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Abstract 

Let G be a connected graph with vertex set ( )GV  and =W  

{ } ( )....,,, 21 GVwww k ⊂  The representation of a vertex ( )GVv∈  with 

respect to W is the ordered k-tuple ( ) ( ) ( )( ...,,,,, 21 wvdwvdWvr =|  

( )),, kwvd  where ( )wvd ,  represents the distance between vertices v 

and w. The set W is called a resolving set for G if every vertex of G 
has a distinct representation. A resolving set containing a minimum 
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number of vertices is called basis for G. The metric dimension of G, 
denoted by ( ),dim G  is the number of vertices in a basis of G. If every 

two adjacent vertices of G have a distinct representation with respect 
to W, then the set W is called a local resolving set for G and the 
minimum local resolving set is called a local basis of G. The 
cardinality of a local basis of G is called local metric dimension          
of G, denoted by ( ).dim Gl  In this paper, we study the local metric 

dimension of rooted product graph and the similarity of metric 
dimension and local metric dimension of rooted product graph. 

1. Introduction 

Let G be a finite and simple connected graph. The vertex and edge sets 
of the graph G are denoted by ( )GV  and ( ),GE  respectively. The distance 

between vertices v and w in G, denoted by ( ),, wvd  is the length of a shortest 

path between them. For the ordered set { } ( )GVwwwW k ⊆= ...,,, 21  and v 
is a vertex on the graph G, then the representation of v with respect to W      
is  k-tuple, ( ) ( ) ( ) ( )( ).,...,,,,, 21 kwvdwvdwvdWvr =|  The set W is called 
a resolving set of G if every vertex of G has a distinct representation and 
minimum resolving set is called basis of G. The cardinality of basis is called 
metric dimension of G, denoted by ( )Gdim  [1]. 

The W set is called a local resolving set of G if every two adjacent 
vertices of G have a distinct representation with respect to W, that is,             
if ( )GVvu ∈,  such that ( ),GEuv ∈  then ( ) ( ).WvrWur |≠|  The local 
resolving set of G with minimum cardinality is called local basis of G,       
the cardinality of basis local of G is called local metric dimension of G, 
denoted by ( ).dim Gl  In [5], Rodriguez-Velazquez and Fernau observed the 
relationship between local metric dimension and metric dimension of a graph 
G, that is, 

Observation 1.1 [5]. ( ) ( ).dimdim GGl ≤  

Godsil and McKay [3] defined the rooted product graph as follows. Let 
G be a graph on n vertices and H  be a sequence of n rooted graphs ,, 21 HH  
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....,,3 nHH  The rooted product graph of G by H  denoted by HG  is a 

graph obtained by grafting the root of iH  with the ith vertex of G [3]. If  

nHHHH ...,,,, 321  are isomorphic to a graph of order n’, Saputro et al. 
called this notion by comb product [7]. Rodriguez-Velazquez et al. [6] 
observed the local metric dimension of rooted product graph as follows: 

Theorem 1.2 [6]. Let G be a connected graph of order 2≥n  and let H  

be a sequence of n connected bipartite graphs ....,,,, 321 nHHHH  Then 

for any rooted product graph ( ) ( ).dimdim, GGG ll =HH  

Theorem 1.3 [6]. Let G be a connected graph of order 2≥n  and let H  

be a sequence of n connected non-bipartite graphs ....,,,, 321 nHHHH  

Then for any rooted product graph ,HG  

( ) ( ( ) ),dimdim 1 jjl
n
jl HG α−= ∑ =H  

where 1=α j  if the root of jH  belongs to a local basis of jH  and 0=α j  

otherwise. 

The known results on metric dimension and local metric dimension of 
some particular classes of graphs have been discovered by Chartrand et al. 
[1] and Okamoto et al. [4] as given below. 

Theorem 1.4 [1]. Let G be a connected graph of order .2≥n  Then: 

(i) ( ) 1dim =G  if and only if .nPG =  

(ii) ( ) 1dim −= nG  if and only if .nKG =  

(iii) For ,4≥n  ( ) 2dim −= nG  if and only if ( ),1;;, ≥= srKG sr  

,sr KKG +=  ( ),2;1 ≥≥ sr  or ( ) ( ).1,,1 ≥+= srKKKG sr ∪  

(iv) For ,3≥n ( ) .2dim =nC  

Theorem 1.5 [1]. If G is a connected graph of order 2≥n  and diameter 
k, then ( ) .dim knG −≤  
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Theorem 1.6 [4]. Let G be a connected graph of order .2≥n  Then: 

(i) ( ) 1dim −= nGl  if and only if ,nKG =  

(ii) ( ) 1dim =Gl  if and only if G is bipartite graph. 

Theorem 1.7 [4]. Let G be a connected graph of order n and diameter k. 
Then ( ) .dim knGl −≤  

In this paper, we study the local metric dimension of rooted product 
graph to complete the results of Rodriguez-Velazquez et al. presented in [6]. 
In Theorem 1.2 and Theorem 1.3 of the paper, they observed that the local 
metric dimension of rooted product graph ,HG  for ,H  is a sequence of n 
connected bipartite and non-bipartite graphs, respectively, as a consequence 
of the theorem of local metric dimension of point attaching graph. 
Rodriguez-Velazquez et al. [6] presented those theorems as corollary without 
the proofs. The detail of the proofs will be shown in this paper. We also 
show the local metric dimension of rooted product graph ,HG  where H  

is a sequence of the combined of n connected bipartite and non-bipartite 
graphs. Furthermore, we observe the similarity of metric dimension and local 
metric dimension of rooted product graph. Before presenting the main results 
of this paper, we present diameter and twin equivalence class of graph and 
their relation with metric and local metric dimension of graph, as described 
in the following section. 

2. The Similarity of Metric Dimension and Local 
Metric Dimension of Graph 

Two distinct vertices u and v of graph G are called twin if u and v have 
the same neighbourhood in ( ) { },, vuGV −  and they are called true twin or 

false twin if u and v are adjacent and twin or u and v are not adjacent and 
twin, respectively, [4]. The following two lemmas describe the properties of 
twin that are discovered by Hernando et al. [2]. 

Lemma 2.1 [2]. If u and v are twin in graph G, then ( ) ( )xvdxud ,, =  

for every vertex in ( ) { }., vuGV −  
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Lemma 2.2 [2]. Let vu,  and w be distinct vertices in graph G. If u and 
v are twin, v and w are twin, then u and w are also twin. 

In other words, twin is an equivalence relation on ( ).GV  The twin 
vertices produce the equivalence twin class. 

In general, the twin relation divides the vertex set ( )GV  into the partition 

of twin equivalence classes. There are three types of twin equivalence 
classes, namely, true twin equivalence class, false twin equivalence class, and 
singleton. 

In this paper, we say that graph G has twin equivalence classes if G     
has true twin equivalence classes or false twin equivalence classes without 
singleton. Also, we say that graph G has true twin equivalence classes if G 
has true twin equivalence classes only. 

Lemma 2.3. Let G be a connected graph. If G has true twin equivalence 
classes or false twin equivalence classes ,...,,,, 321 mBBBB  then ( ) =Gdim  

( )∑ = −m
i iB1 .1  

Proof. Let iB  for mi ...,,2,1=  be equivalence classes of connected 

graph G. Take { },ii uB −  ii Bu ∈  for every ....,,2,1 mi =  We see that 

every vertex in G has the distinct representation with respect to =B  

{ }.1 ii
m
i uB −=∪  Thus, B is resolving set of G. Suppose that there is iB  for 

some mi ...,,2,1=  such that two elements of iB  are not element B. By 

Lemma 2.1, B is not resolving set. This means that { }ii
m
i uBB −= =1∪  is the 

minimum resolving set or basis of G. Therefore, ( ) ( )∑ = −= m
i iBG 1 .1dim   

 ~ 

Lemma 2.4. Let G be a connected graph. If G has true twin equivalence 

classes ,...,,,, 321 mBBBB  then ( ) ( ) ( )∑ = −= m
i il BGG 1 .1dimdim  

By Theorem 1.4 and Theorem 1.6, we obtain 
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Corollary 2.5. (a) ( ) ( ) 1dimdim −== nGGl  if and only if ,nKG =  

(b) ( ) ( ) 1dimdim == GGl  if and only if .nPG =  

Lemma 2.6. Let G be a connected graph with diameter k having l twin 
equivalence classes. Then .lk ≤  

Proof. Suppose that .kl <  By Lemma 2.1, ( ) ,, klyxd <≤  for every    

x, y in G. This contradicts with maximum distance of G which is k. ~ 

Theorem 2.7. Let G be a connected graph of order 3≥n  having twin 
equivalence classes and diameter k. If ,kl =  then 1=k  or 2. 

Proof. Let G be a connected graph of order 3≥n  and diameter k. The 
number of twin equivalence classes is .kl =  There exist two vertices vu,  in 

G such that ( ) ., kvud =  This leads to the two possibilities, either u and v are 

in the same class or u and v are in the distinct classes. 

Suppose that u and v are in the distinct classes. Then 1>l  and 1>= lk  

and there is path .,...,,,,, 1321 vvvvvvu kk =−  Since the diameter is k, each 

vvvvvvu kk =− ,...,,,,, 1321  is in the 1+k  distinct twin equivalence 

classes. Thus, G has 1+= kl  twin equivalence classes, contradiction with 
.kl +  Therefore, the only chance is that u and v are in the same twin 

equivalence class. This leads to the two possibilities, either u and v are 
adjacent or u and v are non-adjacent. 

a. If vertices u and v are adjacent, then 1=k  and every vertex in G is 
adjacent. In other words, ,nKG =  and every vertex in G forms one true twin 

equivalence class. 

b. If vertices u and v are non-adjacent, then ( ) .1, >= kvud  If vertices u 

are v are the same false twin equivalence class, then, by Lemma 2.1, u and v 
have the same neighbourhood. So ( ) .2, == kvud  ~ 

Corollary 2.8. There is no connected graph with diameter k having k 
twin equivalence classes for .3≥k  
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Theorem 2.9. Let G be a connected graph of order 3≥n  and diameter 
k having k twin equivalence classes. Then ( ) knG −=dim  if and only if 

1=k  or .2=k  

Proof. Let G be a connected graph of order 3≥n  and diameter k having 
k twin equivalence classes. If ( ) ,dim knG −=  then, by Theorem 2.7, 1=k  

or .2=k  Conversely, let the diameter of G be 1=k  or ,2=k  and has k 
twin equivalence classes. Thus: 

For ,1=k  then ,nKG =  so ( ) .1dim knnG −=−=  

For ,2=k  then there are two vertices, say u and v, in G such that 
( ) .2, =vud  Suppose that u and v in the distinct twin equivalence class. 

Then ( ) ,1, =vud  a contradiction. So u and v must be in one twin 

equivalence class. Let 21, SS  be the twin equivalence classes in G. By 

Lemma 2.3, ( ) .211dim 21 knnSSG −=−=−+−=  ~ 

Consequently, we have 

Corollary 2.10. Let G be a connected graph of order 4≥n  and 

diameter k. Then G has k twin equivalence classes if and only if nKG =  or 

mnKG ,=  or .ts KKG +=  

Theorem 2.11. Let G be a connected graph of order 3≥n  without end 
vertex, diameter k and ( ),1KKKG ts ∪+≠  where .1, ≥ts  If G has 1+k  

true twin equivalence classes or true twin equivalence classes and singleton, 
then ( ) ( ) ( ).1dimdim +−== knGG l  

Proof. Let G be a connected graph of order 3≥n  without end vertex, 
diameter k and ( ),1KKKG ts ∪+≠  .1, ≥ts  Let G has 1+k  true twin 

equivalence classes or has the combination of 1+k  true twin equivalence 
classes and singleton. Let 1321 ,...,,,, +kk BBBBB  be true twin equivalence 

classes or singleton. Let the distance of vertices in iB  to vertices in 1+iB  be 

one for ,...,,2,1 ki =  and .1321 nBBBBB kk =+++++ +  

There are two cases: 
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(i) There are 1=iB  for some i, G has no end vertex, so ,1≠i .1+k  

Without loss of generality, let 2=i  and 4. Choose 1−iB  vertices in ,iB  

for 4,2≠i  as elements of set W. Thus, 

( ) ( ) ( )∑ ∑+

≠

+

≠
+−=+−+=−+−=

1
4,2

1
4,2

.11221
k
i

k
i ii knkiBkiBW  

By Lemma 2.3 and Lemma 2.4, we get W is basis and local basis of G. Thus, 
( ) ( ) ( ).1dimdim +−== knGG l  

(ii) If 1>iB  for all i, choose 1−iB  vertices in ,iB  for all i as 

elements of set W, so ( ).1+−= knW  By Lemma 2.3 and Lemma 2.4, we 

get W is basis and local basis of G. Thus, ( ) ( ) ( ).1dimdim +−== knGG l  

 ~ 

3. The Similarity of Metric Dimension and Local Metric 
Dimension of Rooted Product Graph 

Before presenting the main results, we first present local metric 
dimensions of cycle graph and properties of rooted product graphs, that are 
used to prove the main theorems as described in lemmas and observations 
below. 

Lemma 3.1. Let nC  be a cycle on 3≥n  vertices. Then  

( )
⎩
⎨
⎧=

n.oddfor,
nevenfor,

Cnl 2
1

dim  

Proof. For even n, nC  is bipartite graph, by Theorem 1.6(ii), we get 

( ) .1dim =nl C  For odd n, nC  is not bipartite graph. Choose { },, yxW =  

( ).nCExy ∈  It easy to see that every two adjacent vertices have the distinct 

representation with respect W. By Theorem 1.6(ii), W is a local basis of nC  

and ( ) .2dim =nl C  ~ 

Observation 3.2. Every two adjacent vertices in nC  for odd n, form 

local basis of .nC  
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Observation 3.3. Let G be a graph of order 2≥n  and H  be a sequence 
of n connected graphs ....,,3,2,1, njH j =  In the rooted product graph 

,HG  if every jH  is connected bipartite graph, then every two adjacent 

vertices in jH  have distinct distance to the root of jH  and to all vertices in 

.HG  

Lemma 3.4. Let G be a graph of order 2≥n  and H  be a sequence of 
n connected graphs ....,,2,1, njH j =  In the rooted product graph ,HG  

if jo  is the root of ,jH  and jU  is a local basis of ,jH  then: 

(i) if ,jj Uo ∈  then there are two adjacent vertices yx,  in jH  such 

that ( ) ( )SyrSxr |=|  for every ,2, −≤⊂ jj USHS  

(ii) if ,jj Uo ∉  then there are two adjacent vertices x, y in jH  such that 

( ) ( )SyrSxr |=|  for every .1, −≤⊂ jj USHS  

The following two theorems are similar with Theorem 1.2 and Theorem 
1.3 presented by Rodriguez-Velazquez et al. [6], but the proofs shall be 
completed in this paper. 

Theorem 3.5. Let G be a connected graph of order ,2≥n  and let H  be 
a sequence of the connected bipartite graphs nHHH ...,,, 21  and jo  is the 

root of .jH  Then ( ) ( ).dimdim GG ll =H  

Proof. Let G be a connected graph of order 2≥n  and let H  be a 
sequence of the bipartite graphs ....,,,, 321 nHHHH  Let jo  be the root      

of .jH  Choose W as a local basis of G. Take any two adjacent vertices yx,  

in ....,,2,1, njH j =  Since jH  bipartite, by Observation 3.3, we get 

( )zxd ,  ( )zxd ,≠  for every ,HGz ∈  so ( ) ( ).WyrWxr |≠|  

Take any two adjacent roots ji oo ,  in .HG  Since W is a local basis of 

G, ( ) ( ),WoWor ji |≠|  and W is a local basis of .HG  Thus, ( )HGldim  

( ).dim Gl=  ~ 
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Theorem 3.6. Let G be a connected graph of order 2≥n  and let H  be 
a sequence of n connected non-bipartite graphs ,...,,,, 321 nHHHH  and 

jo  is the root of .jH  Then 

( )
( ( ) )

( )⎪
⎩

⎪
⎨

⎧ −
=

∑
∑

=

=

.,dim

,,1dim
dim

1

1

otherwiseH

HofbasislocalofelementisoifH
G n

j jl

jj
n

j jl
l H  

Proof. Let G be a connected graph of order 2≥n  and H  be a sequence 
of the connected non-bipartite graphs ....,,,, 321 nHHHH  Let jo  be the 

root of ....,,3,2,1, njH j =  First, let jo  be an element of a local basis of 

.jH  Choose ( { }),1 jj
n
j oWW −= =∪  where jW  is a local basis of jW  and 

.jj Wo ∈  Then ( ( ) )∑ = −= n
j jl HW 1 .1dim  

Take any two adjacent vertices x, y in ....,,2,1, njH j =  There are two 

possibilities, that is, either ( ) ( )jj oydoxd ,, =  or ( ) ( ).,, jj oydoxd ≠  

Since jW  is a local basis of jH  and ,jj Wo ∈  for ( ) ( ),,, jj oydoxd =  

there exist { }jjj oWu −∈  such that ( ) ( )jj uyduxd ,, ≠  which implies 

that ( ) ( ).WyrWxr |≠|  

For ( ) ( ),,, jj oydoxd ≠  then ( ) ( )sydsxd ,, ≠  for every 

( ) ( ( ) { }),jj oHVGVs −∈ H  

implies ( ) ( ).WyrWxr |≠|  

Take any two adjacent roots ji oo ,  in ,HG  then ( ) ( )zodzod ji ,, ≠  

for every ( ).jHVz ∈  Since jj HW ⊆  and ,WW j ⊆  ( ) ( ).WorWor ji |≠|  

Thus, W is a local resolving set of .HG  

To show that W is a minimum local resolving set of ,HG  take any      
set ( )HGVS ⊆  with .WS <  This means that there is jH  such that 

( ( ) )2dim −jl H  vertices of that be elements of S. By Lemma 3.4(i), we get 
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that there are two adjacent vertices yx,  in jH  such that ( ) ( ).SyrSxr |=|  

So W is a minimum local resolving set of HG  and ( ) =HGldim  

( ( ) )∑ = −n
j jl H1 .1dim  

Second, let jo  be not element of a local basis of .jH  Choose =W  

,1 i
n
i W=∪  where jW  is a local basis of jH  and .jj Wo ∈  Then =W  

( )∑ =
n
j jl H1 .dim  Take any two adjacent vertices yx,  in ....,,2,1, njH j =  

Since jW  is a local basis of ,jH  ( ) ( ).jj WyrWxr |≠|  Thus, ( ) ≠|Wxr  

( ),Wyr |  and i
n
i WW 1== ∪  is a local resolving of .HG  

To show that W is a minimum local resolving set of ,HG  take any set 
( )HGVS ⊆  with .WS <  This means that there is jH  such that 

( ( ) )1dim −jl H  vertices of jH  be elements of S. By Lemma 3.4(ii), we get 

that there are two adjacent vertices yx,  in jH  such that ( ) ( ).SyrSxr |=|  

So W is a minimum local resolving set of HG  and ( ) =HGldim  

( ( ))∑ =
n
j jl H1 .dim  ~ 

Theorem 3.7. Let G be a connected graph of order ,2≥n  and let H  be 
a sequence of the combined n connected non-bipartite sHHH ...,,, 21  and 

bipartite graphs ,...,,, 21 nss HHH ++  and jo  is the root of .jH  Then 

( )HGldim  

( ( ) )

( ( ) )

( ( ) ) ( )

( ( ) )⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

−−+α−<

−<=−+α−=

==+α−=

−==

>=α−=

∑
∑
∑

∑

=

=

=

=

,,1dim

1,,dimdim

1,,,1dim

1,

1,,,dim

1

1

1

1

otherwisesnH

nsKGforsGH

soddnCGforH

nsKGorbipartiteG

orsoddnCGforH

s

j jjl

n
s

j ljjl

n
s

j jjl

n

n
s

j jjl

 

where 1=α j  if jo  belongs to a local basis of jH  and 0=α j  otherwise. 
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Proof. Let G be a connected graph of order 2≥n  and H  be a sequence 
of the combined n connected non-bipartite sHHHH ...,,,, 321  and bipartite 

graphs ....,,,, 321 nsss HHHH +++  Let T be the local basis of G and jU  is 

local basis of ,...,,2,1, sjH j =  and jo  is the root of .jH  

Case 1. For ,nCG =  n odd, 1>s  or G bipartite or ,1, −== nsKG n  

choose ( { }).1 jj
s
j oUW −= =∪  Take any two adjacent roots ji oo ,  in .HG  

If ,nCG =  for n odd and ,1>s  by Observation 3.2, we get ( ) ≠|Wor i  

( ).Wor j |  If G bipartite, by Theorem 1.6(ii), we get ( ) ( ).WorWor ji |≠|  If 

,1, −== nsKG n  by Theorem 1.6(i), we obtain ( ) ( ).WorWor ji |≠|  

Take any two adjacent vertices yx,  in ....,,2,1, sjH j =  Then ( )jUxr |  

( ),jUyr |≠  so ( ) ( ),WyrWxr |≠|  for nCG n ,=  odd, 1>s  or G bipartite 

or .1, −== nsKG n  

Take any two adjacent vertices yx,  in ,...,,2,1, nssjH j ++=  by 

Observation 3.3, we get ( ) ( ),WyrWxr |≠|  for nCG n ,=  odd, 1>s  or G 

bipartite or .1, −== nsKG n  

So ( { })jj
s
j oUW −= =1∪  is a local resolving set of ,HG  by Lemma 

3.4, we get ( { })jj
s
j oUW −= =1∪  is a local basis of ,HG  and ( )HGldim  

( ( ) )∑ = α−= s
j jjl H1 ,dim  where 1=α j  if jo  belongs to a local basis of 

jH  and 0=α j  otherwise. 

Case 2. For ,nCG =  n odd, 1=s  choose ( { }) ∪∪ jj
s
j oUW −= =1  

{ } { }( ) { },11 zoUz ∪−=  iHz ∈  for any nssi ...,,2,1 ++=  and .iox ≠  

Without loss of generality, let .2Hz ∈  Take any two adjacent roots ji oo ,  

in .HG  Then ( ) ( )11 ,, oodood ji ≠  so that ( ) ( )11 UorUor ji |≠|  and 

( ) ( ).WorWor ji |≠|  
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Take any two adjacent vertices yx,  in ,1, =jH j  then ( ) ≠| 1Uxr  

( ),1Uyr |  so ( ) ( ).WyrWxr |≠|  

Take any two adjacent vertices in ,...,,3,2, njH j =  there are exactly 

two vertices yx,  in ,jH  for some nj ...,,3,2=  such that ( ) =1, oxd  

( ),, 1oyd  but ( ) ( ),,, 22 oydoxd ≠  so ( ) ( ),,, zydzxd ≠  implies ( ) ≠|Wxr  

( ).Wyr |  

So ( { }) { } { }( ) { },111 zoUzoUW jj
s
j ∪∪∪ −=−= =  for ,2Hz ∈  is a local 

resolving set of .HG  By Lemma 3.4, take any set ,HGS ⊂  where 
.WS <  Then there are two adjacent vertices in 1H  or two adjacent root 

vertices that have the same representation with respect to S. Thus, W is a 

local basis of HG  and ( ) ( ( ) )∑ = α−= s
j jjll HG 1 ,dimdim H  where 

1=α j  if jo  belongs to a local basis of jH  and 0=α j  for otherwise. 

Case 3. For ,nKG =  ,1−< ns  choose ( { }) { iijj
s
j uuoUW |−= = ∪∪ 1  

}....,,2,1, nkssioi <++=≠  Without loss of generality, let .2−= ns  

It means that 2...,,2,1, −= njH j  is non-bipartite graph and 1−nH  and 

nH  are bipartite graphs, and ( { }) { },1
2
1 −

−
= −= njj

n
j uoUW ∪∪ .11 −− ≠ nn ou  

Take any two adjacent roots in ,HG  there are three possibilities: 

First, two adjacent roots are ,,1 nn oo −  so ( ) ( )jnjn oodood ,,1 =−  for 

all .2...,,2,1 −= nj  This implies that ( ) ( ).1 jnjn UorUor |=|−  However, 

( ) ( ),111 −−− |≠| nnnn ooroor  so ( ) ( ).1 WorWor nn |≠|−  Second, one of the 

roots is element of 1−nH  or nH  and one of the roots is element of ,jH  

.2...,,2,1 −= nj  Without loss of generality, let no  and jo  for some j, so 

that ( ) ( ).,, jjnj oodood ≠  Then ( ) ( ).WorWor jn |≠|  Third, two adjacent 

roots are li oo ,  in .2...,,2,1, −= njH j  It is obvious that ( ) ≠|Wor i  

( ).Wor j |  
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Take any two adjacent vertices yx,  in .,1, nnjH j −=  Since 1−nH  

and nH  are bipartite, by Observation 3.3, we get ( ) ( ).WyrWxr |≠|  

Take any two adjacent vertices in .2...,,3,2, −= njH j  Since ,jU  for 

,2...,,3,2 −= nj  is basis of ( ) ( )., WyrWxrH j |≠|  

So ( { }) { }nkssiouuoUW iiijj
s
j <++=≠|−= = ...,,2,1,1 ∪∪  is a local 

resolving set of .HG  By Lemma 3.4, take any set ,HGS ⊂  where 
.WS <  Then there are two adjacent vertices in 2...,,3,2, −= njH j  

or two adjacent root vertices that have the same representation with respect   

to S. Thus, W is a local basis of HG  and ( ( ) )jjl
s
j HW α−= ∑ = dim1  

.1 sn −−+  Since G is complete graph nK  and ( ) ,1dim −= nKnl  

( ) ( ( ) ) ( )∑ = −+α−= s
j ljjll sGHG 1 ,dimdimdim H  where 1=α j  if jo  

belongs to a local basis of ,jH  and 0=α j  otherwise. 

Case 4. For G otherwise, ( ) ( ( ) )∑ = +α−= s
j jjll HG 1 dimdim H  

.1−− sn  It is obvious because nK  is the graph with the biggest local metric 
dimension. ~ 

Observation 3.8. Let G be a connected graph of order n, H  be a 
sequence of n connected graphs ....,,,, 321 nHHHH  Then HG  is a path 
if and only if G is a path of order ,2≤n  where H  is a sequence of paths 
and the root of jH  is element of basis of .jH  

The relationship between metric dimension and local metric dimension 
of rooted product of two connected graphs is given as follows. 

Theorem 3.9. Let G be a connected graph of order .3≥n  If H  is a 
sequence of nodd cycle graphs, then ( ) ( ) ( ) .dimdim GVGG l == HH  

Proof. Let H  be a sequence of n odd cycle graphs ,...,,,, 321 nHHHH  

and iα  is the root of .iH  Choose { ( )}.1 HiEuuW iii
n
i ∈α|= =∪  Then    

there are two vertices yx,  in iH  that are adjacent to ,iu  and ( ) ≠αixd ,  
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( )., iyd α  This implies that x and y have distinct distance to all vertices in 

( ) ( ).iHVGV H  Thus, W is a resolving set of .HG  Suppose that there is 

iH  such that no vertex in iH  that belongs to W. Then there are two vertices 

yx,  in ( )iHV  that are adjacent to the root of .iH  Thus, x and y have the 

same distance to the root .iH  This implies that x and y have the same 

distance to all vertices in ( ) ( ).iHVGV H  Therefore, W is minimum 

resolving set of HG  and ( ) ( ) .dim GVG =H  

Since W is a resolving set of ,HG  W is a local resolving set of .HG  

Suppose that there is iH  such that no vertex in iH  that belongs to W. Since 

iH  is odd cycle, there are exactly two adjacent vertices u, v in iH  such that 

( ) ( ) .2
1,, −=α=α mvdud ii  Then ( ) ( )svdsud ,, =  for all ( )/HGVs ∈  

( ),iHV  so W is a minimum local resolving set of HG  and 

( ) ( ) .dim GVnGl ==H  

So ( ) ( ) ( ) .dimdim GVGG l == HH  ~ 

As a consequence of Corollary 2.5(b) and Observation 3.8, we obtain 
sufficient and necessary condition of similarity metric dimension and local 
metric dimension of rooted product graph. 

Corollary 3.10. Let G be a connected graph of order n, H  be a 
sequence of n connected graphs ....,,,, 321 nHHHH  Then ( ) =HGdim  

( ) 1dim =HGl  if and only if G is a path of order H,2≤n  is a sequence 

of n paths and the root of jH  is element of basis of .jH  

Proof. Let G be a path of order ,2≤n  H  be a sequence of n path 
graphs, and the root of jH  is element of basis of .jH  Then ( )HG  is a 

path too. By Corollary 2.5(b), ( ) ( ) .1dimdim == HH GG l  Conversely, 

let ( ) ( ) .1dimdim == HH GG l  By Corollary 2.5(b), HG  is path. By 
Observation 3.8, G is a path of order ,2≤n  H  is a sequence of n path 
graphs, and the root of jH  is element of basis of .jH  ~ 
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As the consequence of Corollary 2.5(a) and Theorems 1.4 and 1.6, we 
get 

Corollary 3.11. If H  is a sequence of n path graphs, then ( )HnKdim  

( ) .1dim −== nKnl H  
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