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Abstract 

This paper presents a higher-order approximation of polygonal 
elements using the generalized finite element method. The 
approximation is constructed using a virtual-node polygonal element 
based on the partition of unity coupled with the polynomial nodal 
approximation. Because the approximation functions are polynomials, 
the numerical integration can be evaluated accurately using Gauss 
quadrature. The proposed method passes the higher-order patch test 
and yields an optimal convergence rate for polygonal meshes. This 
higher-order method is also applied to the h-adaptive method on 
triangular quadtree mesh, which allows arbitrary-level hanging nodes. 
The study results demonstrate that the process of the h-adaptive 
refinement using the proposed method can deliver accuracy 
comparable with that of the red-green refinement while being even 
simpler, and this is demonstrated using several numerical tests for the 
Poisson problem. 
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1. Introduction 

When finite element solutions to partial differential equations are used 
for problems with local singularities or steep gradient layers, uniform mesh 
refinement is not recommended due to its expensive computational costs. A 
clear remedy is to adaptively refine the mesh; then the local mesh resolution 
is varied automatically until the desired accuracy is reached. Over the past 
three decades, various adaptive refinement techniques have been investigated 
[1-3]. Among them, the h-adaptive refinement using subdivision has        
been widely used. A general method to subdivide elements is a quadtree 
subdivision [4-6]. 

In a triangular mesh with the quadtree subdivision applied, the triangles 
are subdivided into four congruent triangles. This method leads to recursive 
refinements of the mesh. The data structure of the quadtree mesh is simple 
and efficient for geometric operations such as locating neighbors [7, 8]. In 
addition, it can be easily combined with the adaptive mesh refinement. When 
using the quadtree mesh, however, hanging nodes on the edge of an element 
may be allowed due to the difference in the refinement levels between 
adjacent elements. In this case, inter-element compatibility is not satisfied. 
There are several methods to handle the hanging nodes. The first method is 
to eliminate the hanging nodes via transition elements [9]. This requires an 
additional remeshing process that is quite costly. In the second method, the 
approximation at the hanging nodes is constrained to neighboring corner 
nodes [10, 11]. This can be achieved through determining the solution at the 
hanging nodes as the average of the neighboring corner nodes or applying 
Lagrange multipliers to ensure inter-element compatibility. However, the 
constraint algorithms might become complicated when there are many 
hanging nodes on an edge. Therefore, in order to implement the code 
efficiently, the number of hanging nodes on an edge is generally limited to 
one (1-irregularity rule) [4, 12]. The third approach uses variable-node   
finite elements [13, 14]. They construct conforming shape functions on the           
1-irregular mesh. In addition to these elements, a variable-node element    
that allows arbitrary-level hanging nodes has been developed [15]. For a 
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triangular variable node element that is degenerated from a quadrilateral 
variable node element, however, only one edge of the element is allowed    
for hanging nodes. In the fourth approach, polygonal finite elements have 
been used to manage hanging nodes [16-18]. This method satisfies the 
compatibility conditions naturally and is free from the 1-irregularity rule 
because polygonal elements can be regarded as non-matching elements. 

Linear triangular elements (also known as constant strain triangle 
elements) are not recommended in general analyses because a large number 
of these elements are required to obtain sufficient accuracy. Similarly, 
higher-order (especially quadratic) elements are preferred in the h-adaptive 
refinement of the triangular quadtree mesh. If polygonal elements are used  
to treat the hanging nodes of the higher-order triangular element, then the 
polygonal elements should be approximated with the same order. Recently, 
methods for extension to higher-order polygonal elements have also been 
proposed [19]. Milbradt and Pick [20] presented higher-order interpolation 
functions for polygons based on natural element coordinates. Rand et al.  
[21] developed quadratic serendipity polygonal elements using generalized 
barycentric coordinates. Sukumar [19] proposed quadratic serendipity 
polygonal elements based on the maximum entropy principle. The shape 
functions of Sukumar’s elements are constructed through a constrained 
optimization. However, the shape functions of all these elements are non-
polynomials; thus, many integration points are required in order to reduce 
numerical integration errors when using general Gauss quadrature [17]. 
Efficient numerical integration techniques for the polygonal elements have 
also been investigated [22, 23]. 

Tang et al. [18] proposed the virtual node method, which is a polygonal 
finite element based on the partition of unity. In this method, the properties 
of the standard FEM shape functions are satisfied. Moreover, the special 
integration techniques are not required because the shape functions are 
polynomials. However, the higher-order extension of the virtual node 
polygonal element has not yet been proposed. The generalized finite     
element method (GFEM) [24-26] is one of many instances of the partition of 
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unity method (PUM) or partition of unity finite element method (PUFEM) 
[27]. The approximation spaces spanned by the nodal approximation can be 
reproduced precisely using the property of a partition of unity (PoU).       
Both polynomial and non-polynomial functions can be used as the          
nodal approximation. Thus, a higher-order element from a first order 
implementation can be obtained through using the polynomial nodal 
approximation. 

This paper presents a higher-order approximation of the virtual node 
polygonal element (VPE) combined with the GFEM. Through applying the 
proposed method, an h-adaptive refinement on a triangular quadtree mesh 
with arbitrary-level hanging nodes is performed. The domain integrations can 
be evaluated accurately using Gauss quadrature because the shape functions 
are polynomials. Furthermore, the proposed method is based on the FEM 
framework; thus, it can be easily incorporated into an existing finite element 
code. 

The outline of this paper is as follows. In Section 2, a higher-order 
approximation of the VPE method is described, together with brief reviews 
of the VPE method and GFEM. The h-adaptive refinement strategies and 
advantages of the h-adaptive strategy using the VPE method are described     
in Section 3. The Galerkin formulation for the Poisson equation and 
implementation of the proposed method are presented in Section 4. In order 
to demonstrate the performance of the proposed method, several numerical 
problems are presented in Section 5. Finally, the conclusions of this study are 
summarized in Section 6. 

2. Higher-order Approximation of the VPE Method 

2.1. VPE method 

The VPE approximation is constructed using a combination of the    
least-squares and constant strain triangle (CST) approximations. Before 
introducing the VPE, consider the polygonal domains in 2D, as shown in 
Figure 1. Each polygon is bounded by edges and the nodes are defined where 
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two adjacent edges meet. As depicted in Figure 2, the polygon can be divided 
into N subtriangles through connecting its centroid and the nodes. In the VPE 
method, the subtriangles and centroid points are called virtual triangles     
and virtual nodes, respectively, as the nodal unknown at the centroid is 
eliminated from the system of equations. 

 

Figure 1. Polygonal domains: (a) pentagon, (b) concave pentagon and (c) 
triangle with side nodes. 

 

Figure 2. Illustration of dividing the polygonal domain into virtual triangles. 

The unknown function ( )( )xu  at any point within the virtual triangle 

( )JVT  can be approximated as follows: 

( ) ( ) ( ) ( ) ( ) ( ),ˆˆ xxxxxx J
L

J
L

J
C

J
C

h uRuRuu ⋅+⋅=≈  (1) 

where ( )xJ
Cû  is the CST approximation, ( )xJ

Lû  is the least-squares 

approximation, and ( )xJ
CR  and ( )xJ

LR  are weight functions [18]. 

In the least-squares method, the approximation function is described as: 
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where N is the number of polygonal nodes and Φ is the least-squares shape 
function, which can be defined using the polynomial terms ( )( )xp  that occur 

in Pascal’s triangle as follows [28]: 

( ) ,1gHxpΦ TT −=  (3) 

( ) ( ),
1
∑
=

=
N

I
II xpxpH T  (4) 

( ) ( ) ( )[ ].21 Nxpxpxpg =  (5) 

The CST approximation is given by 
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where J
Iϕ  is the shape function in terms of the area coordinates and Iu~  is the 

nodal unknown. Because the nodal unknown at the centroid ( )νu~  is equal    

to the least-squares approximation at the centroid, equation (6) can be 
reconstructed without .~

νu  In order to satisfy the properties such as the 

partition of unity and piecewise linear approximation on the polygonal 

boundary, the weight functions ( )xJ
CR  and ( )xJ

LR  should be represented as 

follows: 
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where J
j

J
i ϕϕ ,  and J

νϕ  are the shape functions of the CST. Therefore, the 

VPE approximation can be rewritten as follows: 
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( ) ( ){( ) ( ) ( ) ( )} ( ) ( ),xxxxxxx ILIIIjIiCI RRN φ+φϕ+ϕδ+δ= νν  (9) 

where ( )xIN  is the VPE shape function of node I, as shown in Figure 3: 
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Figure 3. VPE shape functions: (a) polygonal element, (b) node 1, (c) node 
2, (d) node 3, (e) node 4 and (f) node 5. 

The VPE method satisfies the desirable properties of the finite element 
shape functions including the partition of unity, linear completeness, 
Kronecker delta property, and piecewise linear on the element boundary. 
Furthermore, the VPE shape functions are polynomials. 

2.2. GFEM 

The key concept of the GFEM is the partition of unity (PoU) [24, 27]. 
The PoU function is used not only to impose the inter-element condition but 
also to reproduce the local approximation function. In the GFEM, a domain 
( )Ω  consists of an overlap of the domain (or cover) ,iω  which is defined by 

the union of elements sharing the node i. This domain ,iω  referred to as the 

node patch of node i [29], is illustrated in Figure 4. The functions that satisfy 
equation (10) form a PoU subordinate to the node patch of node i, ,iω  

( )∑ Ω∈∀=ϕ
i

i .,1 xx  (10) 

The linear Lagrangian FE shape functions are typically chosen as the 
PoU functions in the standard GFEM. The GFEM shape functions are 
constructed using the product of the PoU functions and local functions. The 
local functions are also called the nodal approximation. These functions can 
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be either polynomials or non-polynomials (e.g., harmonic functions and 
singular functions). 

 

Figure 4. Node patch of node i. 

Notable advantages of the GFEM are that the implementation of the 
essential boundary conditions is easy; the selection of an appropriate      
nodal approximation enables the good approximation of the solution;        
and p-adaptivity can be implemented simply. In particular, unlike the 
conventional FEM, a higher-order approximation can be obtained without 
needing to add nodes on an element edge or face. For more details of the 
GFEM, please refer to the literatures [24, 25, 27]. 

2.3. Enriched VPE 

As mentioned in Subsection 2.1, the VPE shape functions satisfy the 
PoU, and these can be used as the PoU functions of the GFEM. Because    
this study focuses on the higher-order approximation on polygons, uniform 
polynomials are chosen as the nodal approximation. The VPE approximation 
of order p applying the GFEM is constructed as follows: 
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where ( )xiϕ  is the VPE shape function of node i, ( )xiu~  is a local 

approximation of u over iω  and n is the total number of the nodes in the 



Higher-order Virtual Node Method for Polygonal Elements … 95 

discretized domain. ( )xjiφ  is an enriched shape function of order p and jia  

are nodal degrees of freedom (dofs). LD  is the number of terms of the 

polynomial nodal approximation ( )xjiL  of degrees less than or equal to 

.1−p  The sets { ( )} LD
jjiL 1=x  considered in this study are given as follows: 

{ ( )} { },11 ==
LD

jjiL x  constant enrichment 

{ },,,1 yx=  linear enrichment 

{ },,,,,,1 22 yxxyyx=  quadratic enrichment,  (12) 

where ( ) ii hx xx −=  are normalized coordinates and ih  is a scaling factor 

[25]. This shifted function enables the direct imposition of the Dirichlet 
boundary conditions. This element is named the “enriched VPE”. Thus, the 
enriched VPE of order 2=p  indicates a quadratic element using the linear 

enrichment. Also, the enriched VPE of order 1=p  is exactly the same as 

the VPE. 

Figure 5 presents the enriched shape function of the VPE at node 3 as 
described in Figure 3(d). As illustrated in Figure 5, the VPE shape function 
inherits the properties of both the compact support of the PoU function and 
the approximate features of the nodal approximation. 

 

Figure 5. Construction of an enriched VPE shape function: (a) PoU function 

( ),3 xϕ  (b) nodal approximation ( ) ( )23yyL −=x  and (c) enriched VPE 

shape function ( ) ( ) ( ).33 xxx Lϕ=φ  
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3. h-adaptive Refinement Strategy on Triangular Quadtree Meshes 

3.1. Triangular quadtree data structure 

h-adaptive refinements are widely used for the efficient improvement    
of the FE solution. The element subdivision and mesh regeneration are 
representative methods of the h-refinement, and the former is more 
commonly used. The subdivision for a triangular mesh is generally a 
quadtree subdivision in which the triangle is split into four subtriangles [5]. 

As shown in Figure 6(a), each of these can be divided into new four 
congruent subtriangles. This successive process is regarded as a triangular 
quadtree refinement. This refinement process can be represented as the 
hierarchical tree structure, as depicted in Figure 6(b). Each node of the tree 
corresponds to generated or unrefined elements during the refinement 
process. In Figure 6(b), the divided triangle (e.g., element 2) and the new 
subtriangles (e.g., elements 6-9) are called the father and sons, respectively, 
[4]. The level number of the triangle is defined as the number of subdivisions 
from an initial mesh; thus, the level number of the father element is one 
higher than that of its son elements. 

 
Figure 6. Triangular quadtree refinement: (a) successive quadtree meshes 
and (b) their hierarchical tree structure. 

The tree data structure enables fast information retrieval that is necessary 
for the refinement. Furthermore, the mesh data, in which the element 
connectivity as fundamental information and the subdivision level of the 
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element and data pointers to the father element and son elements are 
included, can be stored and maintained in an efficient tree. By virtue of these 
features of the tree data structure, the h-adaptive refinement becomes more 
effective. 

During the refinement process, irregular meshes with hanging nodes can 
be created depending on the difference in the level among the neighbor 
elements. For triangular meshes, the red-green refinement strategy is often 
used in the h-adaptive refinement in order to maintain the regularity of the 
mesh. 

3.2. Red-green refinement 

An algorithm for the red-green refinement consists of two refinements: 
one divides an element into four congruent elements (referred to as a “red 
refinement”) and the other bisects an element with one hanging node 
(referred to as a “green refinement”) as shown in Figure 7 [4, 30]. In this 
strategy, the refinement region to treat the hanging nodes is very local 
compared with the longest edge refinement [31]. Furthermore, the minimum 
angle of the mesh after the refinement steps is bounded to be a half of the 
minimum angle of the initial mesh. During the refinement process, however, 
coarsening of the refined elements to maintain the minimum angle and 
refining those elements should be repeated until the hanging nodes in the 
mesh are removed. This incurs additional computational costs. Moreover, the 
elements, neither the marked element nor its neighbor elements, can be 
refined. Using a polygonal element such as the VPE is an alternate approach 
to efficiently handle the hanging nodes. 

 
Figure 7. Red-green refinement algorithm: (a) a marked element to be 
refined, (b) refinement of the marked element (red refinement) and (c) 
additional refinements to remove hanging nodes (green refinement). 
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3.3. Conforming shape functions on triangular quadtree meshes 

Through replacing the transition element with the higher-order VPE, an 
irregular mesh with hanging nodes is generated. Before demonstrating the 
conformity of the higher-order VPE shape functions at the hanging nodes on 
the triangular quadtree meshes, the conformity of the VPE shape function is 
addressed. For example, if the VPE is applied to element 5 of Figure 6(a), 
then its shape function at hanging node d is piecewise linear along the edge 
a-d-b, as illustrated in Figure 8(a). In order to demonstrate the conformity of 
the VPE shape function, the shape functions at node a of the elements    
using the VPE and the CST elements are given in Figures 8(b) and 8(c), 
respectively. The resulting shape functions using the VPE (Figure 8(b)) 
conform, whereas those of the CST elements (Figure 8(c)) do not. 

For the higher-order VPE, this conformity is naturally retained because 
the VPE shape functions are used as the PoU functions. As illustrated in 
Figure 9, through the product of the VPE shape function (Figure 9(a)) and 
the nodal approximation (Figure 9(b)), the higher-order VPE shape function 
of node d (Figure 9(c)) conforms on edge a-d-b. 

Therefore, if the higher-order VPE is used on triangular quadtree meshes, 
then the inter-element compatibility can be retained without the transition 
element or constrained approximation. In addition, because arbitrary-level 
hanging nodes are allowed, an additional process to maintain the irregularity 
rule is not required. The quadtree data structure can also be utilized without 
requiring special modification. 

 

Figure 8. (a) A VPE shape function of the hanging node d and shape 
functions at node a of the elements applying the (b) VPE and (c) CST 
elements. 



Higher-order Virtual Node Method for Polygonal Elements … 99 

 

Figure 9. Functions of the hanging node d: (a) a VPE shape function ( ),xdϕ  

(b) nodal approximation ( ) dxxxL −=  and (c) enriched VPE shape function 

( ) ( ) ( ).xLxx dd ϕ=φ  

3.4. h-adaptive strategy 

The discretization error is defined as follows: 

,huue −=  (13) 

where u is the exact solution and hu  is the finite element approximation. The 
above error is a function form and thus, a norm is introduced to measure the 
magnitude of the error. The energy norm is most commonly used. The error 
in the energy norm can be written as follows: 

,
21


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
 Ω∇∇= ∫Ωi

deee i
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iEi  (14) 
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i
EiE ee  (15) 

where eN  is the total number of elements, Ee  is the error in the energy 

norm in the entire domain ,Ω  and Eie  is the error in the energy norm in 

the element domain .iΩ  Eie  is also considered as error contributions from 
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element i. The relative error in the energy norm is defined as: 

,
E

E
E u

e
R =  (16) 

where Eu  is the exact solution in the energy norm. This relative error is a 

factor that relatively defines the discretization error using the finite element 
approximation. The h-adaptive refinement procedure is repeated until the 
following equation is satisfied: 

,aE RR ≤  (17) 

where aR  is the predetermined permissible relative error [32]. Equation (17) 

is called a stopping criterion. In this procedure, whether each element is 
refined or not is determined based on the elemental error contributions ( ).iη  

In order to select the elements to be refined, various refinement criteria 
have been reported in the literatures [33, 34]. Two well-known criteria are 
discussed here. The first criterion is to refine a fixed fraction ( )θ  of the total 

elements with the largest error contributions ( ),iη  called the fixed fraction 

criterion. This is useful for controlling the number of refined elements, but    
it is insensitive for capturing the local properties such as singularities and 
concentrations in the problem. Thus, the mesh is overly refined when the 
problem has local properties. The second criterion is to refine the elements 
that have an iη  value larger than or equal to a fraction ( )θ  of the largest 

error contributions, called the maximum criterion. This is much closer to the 
adaptive refinement than the former criterion. That is, the elements to be 
refined are highly concentrated in the region near the local properties when it 
is present. In this study, which considers numerical problems that have local 
properties, the maximum criterion is used as the refinement criterion: we 
refine the elements for which 

.max i
i

i η⋅θ≥η  (18) 



Higher-order Virtual Node Method for Polygonal Elements … 101 

4. Galerkin Formulation and Implementation 

Applications of the Poisson equation are investigated in order to assess 
the performance of the enriched VPE. Consider the following elliptic 
boundary value problem: 

( ) ( )xx Qu =∇− 2  in ,Ω  (19) 

fn
u =
∂
∂  on ,NΓ  (20) 

gu =  on ,DΓ  (21) 

where ( )xQ  is the source term obtained by the exact solution ( )xu  of the 

problem, and Ω  is the problem domain. f is the prescribed flux on the 
Neumann boundary ( )NΓ  and g is the prescribed solution on the Dirichlet 

boundary ( ).DΓ  The Galerkin weak form of these equations can be expressed 

as follows: 

( ) ( )∫ ∫ ∫Ω Ω Γ
Γδ+Ωδ=Ω∇δ∇

N
fduQduduu TTT .  (22) 

We now consider the finite element discretization of the Poisson 
equation. Discretized system equations are obtained through substituting the 
approximation function (equation (11)) for the trial and test function into    
the weak form (equation (22)), and the arbitrariness of the variations is 
considered. The resulting equations can be expressed as the following matrix 
form: 

,fKd =  (23) 
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where d is the nodal unknown vector, K is the global stiffness matrix and f is 
the global source vector. 

As in the standard FEM, numerical integration is used to evaluate       
e
ijK  and e

if  (equation (25)). The numerical integration over the polygonal 

domain is performed for each virtual triangle as follows: 

∫ ∑∫Ω
=

Ω
Ω=Ω

I
J
I

N

J
fdfd

1
.  (26) 

The shape functions of the traditional polygonal finite elements         
such as Wachspress coordinates and mean value coordinates are rational 
polynomials [17]. Therefore, numerous integration points are used to reduce 
the numerical integration errors. However, the shape functions of the 
proposed method are polynomials because both the VPE shape functions 
used as the PoU functions and the nodal approximation are polynomials. 
Thus, the domain integrations can be evaluated accurately using Gauss 
quadrature for the triangle (or Hammer quadrature).  

When both the PoU functions and the nodal approximation are 
polynomials, the set of the shape functions may be linear dependent. This 
results in the system of equations potentially being positive semi-definite. 
This system can be successfully solved using the iterative method proposed 
by Babuška and his colleagues [35]. 

5. Numerical Results 

In this section, several numerical examples are investigated in order to 
test the accuracy and convergence of the higher-order enriched VPE and the 
validation of its application for the h-adaptivity. First, the patch tests for the 
Laplace equation are performed on different types of mesh. Second, the 
convergence test for the Poisson problem is conducted on polygonal meshes. 
Then the h-adaptive strategy using the proposed method is applied to solve 
three Poisson problems that have a smooth solution with local singularities or 
steep gradient layers. For the h-adaptive refinement, the fixed fraction θ of 
the maximum criterion is set to 0.7. 
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The relative errors in the energy norm (equation (16)) and in the 
displacement norm are used to evaluate the accuracy and convergence. The 
relative error in the displacement norm is defined as follows: 

.
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5.1. Patch tests 

Linear and quadratic patch tests are performed for the Laplace equation 

( ) 02 =∇− xu  in ( ) .1,0 2=Ω  

The Dirichlet boundary conditions are imposed on the boundary of the 
domain Ω and the exact solutions of the patch tests are: 

( ) yxu +=x  for linear patch test, 

( ) 22 44251 yxxyyxu +−−+−=x  for quadratic patch test. (28) 

 

Figure 10. Patch tests for various types of the mesh: (a)-(b) convex 
polygonal meshes, (c) concave polygonal meshes, (d) mixed polygonal mesh 
and (e) triangular quadtree mesh. 

As shown in Figure 10, various types of mesh, including convex 
polygonal meshes, concave polygonal meshes, mixed polygonal mesh       
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and triangular quadtree mesh are considered. The relative error in the 
displacement norm for the patch tests is presented in Table 1. It is 
demonstrated that the enriched VPE with orders of 1=p  and 2=p  pass 

the linear and quadratic patch tests near the machine precision, respectively. 

Table 1. Relative error in the displacement norm for the linear and quadratic 
patch tests 

Linear patch test Quadratic patch test 

Meshes Shape functions 
of order 1=p  

Shape functions 
of order 1=p  

Shape functions 
of order 2=p  

(a) 1.53 × 10–16 8.63 × 10–2 2.96 × 10–16 

(b) 4.57 × 10–16 1.85 × 10–2 4.39 × 10–16 

(c) 2.29 × 10–16 2.46 × 10–2 9.97 × 10–16 

(d) 8.52 × 10–16 3.05 × 10–3 1.00 × 10–15 

(e) 4.75 × 10–16 5.46 × 10–3 4.96 × 10–16 

5.2. Convergence test 

The convergence of the enriched VPE is investigated for the Poisson 
problem. The following Poisson equation is solved using the Dirichlet 
boundary conditions: 

( ) ( )xx Qu =∇− 2  in ,Ω  

gu =  on .Ω∂  (29) 

The domain of interest is a bi-square, ( ) .1,1 2−=Ω  The exact solution ( )xu  

and source term ( )xQ  are: 

( ) ( ) ( ),sin2sin yxu ππ=x  

( ) ( ) ( ).sin2sin5 2 yxQ πππ=x  (30) 
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In this section, the uniform refinement on the convex and concave 
meshes presented in Figure 11 is used to examine the convergence of the 
proposed method. Three convex meshes with 78, 210 and 736 nodes are 
considered. Similarly, three concave meshes with 61, 217 and 817 nodes are 
used. Figure 9 presents the rate of convergence of the relative error in         
the displacement norm and energy norm for each type of mesh. r denotes    
the average slope of the convergence curve, which indicates the rate of 
convergence. As seen in Figure 12, the enriched VPE of order 1=p  

achieves the theoretical convergence rate of the relative error in 0.12 =
L

R  

and .5.0=ER  The enriched VPE of order 2=p  also yields it in 

5.12 =
L

R  and .0.1=ER  Furthermore, it is observed that the rate of 

convergence does not affect the type of polygonal mesh, i.e., convex or 
concave mesh. 

 

Figure 11. Convergence test: (a) convex polygonal mesh and (b) concave 
polygonal mesh. 

 
(a) 
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(b) 

Figure 12. Convergence test: the convergence rate of the relative error in the 
displacement norm ( )2L

R  and energy norm ( ) :ER  (a) convex polygonal 

mesh and (b) concave polygonal mesh. 

5.3. L-shaped domain problem 

In this section, the convergence of the h-adaptive refinement strategy 
based on the triangular quadtree mesh with the application of the proposed 
method is compared with the h-uniform refinement. The problem to be 

considered is the Laplace equation in the L-shaped domain 02 =∇− u  in 

( ) ( ) ( ).0,11,0\1,1 2 −×−=Ω  The exact solution [36] imposed on the domain 

boundary Ω∂  as a Dirichlet boundary conditions is: 

( ) ( ) ( ) .3
2sin32 





 θ= xxx ru  (31) 

The solution has a local singularity at the re-entrant corner. The h-adaptive 
strategy applying the enriched VPE ( )2and1 == pp  and the h-uniform 

refinement with the CST ( )1=p  and linear strain triangle (LST) ( )2=p  

element are performed. The initial mesh consists of twelve regular triangles. 
For comparison of the convergence, the refinement procedure is repeated 
until 1000 dofs are reached. 
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Figure 13. L-shaped domain problem: h-adaptive refinement using enriched 
VPE ( )1=p  with meshes after the (a) 5th step (109 dofs) and (b) 9th step 

(430 dofs); h-adaptive refinement using the enriched VPE ( )2=p  with 

meshes after the (c) 2nd step (111 dofs) and (d) 9th step (450 dofs); and the 
h-uniform refinement using the CST element with meshes after the (e) 2nd 
step (113 dofs) and (f) 3rd step (417 dofs). 

Some steps of the refinement procedure using the enriched VPE 
( )2,1=p  and CST element are shown successively in Figure 13. Triangular 

quadtree meshes with hanging nodes can be seen in Figures 13(a) to 13(d).   
In order to capture the singular behavior, meshes using the h-adaptive 
strategy are densely refined near the re-entrant corner. Comparison of the 
convergence rate is illustrated in Figure 14. Despite the singularity within the 
domain, the h-adaptive refinement using the enriched VPE constructs optimal 
meshes. That is, this achieves the theoretical convergence rate of the relative 
error in ,2pRE =  in contrast with the h-uniform refinement where the rate 

of convergence is limited to 1/3. It can be seen clearly that applying the 
second-order enriched VPE leads to better accuracy and a faster convergence 
rate than the first-order one. 
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Figure 14. L-shaped domain problem: the convergence rate of the relative 
error in the energy norm. 

5.4. Internal layer problem 

The performance of the h-adaptive refinement strategy using the 
proposed method is compared with the red-green refinement strategy. In 
order to achieve this, the Poisson equation with mixed boundary conditions 
(equations (19)-(21)) is solved on the unit square. This problem has a smooth 
solution with a steep interior layer. The geometry of the problem and 
imposed parts of the Dirichlet and Neumann boundary conditions are seen in 
Figure 15(a). ( ),xQ  f and g in equations (19)-(21) are chosen according to 

the exact solution to the problem [3]: 

( ) ( ( ) ( ) ),325.025.1tan, 22 π−++−= yxSayxu  (32) 

where S is a slope of the layer; 60=S  is used in this study. 

The triangular quadtree refinement using the second-order enriched VPE 
and the red-green refinement based on the LST element were conducted. The 
initial mesh for both refinement strategies is presented in Figure 15(b). The 
predetermined permissible relative error ( )aR  is set to 1% in this problem. 

Figures 16 and 17 illustrate the meshes and their corresponding 
approximate solutions after the refinement step using the proposed method 
and red-green strategy, respectively. As the refinement step is iterated,       
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the mesh refinements in both strategies are gradually concentrated near the 
internal layer. 

 

Figure 15. Internal layer problem: (a) geometry with imposed parts of the 
boundary and (b) initial mesh. 

 

Figure 16. Internal layer problem with the h-adaptive refinement using the 
LST element ( ) :2=p  meshes after the (a) 3rd, (c) 7th and (e) 13th step and 

their corresponding approximate solutions in (b), (d) and (f). 
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Figure 17. Internal layer problem of the h-adaptive refinement using the 
enriched VPE of order :2=p  meshes after the (a) 3rd, (c) 7th and (e) 13th 

step and their corresponding approximate solutions in (b), (d) and (f). 

In the red-green strategy, in order to maintain not only the regularity of 
the mesh but also the minimum angle of the element, additional works to 
divide the unrefined elements are required. These elements may be slightly 
separated from the internal layer. In the refinement strategy using the 
proposed method on a triangular quadtree mesh, a locally refined mesh with 
hanging nodes is constructed. As illustrated in Figure 17, arbitrary-level 
hanging nodes are allowed in the proposed method. 

The convergence curves of the relative error in the energy norm are 
illustrated in Figure 18. The stopping criterion is achieved within the 
nineteenth step for the red-green refinement strategy and the eighteenth step 
for the h-adaptive refinement strategy using the proposed method. Although 
the refinement process using the proposed method is simpler than the red-
green strategy and no additional remeshing is required, it yields slightly 
better results. 
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Figure 18. Internal layer problem: the convergence rate of the h-adaptive 
strategies. 

5.5. Locally sharp gradient problem 

In order to examine the performance of the h-adaptive strategy with the 
higher-order VPE, the Poisson problem that has a smooth solution with  
sharp gradient at the center is considered. The computational domain is 

( )21,1−=Ω  and the Dirichlet boundary conditions on Ω∂  correspond to the 

exact solution as follows: 

( ) ( ) ( ( )).100expsinsin 22 yxyxu +−+=  (33) 

Figure 19 presents a 2D plot of the solution and initial mesh for the       
h-adaptive refinement. Due to the sharp behavior at the center, intensive 
mesh refinement near the center could be expected. First, the triangular 
quadtree refinement using the enriched VPE ( )2=p  and the red-green 

refinement based on the LST element are performed. In this case, the 
predetermined permissible relative error ( )aR  was set to 1%. 
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Figure 19. Locally sharp gradient problem: (a) 2D plot of the solution and 
(b) the initial mesh. 

 

Figure 20. Locally sharp gradient problem: h-adaptive refinement meshes 
after the (a), (b) 2nd, (c), (d) 7th and (e), (f) 11th steps using enriched VPE of 
order 2=p  (top images) and LST element (bottom images). 

Figure 20 presents several meshes after the triangular quadtree and red-
green refinement steps. As expected, the mesh density significantly increases 
in the vicinity of the center. In particular, the h-adaptive refinement strategy 
using the proposed method generates a fine mesh with an arbitrary number of 
hanging nodes as seen in Figures 20(a) to 20(c). From the convergence 
curves (Figure 21(a)), it can be observed that the triangular quadtree 
refinement using the enriched VPE ( )2=p  provides a comparable level of 

accuracy to the red-green refinement based on the LST element. 

In order to investigate the higher-order performance of the refinement 
using the proposed method, the h-adaptive refinements using the enriched 
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VPE with orders of 1, 2 and 3 are performed. The comparison results are 
presented in Figure 21(b). In the preasymptotic range of each convergence 
curve, the h-adaptive refinement using the lower-order enriched VPE can 
yield better results. This is related to meshes in the preasymptotic range 
being insufficient to reflect the solution near the high gradient region. After 
this range, as the approximate order increases, the convergence rate is faster 
and relative errors occur less. An hp-adaptive strategy using the proposed 
method can be a desirable solution in order to reduce the preasymptotic range 
and yield better convergence rates. This will be investigated in future work. 

 
Figure 21. Locally sharp gradient problem: (a) the convergence rate of the   
h-adaptive strategies using the enriched VPE of order 2=p  and the LST 

element and (b) the comparison results among the higher-order enriched 
VPE. 
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6. Conclusions 

A higher-order approximation for the virtual node polygonal element has 
been proposed based on the GFEM. The higher-order shape functions are 
constructed using the polynomial nodal approximation coupled with the VPE 
shape functions that satisfy the partition of unity. Because the functions are 
polynomials, precise numerical integration is possible via Gauss quadrature. 
The formulation of the proposed method is simple and the inter-element 
compatibility with arbitrary-level hanging nodes on element edges can be 
easily satisfied without special treatment. The method has been applied to the 
h-adaptive refinement on a triangular quadtree mesh, which allows arbitrary-
level hanging nodes. The higher-order enriched VPE passed the patch tests 
within the machine precision and yielded the optimal convergence rate. The 
efficiency and accuracy of the proposed method were demonstrated through 
several numerical problems with h-adaptive refinements. Consequently, the 
accuracy of the proposed method is similar or slightly better than the red-
green refinement. Applications in three-dimensional problems including 
crack propagations and non-matching mesh will be investigated in future 
research. The implementation of the hp-adaptive refinement using the 
proposed method is currently being undertaken. 
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