Far East Journal of Mathematical Sciences (FJMS)
© 2015 Pushpa Publishing House, Allahabad, India
Published Online: June 2015
http://dx.doi.org/10.17654/FJMSAug2015_841_856
Volume 97, Number 7, 2015, Pages 841-856

THE SIMILARITY OF METRIC DIMENSION AND LOCAL METRIC DIMENSION OF ROOTED PRODUCT GRAPH

L. Susilowati ${ }^{1}$, Slamin ${ }^{2}$, M. I. Utoyo ${ }^{1}$ and N. Estuningsih ${ }^{1}$
${ }^{1}$ Department of Mathematics
Faculty of Sciences and Technology
Universitas Airlangga
Surabaya, Indonesia
e-mail: lilik_rofiudin@yahoo.co.id
m_oetojo@yahoo.com
nenik_30@yahoo.com
${ }^{2}$ Study Program of Information System
Universitas Jember
Indonesia
e-mail: slamin@unej.ac.id

Abstract

Let G be a connected graph with vertex set $V(G)$ and $W=$ $\left\{w_{1}, w_{2}, \ldots, w_{k}\right\} \subset V(G)$. The representation of a vertex $v \in V(G)$ with respect to W is the ordered k-tuple $r(v \mid W)=\left(d\left(v, w_{1}\right), d\left(v, w_{2}\right), \ldots\right.$, $\left.d\left(v, w_{k}\right)\right)$, where $d(v, w)$ represents the distance between vertices v and w. The set W is called a resolving set for G if every vertex of G has a distinct representation. A resolving set containing a minimum

Received: January 29, 2015; Revised: March 30, 2015; Accepted: May 6, 2015
2010 Mathematics Subject Classification: 05C78.
Keywords and phrases: resolving set, local resolving set, basis, local basis, rooted product graph.
Communicated by Manoj Chanagt
number of vertices is called basis for G. The metric dimension of G, denoted by $\operatorname{dim}(G)$, is the number of vertices in a basis of G. If every two adjacent vertices of G have a distinct representation with respect to W, then the set W is called a local resolving set for G and the minimum local resolving set is called a local basis of G. The cardinality of a local basis of G is called local metric dimension of G, denoted by $\operatorname{dim}_{l}(G)$. In this paper, we study the local metric dimension of rooted product graph and the similarity of metric dimension and local metric dimension of rooted product graph.

1. Introduction

Let G be a finite and simple connected graph. The vertex and edge sets of the graph G are denoted by $V(G)$ and $E(G)$, respectively. The distance between vertices v and w in G, denoted by $d(v, w)$, is the length of a shortest path between them. For the ordered set $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\} \subseteq V(G)$ and v is a vertex on the graph G, then the representation of v with respect to W is k-tuple, $r(v \mid W)=\left(d\left(v, w_{1}\right), d\left(v, w_{2}\right), \ldots, d\left(v, w_{k}\right)\right)$. The set W is called a resolving set of G if every vertex of G has a distinct representation and minimum resolving set is called basis of G. The cardinality of basis is called metric dimension of G, denoted by $\operatorname{dim}(G)$ [1].

The W set is called a local resolving set of G if every two adjacent vertices of G have a distinct representation with respect to W, that is, if $u, v \in V(G)$ such that $u v \in E(G)$, then $r(u \mid W) \neq r(v \mid W)$. The local resolving set of G with minimum cardinality is called local basis of G, the cardinality of basis local of G is called local metric dimension of G, denoted by $\operatorname{dim}_{l}(G)$. In [5], Rodriguez-Velazquez and Fernau observed the relationship between local metric dimension and metric dimension of a graph G, that is,

Observation 1.1 [5]. $\operatorname{dim}_{l}(G) \leq \operatorname{dim}(G)$.
Godsil and McKay [3] defined the rooted product graph as follows. Let G be a graph on n vertices and \mathcal{H} be a sequence of n rooted graphs H_{1}, H_{2},

The Similarity of Metric Dimension and Local Metric Dimension ... 843
H_{3}, \ldots, H_{n}. The rooted product graph of G by \mathcal{H} denoted by $G \circ \mathcal{H}$ is a graph obtained by grafting the root of H_{i} with the i th vertex of G [3]. If $H_{1}, H_{2}, H_{3}, \ldots, H_{n}$ are isomorphic to a graph of order n', Saputro et al. called this notion by comb product [7]. Rodriguez-Velazquez et al. [6] observed the local metric dimension of rooted product graph as follows:

Theorem 1.2 [6]. Let G be a connected graph of order $n \geq 2$ and let \mathcal{H} be a sequence of n connected bipartite graphs $H_{1}, H_{2}, H_{3}, \ldots, H_{n}$. Then for any rooted product graph $G \circ \mathcal{H}, \operatorname{dim}_{l}(G \circ \mathcal{H})=\operatorname{dim}_{l}(G)$.

Theorem 1.3 [6]. Let G be a connected graph of order $n \geq 2$ and let \mathcal{H} be a sequence of n connected non-bipartite graphs $H_{1}, H_{2}, H_{3}, \ldots, H_{n}$. Then for any rooted product graph $G \circ \mathcal{H}$,

$$
\operatorname{dim}_{l}(G \circ \mathcal{H})=\sum{ }_{j=1}^{n}\left(\operatorname{dim}_{l}\left(H_{j}\right)-\alpha_{j}\right),
$$

where $\alpha_{j}=1$ if the root of H_{j} belongs to a local basis of H_{j} and $\alpha_{j}=0$ otherwise.

The known results on metric dimension and local metric dimension of some particular classes of graphs have been discovered by Chartrand et al. [1] and Okamoto et al. [4] as given below.

Theorem 1.4 [1]. Let G be a connected graph of order $n \geq 2$. Then:
(i) $\operatorname{dim}(G)=1$ if and only if $G=P_{n}$.
(ii) $\operatorname{dim}(G)=n-1$ if and only if $G=K_{n}$.
(iii) For $n \geq 4, \operatorname{dim}(G)=n-2$ if and only if $G=K_{r, s} ;(r ; s \geq 1)$, $G=K_{r}+\bar{K}_{s},(r \geq 1 ; s \geq 2)$, or $G=K_{r}+\left(K_{1} \cup K_{s}\right),(r, s \geq 1)$.
(iv) For $n \geq 3, \operatorname{dim}\left(C_{n}\right)=2$.

Theorem 1.5 [1]. If G is a connected graph of order $n \geq 2$ and diameter k, then $\operatorname{dim}(G) \leq n-k$.

Theorem 1.6 [4]. Let G be a connected graph of order $n \geq 2$. Then:
(i) $\operatorname{dim}_{l}(G)=n-1$ if and only if $G=K_{n}$,
(ii) $\operatorname{dim}_{l}(G)=1$ if and only if G is bipartite graph.

Theorem 1.7 [4]. Let G be a connected graph of order n and diameter k. Then $\operatorname{dim}_{l}(G) \leq n-k$.

In this paper, we study the local metric dimension of rooted product graph to complete the results of Rodriguez-Velazquez et al. presented in [6]. In Theorem 1.2 and Theorem 1.3 of the paper, they observed that the local metric dimension of rooted product graph $G \circ \mathcal{H}$, for \mathcal{H}, is a sequence of n connected bipartite and non-bipartite graphs, respectively, as a consequence of the theorem of local metric dimension of point attaching graph. Rodriguez-Velazquez et al. [6] presented those theorems as corollary without the proofs. The detail of the proofs will be shown in this paper. We also show the local metric dimension of rooted product graph $G \circ \mathcal{H}$, where \mathcal{H} is a sequence of the combined of n connected bipartite and non-bipartite graphs. Furthermore, we observe the similarity of metric dimension and local metric dimension of rooted product graph. Before presenting the main results of this paper, we present diameter and twin equivalence class of graph and their relation with metric and local metric dimension of graph, as described in the following section.

2. The Similarity of Metric Dimension and Local Metric Dimension of Graph

Two distinct vertices u and v of graph G are called twin if u and v have the same neighbourhood in $V(G)-\{u, v\}$, and they are called true twin or false twin if u and v are adjacent and twin or u and v are not adjacent and twin, respectively, [4]. The following two lemmas describe the properties of twin that are discovered by Hernando et al. [2].

Lemma 2.1 [2]. If u and v are twin in graph G, then $d(u, x)=d(v, x)$ for every vertex in $V(G)-\{u, v\}$.

Lemma 2.2 [2]. Let u, v and w be distinct vertices in graph G. If u and v are twin, v and w are twin, then u and w are also twin.

In other words, twin is an equivalence relation on $V(G)$. The twin vertices produce the equivalence twin class.

In general, the twin relation divides the vertex set $V(G)$ into the partition of twin equivalence classes. There are three types of twin equivalence classes, namely, true twin equivalence class, false twin equivalence class, and singleton.

In this paper, we say that graph G has twin equivalence classes if G has true twin equivalence classes or false twin equivalence classes without singleton. Also, we say that graph G has true twin equivalence classes if G has true twin equivalence classes only.

Lemma 2.3. Let G be a connected graph. If G has true twin equivalence classes or false twin equivalence classes $B_{1}, B_{2}, B_{3}, \ldots, B_{m}$, then $\operatorname{dim}(G)=$ $\sum_{i=1}^{m}\left(\left|B_{i}\right|-1\right)$.

Proof. Let B_{i} for $i=1,2, \ldots, m$ be equivalence classes of connected graph G. Take $B_{i}-\left\{u_{i}\right\}, u_{i} \in B_{i}$ for every $i=1,2, \ldots, m$. We see that every vertex in G has the distinct representation with respect to $B=$ $\bigcup_{i=1}^{m} B_{i}-\left\{u_{i}\right\}$. Thus, B is resolving set of G. Suppose that there is B_{i} for some $i=1,2, \ldots, m$ such that two elements of B_{i} are not element B. By Lemma 2.1, B is not resolving set. This means that $B=\bigcup_{i=1}^{m} B_{i}-\left\{u_{i}\right\}$ is the minimum resolving set or basis of G. Therefore, $\operatorname{dim}(G)=\sum_{i=1}^{m}\left(\left|B_{i}\right|-1\right)$.

Lemma 2.4. Let G be a connected graph. If G has true twin equivalence classes $B_{1}, B_{2}, B_{3}, \ldots, B_{m}$, then $\operatorname{dim}(G)=\operatorname{dim}_{l}(G) \sum_{i=1}^{m}\left(\left|B_{i}\right|-1\right)$.

By Theorem 1.4 and Theorem 1.6, we obtain

Corollary 2.5. (a) $\operatorname{dim}_{l}(G)=\operatorname{dim}(G)=n-1$ if and only if $G=K_{n}$,
(b) $\operatorname{dim}_{l}(G)=\operatorname{dim}(G)=1$ if and only if $G=P_{n}$.

Lemma 2.6. Let G be a connected graph with diameter k having l twin equivalence classes. Then $k \leq l$.

Proof. Suppose that $l<k$. By Lemma 2.1, $d(x, y) \leq l<k$, for every x, y in G. This contradicts with maximum distance of G which is k.

Theorem 2.7. Let G be a connected graph of order $n \geq 3$ having twin equivalence classes and diameter k. If $l=k$, then $k=1$ or 2 .

Proof. Let G be a connected graph of order $n \geq 3$ and diameter k. The number of twin equivalence classes is $l=k$. There exist two vertices u, v in G such that $d(u, v)=k$. This leads to the two possibilities, either u and v are in the same class or u and v are in the distinct classes.

Suppose that u and v are in the distinct classes. Then $l>1$ and $k=l>1$ and there is path $u, v_{1}, v_{2}, v_{3}, \ldots, v_{k-1}, v_{k}=v$. Since the diameter is k, each $u, v_{1}, v_{2}, v_{3}, \ldots, v_{k-1}, v_{k}=v$ is in the $k+1$ distinct twin equivalence classes. Thus, G has $l=k+1$ twin equivalence classes, contradiction with $l+k$. Therefore, the only chance is that u and v are in the same twin equivalence class. This leads to the two possibilities, either u and v are adjacent or u and v are non-adjacent.
a. If vertices u and v are adjacent, then $k=1$ and every vertex in G is adjacent. In other words, $G=K_{n}$, and every vertex in G forms one true twin equivalence class.
b. If vertices u and v are non-adjacent, then $d(u, v)=k>1$. If vertices u are v are the same false twin equivalence class, then, by Lemma 2.1, u and v have the same neighbourhood. So $d(u, v)=k=2$.

Corollary 2.8. There is no connected graph with diameter k having k twin equivalence classes for $k \geq 3$.

The Similarity of Metric Dimension and Local Metric Dimension ... 847
Theorem 2.9. Let G be a connected graph of order $n \geq 3$ and diameter k having k twin equivalence classes. Then $\operatorname{dim}(G)=n-k$ if and only if $k=1$ or $k=2$.

Proof. Let G be a connected graph of order $n \geq 3$ and diameter k having k twin equivalence classes. If $\operatorname{dim}(G)=n-k$, then, by Theorem $2.7, k=1$ or $k=2$. Conversely, let the diameter of G be $k=1$ or $k=2$, and has k twin equivalence classes. Thus:

For $k=1$, then $G=K_{n}$, so $\operatorname{dim}(G)=n-1=n-k$.
For $k=2$, then there are two vertices, say u and v, in G such that $d(u, v)=2$. Suppose that u and v in the distinct twin equivalence class. Then $d(u, v)=1$, a contradiction. So u and v must be in one twin equivalence class. Let S_{1}, S_{2} be the twin equivalence classes in G. By Lemma 2.3, $\operatorname{dim}(G)=\left|S_{1}\right|-1+\left|S_{2}\right|-1=n-2=n-k$.

Consequently, we have
Corollary 2.10. Let G be a connected graph of order $n \geq 4$ and diameter k. Then G has k twin equivalence classes if and only if $G=K_{n}$ or $G=K_{n, m}$ or $G=K_{s}+\bar{K}_{t}$.

Theorem 2.11. Let G be a connected graph of order $n \geq 3$ without end vertex, diameter k and $G \neq K_{s}+\left(K_{t} \cup K_{1}\right)$, where $s, t \geq 1$. If G has $k+1$ true twin equivalence classes or true twin equivalence classes and singleton, then $\operatorname{dim}(G)=\operatorname{dim}_{l}(G)=n-(k+1)$.

Proof. Let G be a connected graph of order $n \geq 3$ without end vertex, diameter k and $G \neq K_{s}+\left(K_{t} \cup K_{1}\right), s, t \geq 1$. Let G has $k+1$ true twin equivalence classes or has the combination of $k+1$ true twin equivalence classes and singleton. Let $B_{1}, B_{2}, B_{3}, \ldots, B_{k}, B_{k+1}$ be true twin equivalence classes or singleton. Let the distance of vertices in B_{i} to vertices in B_{i+1} be one for $i=1,2, \ldots, k$, and $\left|B_{1}\right|+\left|B_{2}\right|+\left|B_{3}\right|+\cdots+\left|B_{k}\right|+\left|B_{k+1}\right|=n$. There are two cases:
(i) There are $\left|B_{i}\right|=1$ for some i, G has no end vertex, so $i \neq 1, k+1$. Without loss of generality, let $i=2$ and 4 . Choose $\left|B_{i}\right|-1$ vertices in B_{i}, for $i \neq 2,4$ as elements of set W. Thus,

$$
|W|=\sum_{i \neq 2,4}^{k+1} i B_{i}-(k+1-2)=\sum_{i \neq 2,4}^{k+1} i B_{i}+2-(k+1)=n-(k+1) .
$$

By Lemma 2.3 and Lemma 2.4, we get W is basis and local basis of G. Thus, $\operatorname{dim}(G)=\operatorname{dim}_{l}(G)=n-(k+1)$.
(ii) If $\left|B_{i}\right|>1$ for all i, choose $\left|B_{i}\right|-1$ vertices in B_{i}, for all i as elements of set W, so $|W|=n-(k+1)$. By Lemma 2.3 and Lemma 2.4, we get W is basis and local basis of G. Thus, $\operatorname{dim}(G)=\operatorname{dim}_{l}(G)=n-(k+1)$.

3. The Similarity of Metric Dimension and Local Metric Dimension of Rooted Product Graph

Before presenting the main results, we first present local metric dimensions of cycle graph and properties of rooted product graphs, that are used to prove the main theorems as described in lemmas and observations below.

Lemma 3.1. Let C_{n} be a cycle on $n \geq 3$ vertices. Then

$$
\operatorname{dim}_{l}\left(C_{n}\right)= \begin{cases}1, & \text { for even } n \\ 2, & \text { for odd } n .\end{cases}
$$

Proof. For even n, C_{n} is bipartite graph, by Theorem 1.6(ii), we get $\operatorname{dim}_{l}\left(C_{n}\right)=1$. For odd n, C_{n} is not bipartite graph. Choose $W=\{x, y\}$, $x y \in E\left(C_{n}\right)$. It easy to see that every two adjacent vertices have the distinct representation with respect W. By Theorem 1.6(ii), W is a local basis of C_{n} and $\operatorname{dim}_{l}\left(C_{n}\right)=2$.

Observation 3.2. Every two adjacent vertices in C_{n} for odd n, form local basis of C_{n}.

Observation 3.3. Let G be a graph of order $n \geq 2$ and \mathcal{H} be a sequence of n connected graphs $H_{j}, j=1,2,3, \ldots, n$. In the rooted product graph $G \circ \mathcal{H}$, if every H_{j} is connected bipartite graph, then every two adjacent vertices in H_{j} have distinct distance to the root of H_{j} and to all vertices in $G \circ \mathcal{H}$.

Lemma 3.4. Let G be a graph of order $n \geq 2$ and \mathcal{H} be a sequence of n connected graphs $H_{j}, j=1,2, \ldots, n$. In the rooted product graph $G \circ \mathcal{H}$, if o_{j} is the root of H_{j}, and U_{j} is a local basis of H_{j}, then:
(i) if $o_{j} \in U_{j}$, then there are two adjacent vertices x, y in H_{j} such that $r(x \mid S)=r(y \mid S)$ for every $S \subset H_{j},|S| \leq\left|U_{j}\right|-2$,
(ii) if $o_{j} \notin U_{j}$, then there are two adjacent vertices x, y in H_{j} such that $r(x \mid S)=r(y \mid S)$ for every $S \subset H_{j},|S| \leq\left|U_{j}\right|-1$.

The following two theorems are similar with Theorem 1.2 and Theorem 1.3 presented by Rodriguez-Velazquez et al. [6], but the proofs shall be completed in this paper.

Theorem 3.5. Let G be a connected graph of order $n \geq 2$, and let \mathcal{H} be a sequence of the connected bipartite graphs $H_{1}, H_{2}, \ldots, H_{n}$ and o_{j} is the root of H_{j}. Then $\operatorname{dim}_{l}(G \circ \mathcal{H})=\operatorname{dim}_{l}(G)$.

Proof. Let G be a connected graph of order $n \geq 2$ and let \mathcal{H} be a sequence of the bipartite graphs $H_{1}, H_{2}, H_{3}, \ldots, H_{n}$. Let o_{j} be the root of H_{j}. Choose W as a local basis of G. Take any two adjacent vertices x, y in $H_{j}, j=1,2, \ldots, n$. Since H_{j} bipartite, by Observation 3.3, we get $d(x, z) \neq d(x, z)$ for every $z \in G \circ \mathcal{H}$, so $r(x \mid W) \neq r(y \mid W)$.

Take any two adjacent roots o_{i}, o_{j} in $G \circ \mathcal{H}$. Since W is a local basis of $G, r\left(o_{i} \mid W\right) \neq\left(o_{j} \mid W\right)$, and W is a local basis of $G \circ \mathcal{H}$. Thus, $\operatorname{dim}_{l}(G \circ \mathcal{H})$ $=\operatorname{dim}_{l}(G)$.

Theorem 3.6. Let G be a connected graph of order $n \geq 2$ and let \mathcal{H} be a sequence of n connected non-bipartite graphs $H_{1}, H_{2}, H_{3}, \ldots, H_{n}$, and o_{j} is the root of H_{j}. Then $\operatorname{dim}_{l}(G \circ \mathcal{H})= \begin{cases}\sum_{j=1}^{n}\left(\operatorname{dim}_{l}\left(H_{j}\right)-1\right), & \text { if } o_{j} \text { is element of local basis of } H_{j}, \\ \sum_{j=1}^{n} \operatorname{dim}_{l}\left(H_{j}\right), & \text { otherwise. }\end{cases}$

Proof. Let G be a connected graph of order $n \geq 2$ and \mathcal{H} be a sequence of the connected non-bipartite graphs $H_{1}, H_{2}, H_{3}, \ldots, H_{n}$. Let o_{j} be the root of $H_{j}, j=1,2,3, \ldots, n$. First, let o_{j} be an element of a local basis of H_{j}. Choose $W=\bigcup_{j=1}^{n}\left(W_{j}-\left\{o_{j}\right\}\right)$, where W_{j} is a local basis of W_{j} and $o_{j} \in W_{j}$. Then $|W|=\sum_{j=1}^{n}\left(\operatorname{dim}_{l}\left(H_{j}\right)-1\right)$.

Take any two adjacent vertices x, y in $H_{j}, j=1,2, \ldots, n$. There are two possibilities, that is, either $d\left(x, o_{j}\right)=d\left(y, o_{j}\right)$ or $d\left(x, o_{j}\right) \neq d\left(y, o_{j}\right)$. Since W_{j} is a local basis of H_{j} and $o_{j} \in W_{j}$, for $d\left(x, o_{j}\right)=d\left(y, o_{j}\right)$, there exist $u_{j} \in W_{j}-\left\{o_{j}\right\}$ such that $d\left(x, u_{j}\right) \neq d\left(y, u_{j}\right)$ which implies that $r(x \mid W) \neq r(y \mid W)$.

For $d\left(x, o_{j}\right) \neq d\left(y, o_{j}\right)$, then $d(x, s) \neq d(y, s)$ for every

$$
s \in V(G \circ \mathcal{H}) /\left(V\left(H_{j}\right)-\left\{o_{j}\right\}\right),
$$

implies $r(x \mid W) \neq r(y \mid W)$.
Take any two adjacent roots o_{i}, o_{j} in $G \circ \mathcal{H}$, then $d\left(o_{i}, z\right) \neq d\left(o_{j}, z\right)$ for every $z \in V\left(H_{j}\right)$. Since $W_{j} \subseteq H_{j}$ and $W_{j} \subseteq W, r\left(o_{i} \mid W\right) \neq r\left(o_{j} \mid W\right)$. Thus, W is a local resolving set of $G \circ \mathcal{H}$.

To show that W is a minimum local resolving set of $G \circ \mathcal{H}$, take any set $S \subseteq V(G \circ \mathcal{H})$ with $|S|<|W|$. This means that there is H_{j} such that $\left(\operatorname{dim}_{l}\left(H_{j}\right)-2\right)$ vertices of that be elements of S. By Lemma 3.4(i), we get that there are two adjacent vertices x, y in H_{j} such that $r(x \mid S)=r(y \mid S)$. So W is a minimum local resolving set of $G \circ \mathcal{H}$ and $\operatorname{dim}_{l}(G \circ \mathcal{H})=$ $\sum_{j=1}^{n}\left(\operatorname{dim}_{l}\left(H_{j}\right)-1\right)$.

Second, let o_{j} be not element of a local basis of H_{j}. Choose $W=$ $\bigcup_{i=1}^{n} W_{i}$, where W_{j} is a local basis of H_{j} and $o_{j} \in W_{j}$. Then $|W|=$ $\sum_{j=1}^{n} \operatorname{dim}_{l}\left(H_{j}\right)$. Take any two adjacent vertices x, y in $H_{j}, j=1,2, \ldots, n$. Since W_{j} is a local basis of $H_{j}, r\left(x \mid W_{j}\right) \neq r\left(y \mid W_{j}\right)$. Thus, $r(x \mid W) \neq$ $r(y \mid W)$, and $W=\bigcup_{i=1}^{n} W_{i}$ is a local resolving of $G \circ \mathcal{H}$.

To show that W is a minimum local resolving set of $G \circ \mathcal{H}$, take any set $S \subseteq V(G \circ \mathcal{H})$ with $|S|<|W|$. This means that there is H_{j} such that ($\left.\operatorname{dim}_{l}\left(H_{j}\right)-1\right)$ vertices of H_{j} be elements of S. By Lemma 3.4(ii), we get that there are two adjacent vertices x, y in H_{j} such that $r(x \mid S)=r(y \mid S)$. So W is a minimum local resolving set of $G \circ \mathcal{H}$ and $\operatorname{dim}_{l}(G \circ \mathcal{H})=$ $\sum_{j=1}^{n}\left(\operatorname{dim}_{l}\left(H_{j}\right)\right)$.

Theorem 3.7. Let G be a connected graph of order $n \geq 2$, and let \mathcal{H} be a sequence of the combined n connected non-bipartite $H_{1}, H_{2}, \ldots, H_{s}$ and bipartite graphs $H_{s+1}, H_{s+2}, \ldots, H_{n}$, and o_{j} is the root of H_{j}. Then

$$
\operatorname{dim}_{l}(G \circ \mathcal{H})
$$

$$
\begin{cases}=\sum_{j=1}^{s}\left(\operatorname{dim}_{l}\left(H_{j}\right)-\alpha_{j}\right), & \text { for } G=C_{n}, n \text { odd, } s>1 \text { or } \\ =\sum_{j=1}^{s}\left(\operatorname{dim}_{l}\left(H_{j}\right)-\alpha_{j}\right)+1, & \text { forpartite or } G=K_{n}, s=n-1 \\ =\sum_{j=1}^{s}\left(\operatorname{dim}_{l}\left(H_{j}\right)-\alpha_{j}\right)+\operatorname{dim}_{l}(G)-s, & \text { for } G=K_{n}, s<n-1 \\ <\sum_{j=1}^{s}\left(\operatorname{dim}_{l}\left(H_{j}\right)-\alpha_{j}\right)+n-s-1, & \text { otherwise, },\end{cases}
$$

where $\alpha_{j}=1$ if o_{j} belongs to a local basis of H_{j} and $\alpha_{j}=0$ otherwise.

Proof. Let G be a connected graph of order $n \geq 2$ and \mathcal{H} be a sequence of the combined n connected non-bipartite $H_{1}, H_{2}, H_{3}, \ldots, H_{s}$ and bipartite graphs $H_{s+1}, H_{s+2}, H_{s+3}, \ldots, H_{n}$. Let T be the local basis of G and U_{j} is local basis of $H_{j}, j=1,2, \ldots, s$, and o_{j} is the root of H_{j}.

Case 1. For $G=C_{n}, n$ odd, $s>1$ or G bipartite or $G=K_{n}, s=n-1$, choose $W=\bigcup_{j=1}^{s}\left(U_{j}-\left\{o_{j}\right\}\right)$. Take any two adjacent roots o_{i}, o_{j} in $G \circ \mathcal{H}$. If $G=C_{n}$, for n odd and $s>1$, by Observation 3.2, we get $r\left(o_{i} \mid W\right) \neq$ $r\left(o_{j} \mid W\right)$. If G bipartite, by Theorem 1.6(ii), we get $r\left(o_{i} \mid W\right) \neq r\left(o_{j} \mid W\right)$. If $G=K_{n}, s=n-1$, by Theorem 1.6(i), we obtain $r\left(o_{i} \mid W\right) \neq r\left(o_{j} \mid W\right)$.

Take any two adjacent vertices x, y in $H_{j}, j=1,2, \ldots, s$. Then $r\left(x \mid U_{j}\right)$ $\neq r\left(y \mid U_{j}\right)$, so $r(x \mid W) \neq r(y \mid W)$, for $G=C_{n}, n$ odd, $s>1$ or G bipartite or $G=K_{n}, s=n-1$.

Take any two adjacent vertices x, y in $H_{j}, j=s+1, s+2, \ldots$, n, by Observation 3.3, we get $r(x \mid W) \neq r(y \mid W)$, for $G=C_{n}, n$ odd, $s>1$ or G bipartite or $G=K_{n}, s=n-1$.

So $W=\bigcup_{j=1}^{S}\left(U_{j}-\left\{o_{j}\right\}\right)$ is a local resolving set of $G \circ \mathcal{H}$, by Lemma 3.4, we get $W=\bigcup_{j=1}^{s}\left(U_{j}-\left\{o_{j}\right\}\right)$ is a local basis of $G \circ \mathcal{H}$, and $\operatorname{dim}_{l}(G \circ \mathcal{H})$ $=\sum_{j=1}^{s}\left(\operatorname{dim}_{l}\left(H_{j}\right)-\alpha_{j}\right)$, where $\alpha_{j}=1$ if o_{j} belongs to a local basis of H_{j} and $\alpha_{j}=0$ otherwise.

Case 2. For $G=C_{n}, n$ odd, $s=1$ choose $W=\bigcup_{j=1}^{s}\left(U_{j}-\left\{o_{j}\right\}\right) \cup$ $\{z\}=\left(U_{1}-\left\{o_{1}\right\}\right) \cup\{z\}, \quad z \in H_{i}$ for any $i=s+1, s+2, \ldots, n$ and $x \neq o_{i}$. Without loss of generality, let $z \in H_{2}$. Take any two adjacent roots o_{i}, o_{j} in $G \circ \mathcal{H}$. Then $d\left(o_{i}, o_{1}\right) \neq d\left(o_{j}, o_{1}\right)$ so that $r\left(o_{i} \mid U_{1}\right) \neq r\left(o_{j} \mid U_{1}\right)$ and $r\left(o_{i} \mid W\right) \neq r\left(o_{j} \mid W\right)$.

Take any two adjacent vertices x, y in $H_{j}, j=1$, then $r\left(x \mid U_{1}\right) \neq$ $r\left(y \mid U_{1}\right)$, so $r(x \mid W) \neq r(y \mid W)$.

Take any two adjacent vertices in $H_{j}, j=2,3, \ldots, n$, there are exactly two vertices x, y in H_{j}, for some $j=2,3, \ldots, n$ such that $d\left(x, o_{1}\right)=$ $d\left(y, o_{1}\right)$, but $d\left(x, o_{2}\right) \neq d\left(y, o_{2}\right)$, so $d(x, z) \neq d(y, z)$, implies $r(x \mid W) \neq$ $r(y \mid W)$.

So $W=\bigcup_{j=1}^{S}\left(U_{j}-\left\{o_{j}\right\}\right) \cup\{z\}=\left(U_{1}-\left\{o_{1}\right\}\right) \cup\{z\}$, for $z \in H_{2}$, is a local resolving set of $G \circ \mathcal{H}$. By Lemma 3.4, take any set $S \subset G \circ \mathcal{H}$, where $|S|<|W|$. Then there are two adjacent vertices in H_{1} or two adjacent root vertices that have the same representation with respect to S. Thus, W is a local basis of $G \circ \mathcal{H}$ and $\operatorname{dim}_{l}(G \circ \mathcal{H})=\sum_{j=1}^{s}\left(\operatorname{dim}_{l}\left(H_{j}\right)-\alpha_{j}\right)$, where $\alpha_{j}=1$ if o_{j} belongs to a local basis of H_{j} and $\alpha_{j}=0$ for otherwise.

Case 3. For $G=K_{n}, s<n-1$, choose $W=\bigcup_{j=1}^{s}\left(U_{j}-\left\{o_{j}\right\}\right) \cup\left\{u_{i} \mid u_{i}\right.$ $\left.\neq o_{i}, i=s+1, s+2, \ldots, k<n\right\}$. Without loss of generality, let $s=n-2$. It means that $H_{j}, j=1,2, \ldots, n-2$ is non-bipartite graph and H_{n-1} and H_{n} are bipartite graphs, and $W=\bigcup_{j=1}^{n-2}\left(U_{j}-\left\{o_{j}\right\}\right) \cup\left\{u_{n-1}\right\}, u_{n-1} \neq o_{n-1}$.

Take any two adjacent roots in $G \circ \mathcal{H}$, there are three possibilities:
First, two adjacent roots are o_{n-1}, o_{n}, so $d\left(o_{n-1}, o_{j}\right)=d\left(o_{n}, o_{j}\right)$ for all $j=1,2, \ldots, n-2$. This implies that $r\left(o_{n-1} \mid U_{j}\right)=r\left(o_{n} \mid U_{j}\right)$. However, $r\left(o_{n-1} \mid o_{n-1}\right) \neq r\left(o_{n} \mid o_{n-1}\right)$, so $r\left(o_{n-1} \mid W\right) \neq r\left(o_{n} \mid W\right)$. Second, one of the roots is element of H_{n-1} or H_{n} and one of the roots is element of H_{j}, $j=1,2, \ldots, n-2$. Without loss of generality, let o_{n} and o_{j} for some j, so that $d\left(o_{j}, o_{n}\right) \neq d\left(o_{j}, o_{j}\right)$. Then $r\left(o_{n} \mid W\right) \neq r\left(o_{j} \mid W\right)$. Third, two adjacent roots are o_{i}, o_{l} in $H_{j}, j=1,2, \ldots, n-2$. It is obvious that $r\left(o_{i} \mid W\right) \neq$ $r\left(o_{j} \mid W\right)$.

Take any two adjacent vertices x, y in $H_{j}, j=n-1, n$. Since H_{n-1} and H_{n} are bipartite, by Observation 3.3, we get $r(x \mid W) \neq r(y \mid W)$.

Take any two adjacent vertices in $H_{j}, j=2,3, \ldots, n-2$. Since U_{j}, for $j=2,3, \ldots, n-2$, is basis of $H_{j}, r(x \mid W) \neq r(y \mid W)$.

So $W=\bigcup_{j=1}^{S}\left(U_{j}-\left\{o_{j}\right\}\right) \bigcup\left\{u_{i} \mid u_{i} \neq o_{i}, i=s+1, s+2, \ldots, k<n\right\}$ is a local resolving set of $G \circ \mathcal{H}$. By Lemma 3.4, take any set $S \subset G \circ \mathcal{H}$, where $|S|<|W|$. Then there are two adjacent vertices in $H_{j}, j=2,3, \ldots, n-2$ or two adjacent root vertices that have the same representation with respect to S. Thus, W is a local basis of $G \circ \mathcal{H}$ and $|W|=\sum_{j=1}^{s}\left(\operatorname{dim}_{l}\left(H_{j}\right)-\alpha_{j}\right)$ $+n-1-s$. Since G is complete graph K_{n} and $\operatorname{dim}_{l}\left(K_{n}\right)=n-1$, $\operatorname{dim}_{l}(G \circ \mathcal{H})=\sum_{j=1}^{s}\left(\operatorname{dim}_{l}\left(H_{j}\right)-\alpha_{j}\right)+\operatorname{dim}_{l}(G)-s$, where $\alpha_{j}=1$ if o_{j} belongs to a local basis of H_{j}, and $\alpha_{j}=0$ otherwise.

Case 4. For G otherwise, $\operatorname{dim}_{l}(G \circ \mathcal{H})=\sum_{j=1}^{s}\left(\operatorname{dim}_{l}\left(H_{j}\right)-\alpha_{j}\right)+$ $n-s-1$. It is obvious because K_{n} is the graph with the biggest local metric dimension.

Observation 3.8. Let G be a connected graph of order n, \mathcal{H} be a sequence of n connected graphs $H_{1}, H_{2}, H_{3}, \ldots, H_{n}$. Then $G \circ \mathcal{H}$ is a path if and only if G is a path of order $n \leq 2$, where \mathcal{H} is a sequence of paths and the root of H_{j} is element of basis of H_{j}.

The relationship between metric dimension and local metric dimension of rooted product of two connected graphs is given as follows.

Theorem 3.9. Let G be a connected graph of order $n \geq 3$. If \mathcal{H} is a sequence of nodd cycle graphs, then $\operatorname{dim}(G \circ \mathcal{H})=\operatorname{dim}_{l}(G \circ \mathcal{H})=|V(G)|$.

Proof. Let \mathcal{H} be a sequence of n odd cycle graphs $H_{1}, H_{2}, H_{3}, \ldots, H_{n}$, and α_{i} is the root of H_{i}. Choose $W=\bigcup_{i=1}^{n}\left\{u_{i} \mid u_{i} \alpha_{i} \in E(H i)\right\}$. Then there are two vertices x, y in H_{i} that are adjacent to u_{i}, and $d\left(x, \alpha_{i}\right) \neq$

The Similarity of Metric Dimension and Local Metric Dimension ... 855
$d\left(y, \alpha_{i}\right)$. This implies that x and y have distinct distance to all vertices in $V(G \circ \mathcal{H}) / V\left(H_{i}\right)$. Thus, W is a resolving set of $G \circ \mathcal{H}$. Suppose that there is H_{i} such that no vertex in H_{i} that belongs to W. Then there are two vertices x, y in $V\left(H_{i}\right)$ that are adjacent to the root of H_{i}. Thus, x and y have the same distance to the root H_{i}. This implies that x and y have the same distance to all vertices in $V(G \circ \mathcal{H}) / V\left(H_{i}\right)$. Therefore, W is minimum resolving set of $G \circ \mathcal{H}$ and $\operatorname{dim}(G \circ \mathcal{H})=|V(G)|$.

Since W is a resolving set of $G \circ \mathcal{H}, W$ is a local resolving set of $G \circ \mathcal{H}$. Suppose that there is H_{i} such that no vertex in H_{i} that belongs to W. Since H_{i} is odd cycle, there are exactly two adjacent vertices u, v in H_{i} such that $d\left(u, \alpha_{i}\right)=d\left(v, \alpha_{i}\right)=\frac{m-1}{2}$. Then $d(u, s)=d(v, s)$ for all $s \in V(G \circ \mathcal{H}) /$ $V\left(H_{i}\right)$, so W is a minimum local resolving set of $G \circ \mathcal{H}$ and

$$
\operatorname{dim}_{l}(G \circ \mathcal{H})=n=|V(G)| .
$$

So $\operatorname{dim}(G \circ \mathcal{H})=\operatorname{dim}_{l}(G \circ \mathcal{H})=|V(G)|$.
As a consequence of Corollary 2.5(b) and Observation 3.8, we obtain sufficient and necessary condition of similarity metric dimension and local metric dimension of rooted product graph.

Corollary 3.10. Let G be a connected graph of order n, \mathcal{H} be a sequence of n connected graphs $H_{1}, H_{2}, H_{3}, \ldots, H_{n}$. Then $\operatorname{dim}(G \circ \mathcal{H})=$ $\operatorname{dim}_{l}(G \circ \mathcal{H})=1$ if and only if G is a path of order $n \leq 2, \mathcal{H}$ is a sequence of n paths and the root of H_{j} is element of basis of H_{j}.

Proof. Let G be a path of order $n \leq 2, \mathcal{H}$ be a sequence of n path graphs, and the root of H_{j} is element of basis of H_{j}. Then $(G \circ \mathcal{H})$ is a path too. By Corollary $2.5(\mathrm{~b}), \operatorname{dim}(G \circ \mathcal{H})=\operatorname{dim}_{l}(G \circ \mathcal{H})=1$. Conversely, let $\operatorname{dim}(G \circ \mathcal{H})=\operatorname{dim}_{l}(G \circ \mathcal{H})=1$. By Corollary 2.5(b), $G \circ \mathcal{H}$ is path. By Observation 3.8, G is a path of order $n \leq 2, \mathcal{H}$ is a sequence of n path graphs, and the root of H_{j} is element of basis of H_{j}.

As the consequence of Corollary 2.5(a) and Theorems 1.4 and 1.6, we get

Corollary 3.11. If \mathcal{H} is a sequence of n path graphs, then $\operatorname{dim}\left(K_{n} \circ \mathcal{H}\right)$
$=\operatorname{dim}_{l}\left(K_{n} \circ \mathcal{H}\right)=n-1$.

Acknowledgements

This research was supported by DIKTI Indonesia through Penelitian Unggulan Perguruan Tinggi Baru, DIPA BOPTN Tahun Anggaran 2014.

References

[1] G. Chartrand, L. Eroh, M. A. Johnson and O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (2000), 99-113.
[2] C. Hernando, M. Mora, I. M. Pelayo, C. Seara and D. R. Woor, Extremal Graph Theory for Metric Dimension and Diameter, 7 May 2007, [Internet] [Citation 7 July 2014]: Arxiv: 0705.0938.v1 (Math Co.).
[3] C. D. Godsil and B. D. McKay, A new graph product and its spectrum, Bulletin of the Australian Mathematical Society 18 (1978), 21-28.
[4] F. Okamoto, L. Crosse, B. Phinezy, P. Zhang and Kalamazo, The local metric dimension of graph, Mathematica Bohemica 135(3) (2010), 239-255, [Internet] [Citation 18 November 2013]: http://dml.cz/dmlcz/140702.
[5] J. A. Rodriguez-Velazquez and H. Fernau, On the (adjacency) metric dimension of corona and strong product graph and their local variants: combinatorial and computational results, Combinatorial and Computational Results, 9 September 2013, [Internet] [Citation 8 October 2013]: Arxiv: 1309.2275.v1 (Math Co.).
[6] J. A. Rodriguez-Velazquez, C. G. Gomez and G. A. Barragan-Ramirez, Computing the local metric dimension of graph from the local metric dimension of primary subgraph, 2 Feb. 2014, arxiv:1402.0177v1[math. CO].
[7] S. W. Saputro, N. Mardiana and I. A. Purwasi, The metric dimension of comb product graph, Graph Theory Conference in Honor of Egawa's 60th Birthday, September 10 to 14, 2013, [Internet] [Citation 22 October 2013]: http://www.rs. tus.ac.jp/egawa_60th_birthday/abstract/contributed_talk/Suhadi_WidoSaputro.pdf

