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Abstract

In this paper, the reduced differential transform method (RDTM) is
presented for the solutions of the nonlinear Schrodinger equations.
This method, which does not require any symbolic computation,
provides an iterative procedure for obtaining analytic and approximate
solutions of differential equations. We demonstrate and validated the
efficiency and simplicity of this method by some test examples.

0. Introduction

Consider the following nonlinear Schrddinger equation:

iU :—%V2u+(1—v)u+|u|2u, (1)

with initial condition
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U(Xq, X2, ooy Xy 0) = Ug(Xq, X9, vy X)), )
n A2
where v is a constant, V2u = Za—u
i=1 OUAf

This equation plays important roles in physics media. It can describe
many nonlinear phenomena including fluid dynamics [1] and nonlinear
optics [2, 3], quantum mechanics, which was first discovered by Nick Laskin
as a result of extending the Feynman path integral.

The nonlinear Schrédinger equation is one of the most universal models
for physical phenomena. Finding the solutions of this problem is of practical
importance. Many authors have investigated its analytical and numerical
solution [4, 5, 7, 8].

Reduced differential transformation method is based on Taylor series
expansion. This method have many merits: it provides a straightforward
means of solving linear and nonlinear differential equations without the need
for linearization, perturbation, or any other transformation. It is different
from the traditional high order Taylor’s series method. The Taylor series
method is computationally taken long time for large order differential
equation and requires symbolic computation of the necessary derivatives of
functions, reduced differential transformation method is without massive
computations and restrictive assumptions [6]. As the RDTM is more effective
than the other methods, we apply it to solve the Schrddinger equation.

1. Definition of Reduced Differential Transform

If u(xg, X9, ..., Xy, t) is analytical and continuous function, then its

reduced differential transform is expressed as follows:

k
10°u(X, X9, «ory Xn, t
U (X, X, ooy Xp) = W{ (% aztk n )}

t=0

= F(U(Xg, Xy ey Xy 1)), (3)
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where

o0

k

U(Xq, Xo, ooy X, t) = Zuk(xl, X, vy Xp)t
k=0

= FH Uk (4, X, o X)), )
where Uy (X, X9, ..., X,) is the reduced differential transform of

U(Xg, Xo, ey X, t).

2. Main Properties of Reduced Differential Transform

Ifu(Xg, Xp, oo Xgo 1) = FHU(X Xo, coer X)) VO, Xp, ooy Xy, £) =

F‘l[Vk(xl, Xy, ..., Xp)], and ® denote the convolution, then the fundamental
operations of RDTM are expressed as follows:

Flu(Xq, Xg, ey Xp, IV(Xg, X0, ooy Xp, )]

k
= > U (X0, %01 e X0 Wi (%4, X1 Xn), (5)
r=0

FIAu(Xg, X0, ey Xn, )+ AoV(Xg, X9, ooy X, U]

= MU (Xg, X, ey X )+ AoV (X5 X2, ey X)), (6)
OU(X1, X9, vy Xp, t
F[ (g %t n )}z(katl)ukﬂ(xl,xz,...,xn). @)

3. Applications

In this section, we demonstrate the performance and efficiency of the
proposed method by the following examples:

Example 1. We consider the one-dimensional nonlinear Schrédinger
equation

iut=—%uxx+u—usin2x+|u|zu, t>0, 8)
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with initial condition
u(x, 0) =sin(x).

The exact solution is [7]
. 3.
u(x, t) = 5|n(x)exp(—§|t).
Taking the reduced differential transform of equation (8), we obtain
i(k+1)Uy11(x)
1 .
=—§UmAU+UM@—Ukwkm%U

k S
+ Z{ZU r(X)U_s—r(X)}Uk—s(X)’

s=0Lr=0
where U is the complex conjugate of U.
From initial condition equation (9), we have
Ug(x) =sin(x).
From equations (10) and (11), we can obtain
Ui(x) = —‘%isin(x).

From equations (12) and (10), we obtain

U, (x) = —%sin(x).
Similarly we have

Us(x) = —%sin(x),

Uy(x) = (%)4%sin(x),

9)

(10)

(11)

(12)

(13)

(14)

(15)
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And so on, we can calculate U, (x). Substituting all values U, (x) into

equation (4) we obtain

00 . 3.
u(x,t):ZUk(x)tk =sin(x)—%sin(x)—¥sin(x)+--.=e‘5"sin(x). (16)
k=0

Example 2. Consider the two-dimensional nonlinear Schrodinger
equation

m :—%(uxx #upy)+u—wu+|ulu, (x, y) [0, 2x]x[0, 21] (17)
with initial value
u(x, y, 0) = sin(x)sin(y), (18)
where
v =sin®(x)sin®(y). (19)
The exact solution is [8]
u(x, y, t) = sin(x)sin(y)exp(-i2t).

Taking the reduced differential transform of equation (17), we can obtain
the following formula:

i(k + DU (% y)

- _%[kax(x, Y) + Uy (X, Y)] + U (%, y) = VUi (, y)

S

k
* Z DU (6 YU (%, ¥) [Uies (%, ). (20)

oLr=0
From equation (18), we have
Uo(x, y) = sin(x)sin(y). (21)
From equations (20) and (21), we have

Uq(x, y) = =2isin(x)sin(y). (22)
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From equations (22) and (20), we obtain

U, (X, y) = =2sin(x)sin(y). (23)

Similarly we have
Us(x, y) = g sin(x)sin(y). (24)
Ua(x, ¥) = Zsin(x)sin(y), 25)

And so on, we can calculate Uy (x, y). Substituting all values U, (x, y)
into equation (4) we obtain

u(x, ¥ 1) = DUk (x y)t¢
k=0

3
= sin(x)sin(y)|1- 2it — 2t% + i% 4o

= g2t sin(x)sin(y). (26)

Example 3. Consider the three-dimensional nonlinear Schrddinger
equation

iUy = _%(uxx + Uy +Ug) +U—VU+|u |2u, 0<xYy,z<2r, (27)
with initial condition
u(x, y, z, 0) = sin(x)sin(y)sin(z), (28)
where
V(X, y, 2) = sin?(x)sin?(y)sin?(z). (29)

The exact solution is [7]
u(x, y, z) = sin(x)sin(y)sin(z)exp(—git).

Taking the reduced fractional differential transform of equation (27), we
obtain
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i(k + DUy (%, Y, 2)
- _%[UKXX(X' Y, 2) + Ugyy (X, ¥, 2) + Upz (X, Y, 2)]
+Up(X, Y, 2) = VUg(x, Y, 2)

k[ s
+ Z ZUF(X’ Y, 2)Us (X, Y, 2) [Uk_s(X, ¥, 2).

s=0Lr=0

From equation (28), we have
Uo(X, Y, z) = sin(x)sin(y)sin(z).
From equations (30) and (31), we have
Us(x, y) = 2 sin(x)sin(y)sin().
From equations (32) and (30), we obtain
U,(x, y, 2) = _TZSSin(x)sin(y)sin(z).

Similarly we have

Us(x, y, 2) = —%Sisin(x)sin(y)sin(z),

Us(x, Y, 2) = %‘sin(x)sin(y)sin(z),

97

(30)

(31)

(32)

(33)

(34)

(35)

And so on, we can calculate Uy (X, y, z). Substituting all values

Uy (x, y, z) into equation (4), we obtain

ulx, y, z,t) = Zuk(x, Y, z)tk
h=0

2 3
= sin(x)sin(y)sin(z) 1—%it _nv 15t

4 2 8
_sit
=e 2 sin(x)sin(y)sin(z).

(36)
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4. Conclusion

The reduced differential transform method (RDTM) is successfully

applied to find the solution of the nonlinear Schrédinger equations. Since
this technique does not require any discretization, linearization or small
perturbations thus it reduces significantly the numerical computation. The
results confirm that this method is very effective technique for obtaining the
approximate analytical solutions of nonlinear differential equations.
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