ANALYTIC EXTENSION OF BEURLING'S ULTRADISTRIBUTIONS OF L_2 -GROWTH BY CAUCHY INTEGRALS

ISSN: 0972-0871

Byung Keun Sohn

Department of Mathematics Inje University Kimhae, Kyungnam 621-749 Korea e-mail: mathsohn@inje.ac.kr

Abstract

Let C be an open convex cone in \mathbb{R}^N such that \overline{C} does not contain any straight line and let $T^C = \mathbb{R}^N + iC \subset \mathbb{C}^N$. Let $\mathcal{S}'_{(\omega)}(\mathbb{R}^N)$ be the spaces of Beurling's generalized tempered distributions and let $\mathcal{D}'_{L_2,(\omega)}(\mathbb{R}^N)$ be the spaces of Beurling's ultradistributions of L_2 -growth, which is a dual of $\mathcal{D}_{L_2,(\omega)}(\mathbb{R}^N)$. We show that if U is in $\mathcal{D}'_{L_2,(\omega)}(\mathbb{R}^N)$ such that $U * \phi \in \mathcal{D}_{L_2,(\omega)}(\mathbb{R}^N)$ for $\phi \in \mathcal{D}_{L_2,(\omega)}(\mathbb{R}^N)$ and is identical in $\mathcal{S}'_{(\omega)}(\mathbb{R}^N)$ with the Fourier-Laplace transform of the inverse Fourier transform of U in $\mathcal{D}'_{L_2,(\omega)}(\mathbb{R}^N)$, then the Cauchy integral C(U;z), $z = x + iy \in T^C$ of U in $\mathcal{D}'_{L_2,(\omega)}(\mathbb{R}^N)$ corresponding to C has U as boundary value when $y \to 0$, $y \in C$ in $\mathcal{S}'_{(\omega)}(\mathbb{R}^N)$.

Received: February 15, 2015; Accepted: April 9, 2015

2010 Mathematics Subject Classification: 46F20, 30E20, 46F12.

Keywords and phrases: Beurling's ultradistributions, strongly elliptic, Cauchy integral,

analytic extension.

Communicated by K. K. Azad

1. Introduction

Let $\mathcal{E}'(\mathbb{R}^N)$ and $\mathcal{D}'(\mathbb{R}^N)$ be the spaces of distributions of compact support and distributions, respectively, and let \mathcal{O}'_{α} be Bremermann's distribution spaces which are intermediate spaces between $\mathcal{E}'(\mathbb{R}^N)$ and $\mathcal{D}'(\mathbb{R}^N)$. Tillmann has obtained a characterization of analytic functions which represent an element of $\mathcal{E}'(\mathbb{R}^N)$ as boundary value of analytic functions in regions that are bounded by closed curve in the extended complex plane in [15] and similar analysis for an element of the Schwartz distributions $\mathcal{D}'_{L_p}(\mathbb{R}^N)$ in regions in \mathbb{C}^n that are the product of unbounded domains in the plane in [16]. In [4] and [5], Bremermann has obtained the representation of elements in \mathcal{O}'_{α} as boundary values of analytic functions in half planes and tubes defined by quadrants. In both of these papers, the Cauchy integral of elements of $\mathcal{E}'(\mathbb{R}^N)$ and \mathcal{O}'_{α} plays essential roles in the analysis. In [6-11], Carmichael et al. have studied the problem discussed by Tillmann and Bremermann in the context of functions analytic in tube domains in \mathbb{C}^n with base being an open convex cone in \mathbb{R}^n such that \overline{C} does not contain any straight line, i.e., a regular cone. We see from [11, Lemma 4], [6, Theorem 3] and [9, Lemma 5.2.3 and (5.45)] that the Cauchy integral C(U; x + iy) of U in $\mathcal{E}'(\mathbb{R}^N)$ or $\mathcal{D}'(\mathbb{R}^N)$ corresponding to a regular cone C does not attain U as boundary value when $y \to 0$, $y \in C$ in $\mathcal{D}'(\mathbb{R}^N)$. Also, in [10, Theorem 5.4 and 5.5] and [8, Theorem 4.2.5 and 4.2.6], we see that the Cauchy integral C(U; x + iy) of U in $\mathcal{D}'(*, L_s(\mathbb{R}^N))$ corresponding to a regular cone C does not attain U as boundary value when $y \to 0$, $y \in C$ in $\mathcal{D}'(*, L_s(\mathbb{R}^N))$, where $\mathcal{D}'(*, L_s(\mathbb{R}^N))$ is ultradistributions of Beurling type $\mathcal{D}'((M_p), L_s(\mathbb{R}^N))$ of L_s -growth or of Roumieu type $\mathcal{D}'(\{M_p\}, L_s(\mathbb{R}^N))$ of L_s -growth. Here M_p , p = 0, 1, 2, ..., is a certain sequence of positive numbers and $2 \le s < \infty$. In case of the Schwartz distributions $\mathcal{D}'_{L_p}(\mathbb{R}^N)$, the Cauchy integral C(U; x+iy) of U in $\mathcal{D}'_{L_p}(\mathbb{R}^N)$, $1 \le p \le 2$, corresponding to a regular cone C does not attain U as boundary value as $y \to 0$, $y \in C$ in $\mathcal{S}'(\mathbb{R}^N)$ ([7, Theorem 9] and [9, Lemma 5.5.8]) but C(U; x+iy) does have U as boundary value when the Cauchy integral of U is identical in tempered distributions, $\mathcal{S}'(\mathbb{R}^N)$, with the Fourier-Laplace transform of the inverse Fourier transform of U ([7, Theorem 10] and [9, Theorem 5.5.3]).

Let $\mathcal{S}'_{(\omega)}(\mathbb{R}^N)$ be the spaces of Beurling's generalized tempered distributions and let $\mathcal{D}'_{L_2,(\omega)}(\mathbb{R}^N)$ be the spaces of Beurling's ultradistributions of L_2 -growth, which is a dual of $\mathcal{D}_{L_2,(\omega)}(\mathbb{R}^N)$. Let $U \in \mathcal{D}'_{L_2, (\omega)}(\mathbb{R}^N)$ be a convolutor in $\mathcal{D}_{L_2, (\omega)}(\mathbb{R}^N)$, i.e., $U * \phi \in \mathcal{D}'_{L_2, (\omega)}(\mathbb{R}^N)$ $\mathcal{D}_{L_2,(\omega)}(\mathbb{R}^N)$ when $\phi \in \mathcal{D}_{L_2,(\omega)}(\mathbb{R}^N)$. In this paper, we show that if U is a convolutor in $\mathcal{D}_{L_2,(\omega)}(\mathbb{R}^N)$ and is identical in $\mathcal{S}'_{(\omega)}$ with the Fourier-Laplace transform of the inverse Fourier transform of U in $\mathcal{D}'_{L_2,(\omega)}(\mathbb{R}^N)$, then the Cauchy integral C(U; z), $z = x + iy \in T^C$ of U in $\mathcal{D}'_{L_2,(\omega)}(\mathbb{R}^N)$ corresponding to C has U as boundary value when $y \to 0$, $y \in C$ in $\mathcal{S}'_{(\omega)}(\mathbb{R}^N)$. Since $\mathcal{D}'_{L_2,(\omega)}(\mathbb{R}^N)$ is the natural generalization of the space $\mathcal{D}'_{L_2}(\mathbb{R}^N)$, our results are extensions of [7, Theorem 10] and [9, Theorem 5.5.3] in the sense of $\mathcal{D}'_{L_2}(\mathbb{R}^N)$. Also, since we can find a weight function κ such that $\mathcal{D}'((M_p), L_s(\mathbb{R}^N)) = \mathcal{D}'_{L_s,(\kappa)}(\mathbb{R}^N)$ from Remark 3.11 in [13], our results contain the conditions under which the Cauchy integral C(U; z), $z = x + iy \in T^C$ of U in $\mathcal{D}'((M_p), L_2(\mathbb{R}^N))$ corresponding to C has U as boundary value when $y \to 0$, $y \in C$ in $\mathcal{S}'^{(M_p)} = \mathcal{S}'_{(\kappa)}(\mathbb{R}^N)$.

2. Beurling's Ultradistributions of L_p -growth

We will review Beurling's ultradistributions of L_p -growth in \mathbb{R}^N and establish some of their properties which will be needed in the later. Firstly, we will review Beurling's ultradistributions which introduced by Braun et al. in [3].

Definition 1. A *weight* function is an increasing continuous function $\omega : [0, \infty) \to [0, \infty)$ with the following properties:

- (a) There exists $L \ge 0$ with $\omega(2t) \le L(\omega(t) + 1)$ for all $t \ge 0$,
- $(\beta) \int_{1}^{\infty} (\omega(t)/t^2) dt < \infty,$
- $(\gamma) \log(t) = o(\omega(t))$ as t tends to ∞ ,
- (δ) $ψ: t \to ω(e^t)$ is convex.

For a weight function ω , we define $\widetilde{\omega}: \mathbb{C}^N \to [0, \infty)$ by $\widetilde{\omega}(z) = \omega(|z|)$ and call this function ω to avoid abuse of notation. Here $|z| = \sum_{j=1}^N |z_j|$.

By (δ) , $\psi(0) = 0$ and $\lim_{x \to \infty} x/\psi(x) = 0$. Then we can define the Young conjugate ψ^* of ψ by

$$\psi^*: [0, \infty) \to \mathbb{R}, \quad \psi^*(y) = \sup_{x \ge 0} (xy - \psi(x)).$$

Let ω be a weight function. For a compact set $K \subset \mathbb{R}^N$, we define

$$\mathcal{D}_{(\omega)}(K) = \{ f \in \mathcal{D}(K) : \| f \|_{K,\lambda} < \infty \text{ for every } \lambda > 0 \},$$

where
$$\|f\|_{K,\lambda} = \sup_{x \in K} \sup_{n \in \mathbb{N}_0^N} |f^{(n)}(x)| \exp(-\lambda \psi^*(n/\lambda)).$$

Then $\mathcal{D}_{(\omega)}(K)$ equipped with its natural topology is a Fréchet space. For a fundamental sequence $(K_j)_{j\in\mathbb{N}}$ of compact subsets of \mathbb{R}^N , we define

$$\mathcal{D}_{(\omega)}(\mathbb{R}^N) = \operatorname{ind}_j \mathcal{D}_{(\omega)}(K_j).$$

The dual $\mathcal{D}'_{(\omega)}(\mathbb{R}^N)$ of $\mathcal{D}_{(\omega)}(\mathbb{R}^N)$ is equipped with its strong topology and the elements of $\mathcal{D}'_{(\omega)}(\mathbb{R}^N)$ are called *Beurling's ultradistributions*.

We denote by $\mathcal{E}_{(\omega)}(\mathbb{R}^N)$ the set of all C^{∞} functions f in \mathbb{R}^N such that $\|f\|_{K,\lambda} < \infty$ for every compact K and every $\lambda > 0$. For more details about $\mathcal{D}_{(\omega)}(\mathbb{R}^N)$ and $\mathcal{E}_{(\omega)}(\mathbb{R}^N)$, we refer to [3].

A function $\phi \in C^{\infty}(\mathbb{R}^N)$ is in the space $S_{(\omega)}(\mathbb{R}^N)$ when, for every $m \in \mathbb{N}$ and $n \in \mathbb{N}^N$,

$$p_{m,n}(\phi) = \sup_{x \in \mathbb{R}^N} e^{m\omega(x)} |\phi^{(n)}(x)| < \infty$$

and

$$\pi_{m,n}(\phi) = \sup_{x \in \mathbb{R}^N} e^{m\omega(x)} |\hat{\phi}^{(n)}(x)| < \infty.$$

 $\mathcal{S}_{(\omega)}(\mathbb{R}^N)$ is endowed with the topology generated by the family $\{p_{m,n}, \pi_{m,n}\}$, where $m \in \mathbb{N}$ and $n \in \mathbb{N}^N$ of semi-norms. Then $\mathcal{S}_{(\omega)}(\mathbb{R}^N)$ is a Fréchet space and the Fourier transform \mathcal{F} defines an automorphism of $\mathcal{S}_{(\omega)}(\mathbb{R}^N)$. $\mathcal{D}_{(\omega)}(\mathbb{R}^N)$ is a dense subspace of $\mathcal{S}_{(\omega)}(\mathbb{R}^N)$. The dual space of $\mathcal{S}_{(\omega)}(\mathbb{R}^N)$ is $\mathcal{S}'_{(\omega)}(\mathbb{R}^N)$ and the Fourier transformation is defined on $\mathcal{S}'_{(\omega)}(\mathbb{R}^N)$ as the transposed map of \mathcal{F} , thus \mathcal{F} defines an automorphism of the strong dual $\mathcal{S}'_{(\omega)}(\mathbb{R}^N)$. For more details about $\mathcal{S}_{(\omega)}(\mathbb{R}^N)$ and $\mathcal{S}'_{(\omega)}(\mathbb{R}^N)$, we refer to [2].

For every $1 \le p \le \infty$, $k \in \mathbb{N}$ and $\phi \in C^{\infty}(\mathbb{R}^N)$, $\gamma_{k,p}(\phi)$ is defined as follows:

$$\gamma_{k, p}(\phi) = \sup_{\alpha \in \mathbb{N}^N} \| \phi^{(\alpha)} \|_p e^{-k\psi^*(\alpha/k)},$$

where $\|\cdot\|_p$ denotes the usual norm in $L_p(\mathbb{R}^N)$. ($\|f\|_{\infty}$ means the infimum of $\sup g(t)$ as g ranges over all functions which are equal to f almost everywhere.) If $1 \leq p < \infty$, then the space $\mathcal{D}_{L_p,(\omega)}(\mathbb{R}^N)$ is the set of all C^{∞} -functions ϕ on \mathbb{R}^N such that $\gamma_{k,\,p}(\phi) < \infty$ for each $k \in \mathbb{N}$. A function $\phi \in C^{\infty}(\mathbb{R}^N)$ is in $\mathcal{B}_{L_{\infty},(\omega)}(\mathbb{R}^N)$ when $\gamma_{k,\,\infty}(\phi) < \infty$. We denote by $\mathcal{D}_{L_{\infty},(\omega)}(\mathbb{R}^N)$ the subspace of $\mathcal{B}_{L_{\infty},(\omega)}(\mathbb{R}^N)$ that consists of all those functions $\phi \in \mathcal{B}_{L_{\infty},(\omega)}(\mathbb{R}^N)$ for which $\lim_{|x| \to \infty} \phi^{(\alpha)}(x) = 0$ for each $\alpha \in \mathbb{N}^N$. The topology of $\mathcal{D}_{L_p,(\omega)}(\mathbb{R}^N)$, $1 \leq p \leq \infty$, is generated by the family $\{\gamma_{k,\,p}(\phi)\}_{k \in \mathbb{N}}$ of semi-norms. Then it is obvious that $\mathcal{D}_{L_p,(\omega)}(\mathbb{R}^N)$ is continuously contained in the Schwartz's test spaces \mathcal{D}_{L_p} , $1 \leq p \leq \infty$. For more details about $\mathcal{D}_{L_p,(\omega)}(\mathbb{R}^N)$ and $\mathcal{D}'_{L_p,(\omega)}(\mathbb{R}^N)$, we refer to [1].

From Proposition 2.1 of [1] and Proposition 2.9 of [1], we have the following:

Theorem 1. (i) $\mathcal{D}_{L_p,(\omega)}(\mathbb{R}^N)$, $1 \le p \le \infty$, are Fréchet spaces.

- (ii) $\mathcal{D}_{L_p,(\omega)}(\mathbb{R}^N)$ is continuously contained in $\mathcal{D}_{L_q,(\omega)}(\mathbb{R}^N)$, when $1 \leq p \leq q \leq \infty$.
- (iii) $\mathcal{D}_{(\omega)}(\mathbb{R}^N) \subset \mathcal{D}_{L_p,(\omega)}(\mathbb{R}^N) \subset \mathcal{E}_{(\omega)}(\mathbb{R}^N)$, $1 \leq p \leq \infty$ with continuous and dense inclusions.
- (iv) $\mathcal{S}_{\omega}(\mathbb{R}^N)$ is continuously contained in $\mathcal{D}_{L_1,(\omega)}(\mathbb{R}^N)$, hence in $\mathcal{D}_{L_p,(\omega)}(\mathbb{R}^N)$, $1 \leq p \leq \infty$.

The dual of $\mathcal{D}_{L_p,(\omega)}(\mathbb{R}^N)$ will be denoted by $\mathcal{D}'_{L_p,(\omega)}(\mathbb{R}^N)$ and it will be endowed with the strong topology. The elements of $\mathcal{D}'_{L_p,(\omega)}(\mathbb{R}^N)$ are called the *Beurling's ultradistributions of Lq-growth* where q is the conjugate exponent of p.

From Proposition 2.2 in [1], we have the following:

Theorem 2. Let $T \in \mathcal{D}'_{L_p,(\omega)}(\mathbb{R}^N)$, $1 \leq p \leq \infty$ and $\phi \in \mathcal{D}_{\omega}(\mathbb{R}^N)$ be given. Then $T * \phi \in L_q(\mathbb{R}^N)$, where 1/p + 1/q = 1.

Definition 2. T is a *convolutor* in $\mathcal{D}_{L_p,(\omega)}(\mathbb{R}^N)$ if T is in $\mathcal{D}'_{L_p,(\omega)}(\mathbb{R}^N)$ such that $T * \phi \in \mathcal{D}_{L_p,(\omega)}(\mathbb{R}^N)$ for every $\phi \in \mathcal{D}_{L_p,(\omega)}(\mathbb{R}^N)$.

Assume that G is an entire function such that $\log |G(z)| = O(\omega(|z|))$ as $|z| \to \infty$. The functional T_G on $\mathcal{E}_{\omega}(\mathbb{R}^N)$ is defined by

$$\langle T_G, \, \phi \rangle = \sum_{\alpha=0}^{\infty} (-i)^{\alpha} \, \frac{G^{(\alpha)}(0)}{\alpha!} \, \phi^{(\alpha)}(0), \quad \phi \in \mathcal{E}_{(\omega)}(\mathbb{R}^N).$$

The operator G(D) defined on $\mathcal{D}'_{(\omega)}(\mathbb{R}^N)$ by

$$G(D): \mathcal{D}_{(\omega)} \to \mathcal{D}_{(\omega)}, \quad \mu \to G(D)\mu = \mu * T_G,$$

is called an *ultradifferential operator of* (ω) -*class*. When G(D) is restricted to $\mathcal{E}_{(\omega)}(\mathbb{R}^N)$, G(D) is a continuous operator from $\mathcal{E}_{(\omega)}(\mathbb{R}^N)$ into $\mathcal{E}_{(\omega)}(\mathbb{R}^N)$ and if for every $\phi \in \mathcal{E}_{(\omega)}(\mathbb{R}^N)$,

$$(G(D)\phi)(x) = \sum_{\alpha=0}^{\infty} (i)^{\alpha} \frac{G^{(\alpha)}(0)}{\alpha!} \phi^{(\alpha)}(x), \quad x \in \mathbb{R}^{N}.$$

We see from [10, Proposition 2.4] that each ultradifferential operator G(D) of (ω) -class defines a continuous linear mapping from $\mathcal{D}_{L_p,(\omega)}(\mathbb{R}^N)$ into itself for every $1 \leq p \leq \infty$.

Definition 3. An ultradifferential operator G(D) of (ω) -class is said to be *strongly elliptic* if there exist M > 0 and l > 0 such that $|G(z)| \ge Me^{l\omega(|z|)}$ when $|\operatorname{Im} z| < M|\operatorname{Re} z|$.

From [1, Corollary 2.8(i)], we have the following:

Theorem 3. For a fixed $1 \le p < \infty$, a function $\phi \in L_p(\mathbb{R}^N)$ is in $\mathcal{D}_{L_p,(\omega)}(\mathbb{R}^N)$ if and only if $G(D)\phi \in L_p(\mathbb{R}^N)$ for every ultradifferential operator G(D) of (ω) -class.

We know from Theorem 2 that $\widetilde{T} * \phi \in L_q(\mathbb{R}^N)$ for $T \in \mathcal{D}'_{L_p,(\omega)}(\mathbb{R}^N)$ and $\phi \in \mathcal{D}_{(\omega)}(\mathbb{R}^N)$, where $\widetilde{T}(\phi) = T(\widetilde{\phi})$ and 1/p + 1/q = 1. For every ultradifferential operator G(D), we have that $G(D)(\widetilde{T} * \phi) = \widetilde{T} * G(D)\phi \in L_q(\mathbb{R}^N)$ and we can apply Theorem 3 to conclude that $\widetilde{T} * \phi \in \mathcal{D}_{L_q,(\omega)}(\mathbb{R}^N)$. (Remark of [1, Definition 3].)

3. Cauchy Integral of Beurling Ultradistributions of L_2 -growth

In this section, we will find the condition under which the Cauchy integral C(U; x + iy) of U in $\mathcal{D}'_{L_2, (\omega)}(\mathbb{R}^N)$ does have U as boundary value when $y \to 0$, $y \in C$ in $\mathcal{S}'_{(\omega)}(\mathbb{R}^N)$.

Let C be a cone with vertex at 0, i.e., if $y \in C$ implies $\lambda y \in C$ for all $\lambda > 0$.

Definition 4. An open convex cone C such that \overline{C} does not contain any straight line will be called a *regular cone*.

For a cone C, $\mathcal{O}(C)$ will denote the convex hull(envelop) of C and $T^C = \mathbb{R}^N + iC \subset \mathbb{C}^N$ is a tube in \mathbb{C}^N . The set $C^* = \{t \in \mathbb{R}^N ; \langle t, y \rangle \geq 0, y \in C\}$ is the dual of the cone C.

Definition 5. Let C be a regular cone in \mathbb{R}^N . The *Cauchy kernel* $K(z-t), \ z \in T^C = \mathbb{R}^N + iC, \ t \in \mathbb{R}^N$, corresponding to the tube T^C is

$$K(z-t) = \int_{C^*} e^{2\pi i \langle (z-t), \eta \rangle} d\eta, \quad z \in T^C, \quad t \in \mathbb{R}^N.$$

We see from Theorem 13 in [14] that for a regular cone C in \mathbb{R}^N , $K(z-t)\in \mathcal{D}_{L_p,(\omega)}(\mathbb{R}^N),\ 2\leq p\leq \infty$ as a function of $t\in \mathbb{R}^N$ for $z\in T^C$. Hence, we can define the following:

Definition 6. Let $U \in \mathcal{D}'_{L_p,(\omega)}(\mathbb{R}^N)$, $2 \le p \le \infty$. The *Cauchy integral* C(U; z) of U in $\mathcal{D}'_{L_p,(\omega)}(\mathbb{R}^N)$ corresponding to C is

$$C(U; z) = \langle U_t, K(z-t) \rangle, \quad z = x + iy \in T^C.$$

Now we will show that the Cauchy integral C(U;z) of U in $\mathcal{D}'_{L_p,(\omega)}(\mathbb{R}^N)$, $2 \leq p \leq \infty$, corresponding to C is analytic in T^C . If $\phi \in \mathcal{D}_{(\omega)}(\mathbb{R}^N)$ and $T \in \mathcal{D}'_{L_p,(\omega)}(\mathbb{R}^N)$, $1 \leq p \leq \infty$, then $T * \phi \in L_q$, 1/p + 1/q = 1, by Theorem 2. Since G(D) is a continuous operator from $\mathcal{D}_{(\omega)}(\mathbb{R}^N)$ into $\mathcal{D}_{(\omega)}(\mathbb{R}^N)$, we see from the remark of Theorem 3 and Theorem 2 that for $\phi \in \mathcal{D}_{(\omega)}(\mathbb{R}^N)$ and $T \in \mathcal{D}'_{L_p,(\omega)}(\mathbb{R}^N)$, $1 \leq p \leq \infty$,

$$G(D)(T * \phi) = T * G(D)\phi \subset T * \mathcal{D}_{(\omega)}(\mathbb{R}^N) \subset L_q(\mathbb{R}^N),$$

where 1/p + 1/q = 1. Hence, we have from Theorem 3 that for $1 \le p \le \infty$, if $T \in \mathcal{D}'_{L_n,(\omega)}(\mathbb{R}^N)$ and $\phi \in \mathcal{D}_{(\omega)}(\mathbb{R}^N)$, then $T * \phi \in \mathcal{D}'_{L_n,(\omega)}(\mathbb{R}^N)$,

where 1/p + 1/q = 1. Then, by the exactly same lines in the proof of Lemma 8 in [14] (or Proposition 2.3 in [1]), we have the following:

Lemma 1. Let $U \in \mathcal{D}'_{L_p,(\omega)}(\mathbb{R}^N)$, $1 \leq p \leq \infty$. Then there exist a strongly elliptic ultradifferential operator G(D) of (ω) -class and $f, g \in \mathcal{D}_{L_q,(\omega)}(\mathbb{R}^N)$, 1/p + 1/q = 1 such that U = G(D)f + g.

By combining Lemma 1 above and Lemma 9 in [14], we have the following:

Theorem 4. Let $U \in \mathcal{D}'_{L_p,(\omega)}(\mathbb{R}^N)$, $1 \leq p \leq \infty$. Then there exist a strongly elliptic ultradifferential operator G(D) of (ω) -class and $f \in \mathcal{D}_{L_q,(\omega)}(\mathbb{R}^N)$, 1/p + 1/q = 1 such that

$$U(x) = G(D) f(x) = \sum_{\alpha=0}^{\infty} (-i)^{\alpha} \frac{G^{(\alpha)}(0)}{\alpha!} f^{(\alpha)}(x).$$

Then, by the exactly same lines in the proof of Theorem 16 in [14], we have the following:

Theorem 5. Let C be a regular cone in \mathbb{R}^N and let $U \in \mathcal{D}'_{L_p,(\omega)}(\mathbb{R}^N)$, $2 \le p \le \infty$. Then the Cauchy integral C(U; z) of U in $\mathcal{D}'_{L_p,(\omega)}(\mathbb{R}^N)$, $2 \le p \le \infty$, corresponding to C is analytic in T^C .

Let C be a regular cone in \mathbb{R}^N and let U be a convolutor in $\mathcal{D}_{L_2,(\omega)}(\mathbb{R}^N)$. Since the Cauchy kernel $K(z-t)\in\mathcal{D}_{L_p,(\omega)}(\mathbb{R}^N),\ p\geq 2,$

$$K_{y} = K(x + iy) = \int_{C^{*}} e^{2\pi i \langle x + iy, \eta \rangle} d\eta \in \mathcal{D}_{L_{p}, (\omega)}(\mathbb{R}^{N}), \tag{1}$$

where $y \in C$ and $p \ge 2$. Since U is a convolutor in $\mathcal{D}_{L_2,(\omega)}(\mathbb{R}^N)$, $C(U; x + iy) = (U * K_y)(x) \in \mathcal{D}_{L_2,(\omega)}(\mathbb{R}^N)$, $y \in C$. Since $\mathcal{D}_{L_2,(\omega)}(\mathbb{R}^N)$

$$\subset \mathcal{D}'_{L_2,(\omega)}(\mathbb{R}^N) \text{ and } \mathcal{S}_{(\omega)} \subset \mathcal{D}_{L_2,(\omega)}(\mathbb{R}^N),$$

$$\langle C(U; x + iy), \varphi(x) \rangle = \langle (U * K_v)(x), \varphi(x) \rangle = \langle \langle U(t), K(x + iy - t) \rangle, \varphi(x) \rangle$$

is well-defined for $\varphi \in \mathcal{S}_{(\omega)}(\mathbb{R}^N)$ and $y \in C$. From the representation of a convolutor $U \in \mathcal{D}'_{L_2,(\omega)}(\mathbb{R}^N)$ in Theorem 10 of [14], there exist a strongly elliptic ultradifferential operator G(D) and $f \in \mathcal{D}_{L_2,(\omega)}(\mathbb{R}^N)$ such that U = G(D)f. Since f(t), $K(z-t) \in \mathcal{D}_{L_2,(\omega)}(\mathbb{R}^N)$, we see that $f^{(\alpha)}(t) \cdot K(z-t) \in L_1(\mathbb{R}^N)$ as a function of $t \in \mathbb{R}^N$ for $z \in T^C$. Hence, we see from change of order of integration that if $\varphi \in \mathcal{S}_{(\omega)}(\mathbb{R}^N)$,

$$\langle C(U; x + iy), \varphi(x) \rangle = \langle \langle U(t), K(x + iy - t) \rangle, \varphi(x) \rangle$$

$$= \int \int \sum_{\alpha=0}^{\infty} i^{\alpha} \frac{G^{(\alpha)}(0)}{\alpha!} f^{(\alpha)}(t) K(z - t) dt \varphi(x) dx$$

$$= \int \sum_{\alpha=0}^{\infty} i^{\alpha} \frac{G^{(\alpha)}(0)}{\alpha!} f^{(\alpha)}(t) \int K(z - t) \varphi(x) dx dt$$

$$= \langle U(t) \langle K(z - t), \varphi(x) \rangle \rangle$$
(2)

for z = x + iy, $y \in C$.

We note that the reason for using $\varphi \in \mathcal{S}_{(\omega)}(\mathbb{R}^N)$ in above is that the symmetry of $\mathcal{S}_{(\omega)}(\mathbb{R}^N)$ under the Fourier and inverse Fourier transforms will be needed later.

Combining (1), Lemma 19 in [14] and the continuity of convolutor U in $\mathcal{D}_{L_2,(\omega)}(\mathbb{R}^N)$, we have the following:

Theorem 6. Let C be a regular cone in \mathbb{R}^N . Let U be a convolutor in $\mathcal{D}_{L_2,(\omega)}(\mathbb{R}^N)$. If $\varphi \in \mathcal{S}_{(\omega)}(\mathbb{R}^N)$, then

$$\lim_{y\to 0} \langle C(U; x+iy), \varphi(x) \rangle = \langle U, \mathcal{F}^{-1}[I_{C^*}(\eta)\hat{\varphi}(\eta): t] \rangle,$$

where $I_{C^*}(\eta)$ is a characteristic function of C^* .

We see from Theorem 6 that the Cauchy integral C(U; x+iy) of the convolutor in $\mathcal{D}_{L_2,(\omega)}(\mathbb{R}^N)$ corresponding to a regular cone C in \mathbb{R}^N does not attain U as boundary value when $y \to 0$, $y \in C$ in $\mathcal{S}'_{(\omega)}(\mathbb{R}^N)$. To find the conditions under which $U \in \mathcal{D}'_{L_2,(\omega)}(\mathbb{R}^N)$ is represented as the boundary value of analytic function C(U; z), the Cauchy integral of U in $\mathcal{D}'_{L_2,(\omega)}(\mathbb{R}^N)$ corresponding to C, in tube when $y \to 0$, $y \in C$ in $\mathcal{S}_{(\omega)}(\mathbb{R}^N)$, we need definition of the convolution U * V for $U \in \mathcal{D}'_{L_p,(\omega)}(\mathbb{R}^N)$ and $V \in \mathcal{D}'_{L_p,(\omega)}(\mathbb{R}^N)$, 1/p + 1/q = 1 and its properties.

Definition 7 [1, Definition 3]. Let $U \in \mathcal{D}'_{L_p, (\omega)}(\mathbb{R}^N)$ and $V \in \mathcal{D}'_{L_q, (\omega)}(\mathbb{R}^N)$, 1/p + 1/q = 1. Then the convolution U * V is the ultradistribution $U * V \in \mathcal{D}'_{(\omega)}$ given by $\langle U * V, \phi \rangle = \langle U, \widetilde{V} * \phi \rangle$, where $\widetilde{V}(\phi) = V(\widetilde{\phi})$.

Let $\phi \in \mathcal{D}_{(\omega)}(\mathbb{R}^N)$ and $h \in L_p(\mathbb{R}^N) \subset \mathcal{S}'_{(\omega)}(\mathbb{R}^N) \subset \mathcal{D}'_{(\omega)}(\mathbb{R}^N)$. By the definition of T_G ,

$$\langle G(D)h, \, \phi \rangle = \langle h * T_G, \, \phi \rangle = \langle h(x), \, \langle T_G(y), \, \phi(x+y) \rangle \rangle$$

$$= \left\langle h(x), \, \sum_{\alpha=0}^{\infty} (-i)^{\alpha} \frac{G^{(\alpha)}}{\alpha!} \phi^{(\alpha)}(x) \right\rangle$$

$$= \sum_{\alpha=0}^{\infty} (-i)^{\alpha} \frac{G^{(\alpha)}}{\alpha!} \left(-\frac{\partial^{\alpha}}{\partial x^{\alpha}} \langle h(x), \, \phi(x) \rangle \right)$$

$$= G(D) \langle h, \, \phi \rangle. \tag{3}$$

If $U \in \mathcal{D}'_{L_p,(\omega)}(\mathbb{R}^N)$ and $V \in \mathcal{D}'_{L_q,(\omega)}(\mathbb{R}^N)$, 1/p + 1/q = 1, then there exist elliptic ultradifferential operators $G_1(D)$, $G_2(D)$ of (ω) -class and $f \in L_q$, $g \in L_p$ such that $U = G_1(D)f$ and $V = G_2(D)g$. Hence, we see from (3) that

$$U *V = G_1(D)G_2(D)(f *g) \text{ in } \mathcal{D}_{(\omega)}(\mathbb{R}^N). \tag{4}$$

We now consider Fourier transform of $\mathcal{D}'_{L_p,(\omega)}(\mathbb{R}^N)$, p=1 or $2 \le p < \infty$. From the proof of Proposition 2.9 in [1], we know the following:

 $\mathcal{S}'_{(\omega)}(\mathbb{R}^N) \subset \mathcal{D}_{L_1,(\omega)}(\mathbb{R}^N)$ with continuous and dense inclusion, consequently, each element of $\mathcal{D}'_{L_1,(\omega)}(\mathbb{R}^N)$ can be considered as an element of $\mathcal{S}'_{(\omega)}(\mathbb{R}^N)$. Then, if $T \in \mathcal{D}'_{L_1,(\omega)}(\mathbb{R}^N)$, then the Fourier transform $\mathcal{F}(T)$ is given by

$$\langle \mathcal{F}(T), \, \phi \rangle = \langle T, \, \hat{\phi} \rangle, \quad \phi \in \mathcal{S}_{(\omega)}(\mathbb{R}^N).$$

By Theorem 2.5 in [1], there exist $f \in L_{\infty}(\mathbb{R}^N)$ and an elliptic ultradifferential operator G(D) such that T = G(D)f. Then it follows that $\mathcal{F}(T) = G(-t)\mathcal{F}(t)$ on $\mathcal{D}_{(\omega)}(\mathbb{R}^N)$. We note that if $T \in \mathcal{D}'_{L_p,(\omega)}(\mathbb{R}^N)$, $2 \le p < \infty$, is represented as T = G(D)f, $f \in L_q(\mathbb{R}^N)$, where 1/p + 1/q = 1, then $\mathcal{F}(T) = G(-\xi)\hat{f}(\xi)$.

Now we will find the conditions under which $U \in \mathcal{D}'_{L_2,(\omega)}(\mathbb{R}^N)$ is represented as the boundary value of the Cauchy integral C(U; z), $z = x + iy \in T^C$ of U corresponding to C in tube when $y \to 0$, $y \in C$.

Lemma 2. Let $\mathcal{S}(\mathbb{R}^N)$ be the set of all C^{∞} functions polynomially rapidly decreasing at infinity with the appropriate semi-norms in the sense of Schwarz. Then $\mathcal{S}(\mathbb{R}^N)$ is contained in $\mathcal{D}_{L_1,(\omega)}(\mathbb{R}^N)$, hence in $\mathcal{D}_{L_p,(\omega)}(\mathbb{R}^N)$, $p \ge 1$.

Proof. It suffices to show the results in one dimensional Euclidean space \mathbb{R} . Let $\phi \in \mathcal{S}(R)$. By the facts for Fourier transform, for every $n \in \mathbb{N}$,

$$-2\pi x^{2}\phi^{(n)}(x) = (-n)(n-1)\int_{\mathbb{R}} (iy)^{n-2}\hat{\phi}(y)e^{ixy}dy$$

$$+ 2in\int_{\mathbb{R}} (iy)^{n-1}\hat{\phi}'(y)e^{ixy}dy$$

$$+ \int_{\mathbb{R}} (iy)^{n}\hat{\phi}^{(2)}(y)e^{ixy}dy.$$
 (5)

Since $(n/k)/\psi^*(n/k)$ is decreasing and goes to 0 as n goes to ∞ for every $k \in \mathbb{N}$,

$$n < k\psi^*(n/k), \quad n \in \mathbb{N}, \tag{6}$$

for every $k \in \mathbb{N}$. From (2), (3), and the fact that $\hat{\phi} \in \mathcal{S}(R)$, we have that for every $k \in \mathbb{N}$,

$$|x^2\phi^{(n)}(x)| \le C_{\phi}e^{k\psi^*(n/k)}, \quad n \in \mathbb{N},$$

where C_{ϕ} is a constant depending on ϕ . Thus, $\phi \in \mathcal{D}_{L_{1},(\omega)}(\mathbb{R})$.

Theorem 7. Let C be a regular cone in \mathbb{R}^N . Let U be a convolutor in $\mathcal{D}_{L_2,(\omega)}(\mathbb{R}^N)$ and $U = \mathcal{F}[V]$ in $\mathcal{S}'_{(\omega)}(\mathbb{R}^N)$ for $V \in \mathcal{D}'_{L_2,(\omega)}(\mathbb{R}^N)$ with $supp(V) \subset C^*$ and C(U;z), $z = x + iy \in T^C$, be the Cauchy integral of U corresponding to C. Then there exist an entire function G(z) with $\log |G(z)| = O(\omega(|z|))$ as $z \to \infty$ and $f \in L_2$ such that

$$V = G(x)\hat{f}(x) \text{ in } S'_{(\omega)}(\mathbb{R}^N)$$
 (7)

and

$$C(U; z) = \langle V, e^{2\pi i \langle z, t \rangle} \rangle, \quad z = x + iy \in T^C$$
 (8)

Analytic Extension of Beurling's Ultradistributions ...

631

as elements of $\mathcal{S}'_{(\omega)}(\mathbb{R}^N)$ and

$$C(U; z) \to U \text{ in } \mathcal{S}'_{(\omega)}(\mathbb{R}^N) \text{ as } y \to 0, y \in C.$$
 (9)

Proof. Since $U=\mathcal{F}[V]$ in $\mathcal{S}'_{(\omega)}(\mathbb{R}^N)$ and \mathcal{F} defines an automorphism of the strong dual $\mathcal{S}'_{(\omega)}(\mathbb{R}^N)$, $V=\mathcal{F}^{-1}[U]$ in $\mathcal{S}'_{(\omega)}(\mathbb{R}^N)$. From the representation theorem of U in $\mathcal{D}_{L_2,(\omega)}(\mathbb{R}^N)$, we let U=G(D)f, where G(D) is a strongly elliptic ultradifferential operator and $f\in\mathcal{D}_{L_2,(\omega)}(\mathbb{R}^N)$. Then if $\varphi\in\mathcal{S}_{(\omega)}(\mathbb{R}^N)$, we see from Theorem 1(iv) that $\langle V,\varphi\rangle$ is well-defined and

$$\langle V(x), \varphi(x) \rangle = \langle U(t), \mathcal{F}^{-1}[\varphi(x); t] \rangle$$

$$= \langle f(t), G(D) \mathcal{F}^{-1}[\varphi(x); t] \rangle$$

$$= G(x) \langle f(t), \mathcal{F}^{-1}[\varphi(x); t] \rangle$$

$$= \langle G(x) \hat{f}(x), \varphi(x) \rangle,$$

hence (7) is satisfied.

Now let $\alpha_{\varepsilon}(t) \in C^{\infty}(\mathbb{R}^N)$ which is 1 on an ε -neighborhood of C^* and has support in a 2ε -neighborhood of C^* . By Lemma 2,

$$\alpha_{\varepsilon}(t)e^{2\pi i \left\langle z,t\right\rangle}\in\mathcal{S}(\mathbb{R}^{N})\subset\mathcal{D}_{L_{p},(\omega)}(\mathbb{R}^{N}),\quad 1\leq p\leq\infty \tag{10}$$

as a function of t for $z \in T^C$. Then

$$\langle V(t), e^{2\pi i \langle z, t \rangle} \rangle = \langle V(t), \alpha_{\varepsilon}(t) e^{2\pi i \langle z, t \rangle} \rangle$$

is well-defined from (10) and the fact that $supp(V) \subset C^*$ and analytic in T^C by Theorem 4.7.4 in [9]. If $\varphi \in \mathcal{S}_{(\omega)}(\mathbb{R}^N)$, then

$$\alpha_{\varepsilon}(t)e^{-2\pi\langle y,t\rangle}\hat{\varphi}(t)\in\mathcal{S}_{(\omega)}(\mathbb{R}^N)\subset\mathcal{D}_{L_{2},(\omega)}(\mathbb{R}^N),\quad y\in\mathcal{C},$$

hence $\langle V(t), \alpha_{\varepsilon}(t)e^{-2\pi\langle y, t\rangle}\hat{\varphi}(t)\rangle$ is well-defined.

Since G(t) satisfies $\log |G(z)| = O(\omega(|z|))$ and $\lim_{t\to\infty} \omega(t)/t = 0$ from [Remark 1.2, 11], $G(t)e^{-2\pi\langle y,t\rangle} \in L_2(\mathbb{R}^N)$, $y \in C$. Since $f \in L_2(\mathbb{R}^N)$, we see that $\hat{f} \in L_2(\mathbb{R}^N)$ by Parseval's identity. Hence, $G(t)\hat{f}(t)\alpha_{\varepsilon}(t)e^{-2\pi\langle y,t\rangle}$ $\in L_1(\mathbb{R}^N)$. By change of order of integration that if $\varphi \in \mathcal{S}_{(\omega)}(\mathbb{R}^N)$, then

$$\langle \langle V(t), e^{2\pi i \langle z, t \rangle} \rangle, \varphi(x) \rangle = \langle \langle V(t), \alpha_{\varepsilon}(t) e^{2\pi i \langle z, t \rangle} \rangle, \varphi(x) \rangle$$

$$= \langle V(t), \alpha_{\varepsilon}(t) e^{-2\pi \langle y, t \rangle} \hat{\varphi}(t) \rangle$$

$$= \langle \mathcal{F}[V(t) I_{C^*}(t) \alpha_{\varepsilon}(t) e^{-2\pi \langle y, t \rangle}], \varphi(x) \rangle, \quad (11)$$

where $z = x + iy \in T^C$ and I_{C^*} is the characteristic function of C^* . On the other hand, for $\phi \in \mathcal{S}_{(\omega)}(\mathbb{R}^N)$ and $y \in C$, by change of order of integration,

$$\langle \mathcal{F}[V] * \mathcal{F}[I_{C^*} \alpha_{\varepsilon} e^{-2\pi \langle y, \cdot \rangle}], \phi \rangle$$

$$= \langle \mathcal{F}[V(t); x], \langle \mathcal{F}[I_{C^*}(t) \alpha_{\varepsilon}(t) e^{-2\pi \langle y, t \rangle}; x'], \phi(x + x') \rangle \rangle$$

$$= \langle \langle V(t), e^{-i\langle t, x \rangle} \rangle, \langle I_{C^*}(t) \alpha_{\varepsilon}(t) e^{-2\pi \langle y, t \rangle}, \langle e^{\langle -it, x' \rangle}, \phi(x + x') \rangle \rangle \rangle$$

$$= \langle V(t) I_{C^*}(t) \alpha_{\varepsilon}(t) e^{-2\pi \langle y, t \rangle}, \hat{\phi}(t) \rangle$$

$$= \langle \mathcal{F}[VI_{C^*} \alpha_{\varepsilon} e^{-2\pi \langle y, \cdot \rangle}], \phi(\cdot) \rangle. \tag{12}$$

Since $U * \int_{C^*} e^{2\pi i \langle (x+iy), \eta \rangle} d\eta \in \mathcal{D}_{L_2, (\omega)}(\mathbb{R}^N)$ by (1) and hypothesis on U and $\mathcal{S}_{(\omega)}(\mathbb{R}^N) \subset \mathcal{D}_{L_2, (\omega)}(\mathbb{R}^N) \subset \mathcal{D}'_{L_2, (\omega)}(\mathbb{R}^N)$, we see that

$$\left\langle U * \int_{C^*} e^{2\pi i \langle (x+iy), \eta \rangle} d\eta, \varphi(x) \right\rangle$$

is well-defined for $\varphi(x) \in \mathcal{S}_{(\omega)}(\mathbb{R}^N)$. From (11) and (12), we have that for $\varphi(x) \in \mathcal{S}_{(\omega)}(\mathbb{R}^N)$,

$$\langle \langle V(t), e^{2\pi i \langle z, t \rangle} \rangle, \varphi(x) \rangle$$

$$= \langle \mathcal{F}[V(t); x] * \mathcal{F}[I_{C^*}(t)\alpha_{\varepsilon}(t)e^{-2\pi \langle y, t \rangle}; x], \varphi(x) \rangle$$

$$= \langle U * \int_{C^*} e^{2\pi i \langle (x+iy), \eta \rangle} d\eta, \varphi(x) \rangle$$

$$= \langle C(U; x+iy), \varphi(x) \rangle, \quad y \in C,$$
(13)

hence (8) is satisfied.

Since $\alpha_{\varepsilon}(t)e^{\langle -2\pi y, t\rangle}\hat{\varphi}(t) \to \alpha_{\varepsilon}(t)\hat{\varphi}(t)$ in $\mathcal{S}_{(\omega)}(\mathbb{R}^N)$ as $y \to 0$, $y \in C$, we see from (11), (13), and the continuity of $V \in \mathcal{D}'_{L_2,(\omega)}(\mathbb{R}^N)$ that for $\varphi(x) \in \mathcal{S}_{(\omega)}$,

$$\langle C(U; x + iy), \varphi(x) \rangle = \langle \langle V(t), e^{2\pi i \langle z, t \rangle} \rangle, \varphi(x) \rangle$$

$$= \langle V(t), \alpha_{\varepsilon}(t) e^{-2\pi \langle y, t \rangle} \hat{\varphi}(t) \rangle$$

$$\rightarrow \langle V(t), \alpha_{\varepsilon}(t) \hat{\varphi}(t) \rangle$$

$$= \langle \hat{V}, \varphi \rangle = \langle U, \varphi \rangle$$

as $y \to 0$, $y \in C$. Thus, (9) is satisfied.

References

- [1] J. J. Betancor, C. Fernádez and A. Gabis, Beurling ultradistributions of L_p -growth, J. Math. Anal. Appl. 279 (2003), 246-265.
- [2] G. Björck, Linear partial differential operators and generalized distributions, Ark. Mat. 6 (1965), 351-407.

- [3] R. W. Braun, R. Meise and B. A. Tayor, Ultradifferentiable functions and Fourier analysis, Results Math. 17 (1990), 206-237.
- [4] H. J. Bremermann, Schwartz distributions as boundary values of *n*-harmonic functions, J. Anal. Math. 14 (1965), 5-13.
- [5] H. J. Bremermann, Distributions, Complex Variables, and Fourier Transforms, Addison-Wesley, New York, 1965.
- [6] R. D. Carmichael, Representation of distributions in \mathcal{O}'_{α} as boundary values of functions in tube domain, Glas. Mat. Ser. III 7 (1972), 213-228.
- [7] R. D. Carmichael, Generalized Cauchy and Poisson integrals and distributional boundary values, SIAM J. Math. Anal. 4(1) (1973), 198-219.
- [8] R. D. Carmichael, A. Kamiński and S. Pilipović, Boundary Values and Convolution in Ultradistribution Spaces Series on Analysis, Applications and Computation, Vol. 1, World Scientific, 2007.
- [9] R. D. Carmichael and D. Mitrović, Distributions and Analytic Functions, Longman Scientific and Technical, 1989.
- [10] R. D. Carmichael, R. S. Pathak and S. Pilipović, Cauchy and Poisson integrals of ultradistributions, Complex Var. Theory Appl. 21 (1993), 49-72.
- [11] R. D. Carmichael and W. W. Walker, Representation of distributions with compact support, Manuscripta Math. 11 (1974), 305-338.
- [12] M. G. Gómez-Collado, Almost periodic ultradistributions of Beurling and of Roumieu type, Proc. Amer. Math. Soc. 129(8) (2000), 2319-2329.
- [13] R. Meise and B. A. Taylor, Whitney's extension theorem for ultradifferentiable functions of Beurling type, Ark. Mat. 262 (1988), 265-287.
- [14] B. K. Sohn, Cauchy and Poisson integral of the convolutor in Beurling ultradistributions of L_2 -growth, Int. J. Math. Math. Sci. 2014 (2014), Art. ID 926790, 8 pp.
- [15] H. G. Tillmann, Randverteilungen analytischer funktionen und distributionen, Math. Z. 59 (1953), 61-83.
- [16] H. G. Tillmann, Distributionen als randverteilungen analytischer funktionen, II, Math. Z. 76 (1961), 5-21.