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Abstract 

This paper estimates unknown parameters of the Type-II generalized 
logistic distribution based on progressively Type-II censored samples. 
For robust estimation, the hierarchical structure of a conjugate        
prior distribution is considered. An estimation method for deriving            
Bayes estimators of unknown parameters that do not depend on 
hyperparameters is developed. Finally, a real data set is employed to 
examine the robustness of Bayes estimators based on the hierarchical 
prior considered. 
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1. Introduction 

In life-testing experiments, some units before the end of the experiment 
can be lost or removed for various reasons. These units are called censored 
data. To save time and money, experimenters design a variety of censoring 
schemes. Among various censoring schemes, the most commonly used ones 
include Type-I and Type-II censoring schemes. In the conventional Type-I 
censoring scheme, the experiment terminates at some predetermined time        
T. On the other hand, in the conventional Type-II censoring scheme, r                
is assumed to be known in advance and the experiment terminates as       
soon as ( )nr ≤  failures occur. The progressively Type-II censoring scheme 

introduced in Cohen [5] is a generalization of the conventional Type-II 
censoring scheme. Suppose that n randomly selected units are placed in a  
life test and only m units are completely observed until the experiment 
terminates. At the time of the first failure, 1R  units among 1−n  surviving 

units are randomly withdrawn (or censored) from the life-testing experiment. 
At the time of the next failure, 2R  units among 12 Rn −−  surviving         
units are randomly withdrawn and so on. Finally, at the time of the mth 
failure, all remaining 11 −−−−−= mm RRmnR  units are censored. Here 

mRR ...,,1  are fixed. Note that the case ,nm =  for which mRR ==1  

,0=  corresponds to the complete sample, whereas the case 11 −== mRR  

,0=  mnRm −=  corresponds to the conventional Type-II censored scheme. 

Fu et al. [6] derived noninformative priors for objective Bayesian 
estimation in the Pareto distribution based on progressively Type-II censored 
samples. Mohie El-Din and Shafay [11] derived one- and two-sample 
Bayesian prediction intervals for censored samples under progressively 
Type-II censoring schemes. Ahmed [1] obtained unknown parameters of 
two-parameter bathtub-shaped lifetime distribution by using Gibbs within the 
Metropolis-Hastings algorithm when a sample is available from progressive 
Type-II censoring scheme. 

Nadarajah [12] proposed a generalization of the Gumbel distribution 
referred to as the exponentiated Gumbel distribution for climate modeling. 
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Kang and Seo [8] discussed the estimation of the scale parameter and 
reliability function of the exponentiated half-logistic distribution (EHLD) 
based on progressively Type-II censored samples. Kang and Han [9] derived 
some AMLEs for the scale parameter of the exponentiated half-triangle 
distribution (EHTD) based on hybrid censored samples. Recently, Seo and 
Kang [14] discussed Bayesian inference methods for the EHLD based on 
record values. Kang et al. [10] derived MLEs and Bayes estimators in the 
EHLD based on Type-II hybrid censored samples. 

This paper examines problems of estimating unknown parameters of the 
Type-II generalized logistic distribution (GLD) based on progressively  
Type-II censored samples from a Bayesian perspective. The cumulative 
distribution function (cdf) and probability density function (pdf) of the 
random variable X with this distribution are given by 
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where σ is the scale parameter and λ is the shape parameter. This distribution 
was defined in Balakrishnan and Leung [2]. Balakrishnan and Hossain [3] 
developed an approximate maximum likelihood estimation method to obtain 
location and scale parameters of the GLD based on progressively Type-II 
censored samples. This paper focuses on the estimation of the shape 
parameter of this distribution based on a progressively Type-II censored 
sample. The rest of this paper is organized as follows: Section 2 develops            
a hierarchical Bayesian estimation method for deriving Bayes estimators of 
unknown parameters that do not depend on hyperparameters. Section 3 
presents a real data set for illustration purposes and Section 4 concludes. 
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2. Bayesian Estimation 

Let mmmnm XX ::::1 ≤≤  denote a progressively Type-II censored 

sample from the GLD with the censoring scheme ( )....,,1 mRR  Then the 

corresponding likelihood function is given by 
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MLEs σ̂  and λ̂  are obtained by maximizing the following log-likelihood 
function: 

( ) ( ) ( )[ ].logloglog,log 21 σ+σλ−λ+σ−∝λσ hhmmL  

If σ is known, then the natural conjugate prior distribution for λ is given 
by 

 ( ) ( ) ,0,,, 1 >βαλ
αΓ

β=βα|λπ βλ−−α
α

e  (2.2) 

which is the pdf of the gamma distribution with parameters ( )., βα  

From the likelihood function (2.1) and the prior density function           
(2.2), because the posterior distribution for λ, ( ),,, xβα|λπ  is a gamma 
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distribution with parameters ( )( ),, 1 σ+βα+ hm  the Bayes estimator of λ 

under the squared error loss function (SELF) is obtained as 

 ( ) .ˆ
1 σ+β
α+=λ h

m
B  (2.3) 

Because the focus is on estimating the shape parameter λ, the scale parameter 
σ is simply estimated as 

( ),maxargˆ
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Then the Bayes estimator (2.3) can be written as 

( ) ,ˆ
ˆ

1 B
B h

m
σ+β
σ+=λ  

which depends on hyperparameters α and β. The following subsection 
provides a robust Bayes estimator of λ by using the hierarchical structure of 
the gamma prior (2.2). 

2.1. Hierarchical Bayesian estimation 

In estimators Bσ̂  and ,ˆ
Bλ  hyperparameters α and β should be chosen 

such that the gamma prior (2.2) is a decreasing function of λ based on Han 
[7]. The gamma prior (2.2) is a decreasing function of λ for 10 ≤α<  and 

0>β  since 

( ) ( )[ ] ( ) 01, 2 <λ
αΓ

ββλ−−α=βα|λπ
λ

βλ−−α
α

ed
d  

for 10 ≤α<  and .0>β  In addition, the higher the value of β, the thinner 
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the tail of the gamma prior (2.2) is for .10 ≤α<  However, it can be 
sensitive if the prior distribution has a thin tail (see Berger [4]). Therefore,      
β should be chosen below a given upper bound c, where c is a positive 
constant. For simplicity, consider only the case .1=α  Then the gamma prior 
(2.2) is written as 

 ( ) ,0, >ββ=β|λπ βλ−e  (2.4) 

which is an exponential distribution with mean β1  and a decreasing function 

of λ. 

Here the prior density function of β is given by 

 ( ) ,0,1 cc <β<=βπ  (2.5) 

which is the pdf of the uniform distribution on ( ).,0 c  From (2.4) and (2.5), 

the hierarchical prior is obtained as 
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Then the posterior density function for λ is given by 
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Under the SELF, the Bayes estimator of λ is given by 

 
( ) ( )

( ) ,1ˆ
3

4
σ

σ−=λ h
hm

HB  (2.7) 

where 

( )
( )[ ]

( ) ( )
( )[ ]

.11
1

1

1

1
4 +σ+

σ++−
σ

=σ mm hc
hmc

h
h  

Similarly, the estimator of σ is obtained based on the hierarchical prior (2.6) 
as 
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Then the Bayes estimator (2.7) can be written as 
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Note that the estimators HBσ̂  and HBλ̂  do not depend on hyperparameters 

α and β. 

3. Application 

Consider a real data set for the breakdown of the experiment to test 
insulating fluid in Nelson [13]. From the data, Viveros and Balakrishnan  
[15] and Balakrishnan and Hossain [3] have used a progressively Type-II 
censored sample (see Table 1). The censored sample is employed to obtain 
the estimates derived in the previous section. 
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Table 1. A progressively Type-II censored sample for real data 
i 1 2 3 4 5 6 7 8 

19:9:ix  –1.6608  –0.2485  –0.0409 0.2700 1.0224 1.5789 1.8718 1.9947 

iR  0 0 3 0 3 0 0 3 

Both hyperparameters α and β are set to 0.1 because no prior information 
is given. To examine the effect of c on the hierarchical prior (2.6), compute 
Bayes estimates for ,25=c  100, 400. For λ, the highest posterior density 
(HPD) credible interval is also computed. These values are given in Tables 2 
and 3. In addition, Figure 1 provides the posterior density functions for λ 
graphically. 

Table 2. Results of λ for real data 
   

HBλ̂   

λ̂  Bλ̂  25=c  100=c  400=c  

0.22484  0.22523  0.19086  0.17787  0.17769 
 (0.08449, 0.38544) (0.05346, 0.34658) (0.06062, 0.31301)(0.06038, 0.31244) 

These results show that estimators based on the hierarchical prior (2.6) 
are robust to c. 

 
 (a)                                                          (b)    

Figure 1. (a) The posterior density function ( )x,, βα|λπ  and (b) the 
posterior density function ( ).x|λπ  
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Table 3. Results of σ for real data 

   HBσ̂   

σ̂  Bσ̂  25=c  100=c  400=c  
0.64449 0.64510 0.58948 0.56790 0.56759 

4. Conclusions 

This paper provided robust Bayes estimators based on the hierarchical 
prior (2.6) when the available progressively Type-II censored sample follows 
the GLD with scale and shape parameters. The provided estimators do not 
depend on hyperparameters. The analysis using real data showed that the 
estimators based on the hierarchical prior (2.6) are robust to c. This suggests 
that the estimation method based on the hierarchical prior (2.6) can be used if 
prior information is not enough. 
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