there

is a sequence {v,}  E, such that ¥|(v,) = ij{l/f ¥ (v) and W{(v,)|n,—> 0.
1

Similar to Lemma 2.3, the (PS) condition is satisfied in this case, so up to a

subsequence, {v,} converges to some V' € N7. O

It is clear that —' is also a minimizer of the functional ¥; constrained

on the Nehari manifold N.

2.3. Proof of Theorem 1.1
In this subsection, we show that there exists a nontrivial solution of (1.1)
different from uy and u;. Here uy = (0, V'), uy = (0, =) and V' is the

solution obtained in Theorem 2.6. Our method is inspired by [1]. Set

2

I [
1= :
0<E\0) 3 |3l 0,

neZ™

(2.12)

By the Sobolev embedding theorem, y; > 0.

Theorem 2.7. The following statements are true:

(1) If B < =Yy, then wg is a saddle point of ®; on M. In particular,
inf ®; < ®(ug).
M, 1 1( 0)
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@11) If B > vy, then wy is a saddle point of ®1 on M,. In particular,
inf ®; < ®¢(uy).
M, 1 1( 1)

Let D*®, |, (ug) and D*®, pm, (up) denote the second derivatives of

®; constrained on M;. Since ®}(uy) =0 and ®{(u;) = 0, one has that
2 "
D ®y |y, (ug) (h, h) = @f(ug) (h, h), Vh = (I, hy) € Ty M,

2 ;
D ®y |y (uy)(h, h) = ®f(u;)(h, h), Vh=(hy, hy)e T, M;.

Similarly, we have
D%y [y, (V) (h, h) = W{(V)(h, h), Vh = (I, hy) € TyN,

2 ’ ", !
D™ |N1 (_V)(h: h) = II11(_‘/)(h’ h)’ Vh = (hl’ h2) € T—V'Nl'
Lemma 2.8. There hold
h = (hl, hz) € TuOMl = hz € Tv'N17

h = (hl, hz) € TulMl < hz € T—V'Nl'

Proof. 1, € T,N| if and only if (HyV', Iy),2 =% D (),

neZ™

hy € T_y N if and only if (Hy(—v). hp)2 = =3 3 [V} [vy(hy),. while
neZ™

h € T, ,)M; if and only if

3
(Huu, b))z + (Hav, hy)p2 =2 Z un(hy), g Z |V [Va(h2),

neZ™ neZ™

_% Z unvn(hl)n _¥ Z u%(h2)n-

neZ™ neZ™
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Hence we have h=(hy, hy) e Ty M, if and only if (Hyv', hy)p2 =

3 T . . ,
1 Z [v), |vn(h2)n, and h = (hy, hy) € Tu]/\/ll ifand only if (H,(—'), )2

neZ™

—% > [V |V (hy),. These complete the proof. O

neZ™

Proof of Theorem 2.7. If (u, v) € Ey x E; and h = (I, hy) € Ej x E;,
then one has

®7(u, v)(h, h)

2 2
= (Hihy, )2 +(Hyhy, hy)2 =3 Z M%(hl)n - Z | v (B2,

neZ™ neZ™

+P Z v (), + B Z (), (h),,- (2.13)

nez” neZ™
In particular, if (u, v) = (0, v') = ug, then we get

®i(ug)(h, h)

: 2 (V2
= (Hily, h)2 + (Hyhy, p)p2 - Z | Vi [(hp)y, + B Z A

neZ™ neZ™

Taking hg = (%, 0) € T M, we have

®f(ug) (ho, ho) = (Hihy, i) +B D vyl

neZ™

By the definition of y;, we can infer that when P < —y;, there exists

hy € E;\{0} such that

2
12,
Y]S‘—————j——:73'<
Z |Vn |(h1 )n

neZ™
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So, for hy = (}71, 0), there holds
" . n P r T2
®f(ug) (g, ho) < (Hyly, )2 +B > |y (), < 0.

neZ”

If (u, v) = u; = (0, =), then we get

®{(uy)(h, h)
' 2 ' 2
= (Hily, h)2 + (Hyhy, y)p2 - Z | v [(7p);, — B Z v (),
neZ™ neZ™
Taking hy = (%, 0) € T M, we have

() (hy, by) = (Hihy, )2 =B D Vi),

neZ™

By the definition of y;, we can infer that when 3 > y;, there exists }72 €

Ej\{0} such that

72
172,

Y1 < Y <
> v [k,

neZ™

So, for ﬁl = (52, 0), there holds
of(u;) (hy, by) = (Hyhy, y)2 =B D vy(p); < 0.
nez™
Combining with Theorem 2.6, the proof of Theorem 2.7 is complete. OJ
The following result is a direct consequence of Theorem 2.7.
Lemma 2.9. The following statements are true:

() If B < =y, then ® has a global minimum W on M; and ®{(0) <
@ = inf \¥,.
1(up) IJ{lfl 1
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(i) If B > vy, then ®; has a global minimum u on M, and ®{(Q) <
() = inf ¥,.
1(ug) 1/{1/1 1

Proof. The functional ®; is bounded from below on M; by (2.6).

By Lemma 2.3, the Palais-Smale condition holds, hence %f ®,; is achieved
1

at some u # 0 by Ekeland variational principle (see [4]). Moreover, if
B < —y{, by Theorem 2.7(i), then ®(u) < ®;(ugy). If B > y;, by Theorem
27(11), then CD1(1~1) < (Dl(lll). [
Proof of Theorem 1.1. If U = (u, v) = (0, v), then Vwe N, (0, w)

e M; and ve Ny hence Wj(v) = D0, v) <D0, w) =¥ (w). So v
achieves the minimum of ¥, on AN. Hence i/\I}lf D = i/{l/f ¥;. This
1 1

contradicts to Lemma 2.9. If U = (u, v) = (u, 0), then from the system (1.1),

u=0.So u =0¢ M,. This is also a contradiction. O]

3. The Radially Symmetric Case

3.1. Functional framework and a compactness result

Under the conditions (C2) and (C3), we take the radially symmetric

spaces as
Ey, ={uc E|Yn, ny € Z" with |m | = |ny |, u, = uy, },
Ey . ={u € Ey|Vny, ny € Z" with [y | =[ny |, uy =u,, }.

Theorem 3.1. For m > 2, the embedding E; , into 1¥(Z™) is compact,

2<p<Low,i=12.

Proof. We follow the idea of [21]. Assume that W —0in E ., u¥is

,r>

bounded in £; ,.. Itis clear that
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k2 k|2
kP < suplut [ fmo)
k
where m(n) =t{r € Z" || r| =|n|}. Clearly, we have m(n) — o as |n|— .
So, for any € > 0, there exists R > 0 such that

sup |ub P <.
|n|>R

Since u* — 0, we have

sup [uf? >0 as k - o.
|n|<R

Hence
k2
nl

sup |u, |~ —> 0 as k — o.

neZ™

For p € (2, ©), we have

p2 p2

2 2
U T D A R
neZ™ neZ" neZ™ neZ™

p2

2
sc[ ap |u,’:|2J W
neZ™ ’

here C > 0 is a constant depending on a;. So ||uk||;';J = > |ufP >0 as

neZ”
k — oo. Since /7 = [* is continuous for 1 < p < o, u*¥ — 0 in /*. This
completes the proof of Theorem 3.1. O
In the rest of this paper, we assume that m > 2. Define @, : Ej . x

Ey , > R as
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1 1 1 4
Dj(u, v) = E(Hlu’ u)2 +§(H2v, V)2 -7 Z u,

neZ™
e Y bl
neZ™ nezZ™
Then, by Theorem 3.1, the sums in the definition of @, are finite. Moreover,
we have @, € C l(ELr x E, ., R) and critical points of @, are solutions of
(1.1).

Define J; : Ey , x E5 , — R by

Jo(u, v)
4 1 3.3 2
= (Hyu, u)2 +(Hv, v)2 - Z Uy = Z [V, +76 Z Uy,
neZ” neZ” neZ”

Then the Nehari manifold is defined as follows:
My ={(u, v) € Ey , x Ey ,\{(0, 0)}[J5(u, v) = 0}.

To prove Theorem 1.2, we will use Theorem 3.1. The process and the proofs
are almost the same as that in Section 2, in the following we only state some
lemmas and the proofs are omitted.

Lemma 3.2. M, isa C' complete manifold. For every (u, v) Ey, x
E, . M(0,0)}, there exists a unique t = t(u, v) > 0 such that (tu,tv)e M,.

The maximum of g(t) = ®(tu, tv) for t > 0 is achieved at t.

Lemma 3.3. (u, v) is a nontrivial critical point of ® if and only if

(u, v) is a constrained critical point of ®, on M,.

Lemma 3.4. ®, satisfies the Palais-Smale condition on M.
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3.2. On the equation —(Au), + t,u, = %| uy, |u,

In this subsection, under conditions (C2) and (C3), we study the equation

in Ez,r’
1
—(Au), + tu, = §| uy, |u,. (3.14)

Similar to Subsection 3.1, we define a functional ¥, :E;, > R as

follows:

Wy(u) =~ (How, w)p -~ 3 |uy, P.
2 6

neZ™

Then, by Theorem 3.1, we have W, e Cl(Ez’r, R). Define the Nehari

manifold as follows:

1
Ny = qu € By O Py(u) = (Hou, u)p2 = 5 Z lu, P =0}

neZ™

Similar to Lemmas 2.4 and 2.5, the following results are true.

Lemma 3.5. NV, isa C' nonempty manifold. For every u e E; M0},
there exists a unique t =t(u)> 0 such that tu € N'5. The maximum of
g(t) = W (tu) for t > 0 is achieved at 1.

Lemma 3.6. Let u € E,, be a minimizer of the functional ‘Y,

constrained on the Nehari manifold N ,, that is, W, (u) = 3\r}f W, (v). Then
2

u is a weak solution to equation (3.14).
As Theorem 2.6, the following result is also true.
Theorem 3.7. There exists a minimizer V"' of the functional ‘¥,

constrained on the Nehari manifold N 5, that is, W, (V") = }\r}f W, (v), then
2

V" is a weak solution to equation (3.14) by Lemma 3.6.
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3.3. Proof of Theorem 1.2

In this subsection, we show that there exists a nontrivial solution of (1.1)
different from u, and wj. Here uy = (0, v"), u; = (0, —v") and V" is the

solution obtained in Theorem 3.7. Set

2
| lol2,
= inf : 5
0<EiMO) Y [V [ @ |

neZ™

1 (3.1)

By Theorem 3.1, y, > 0. Then, similar to Theorem 2.7, we have the

following result.
Theorem 3.8. We have the following statements:

(i) If B < —y,, then Wy is a saddle point of ®, on M,. In particular,
inf ®, < O, (up).
M, 2 2( 0)

(1) If B > y,, then wy is a saddle point of ®, on M. In particular,

inf @, < @,(W).
Ma 2 2\%

The following lemma is a direct consequence of Theorem 3.8.
Lemma 3.9. We have the following statements:

(1) If B<-yy, then ®, has a global minimum w on M, and
(Dz(ﬁ) < (Dz(ﬁo) = inf \Pz.
N2

(i) If B > v4, then ®, has a global minimum W on M, and ®,(u) <
Dy (up) = kf}g P,

Then we can prove Theorem 1.2.

Proof of Theorem 1.2. If u=(u,v)=(0,v), then Yue N,,
(0, u) e My and v e M. Hence W, (v) = ®5(u, v) < @5(0, u) = V5 (u),
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so v achieves the minimum of ¥, on A,. Hence inf ®, = inf ¥,. This
My N2
contradicts to Lemma 3.9. O
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