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Abstract

Let C be an open convex cone in RN such that C does not contain
any straight line and let T¢ = RN +ic < cN. Let Szm)(RN) be the
spaces of Beurling’s generalized tempered distributions and let

'Lzy(m)(RN) be the spaces of Beurling’s ultradistributions of L, -

growth, which is a dual of DLZ'((D)(RN). We show that if U is in
D, (o)(R") suchthat U = ¢ € Dy, (o)(R") for ¢ € Dy, () (RY)
and is identical in Szm)(RN) with the Fourier-Laplace transform of
the inverse Fourier transform of U in D’Lzl(m)(RN ), then the Cauchy
integral C(U; z), z=x+iy eTC of Uin DLZ’(w)(RN) corresponding

to C has U as boundary value when y - 0, y € C in S’(w)(RN ).
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1. Introduction

Let 5'(RN) and D'(RN) be the spaces of distributions of compact

support and distributions, respectively, and let O be Bremermann’s
distribution spaces which are intermediate spaces between 5'(RN) and
D'(RN ). Tillmann has obtained a characterization of analytic functions

which represent an element of 5’(RN) as boundary value of analytic

functions in regions that are bounded by closed curve in the extended
complex plane in [15] and similar analysis for an element of the Schwartz

distributions D’Lp (RN ) in regions in C" that are the product of unbounded
domains in the plane in [16]. In [4] and [5], Bremermann has obtained the
representation of elements in O, as boundary values of analytic functions in
half planes and tubes defined by quadrants. In both of these papers, the
Cauchy integral of elements of £ '(]RN ) and O}, plays essential roles in the

analysis. In [6-11], Carmichael et al. have studied the problem discussed by
Tillmann and Bremermann in the context of functions analytic in tube

domains in C" with base being an open convex cone in R" such that C
does not contain any straight line, i.e., a regular cone. We see from [11,
Lemma 4], [6, Theorem 3] and [9, Lemma 5.2.3 and (5.45)] that the Cauchy

integral C(U; X +iy) of U in &'(RN) or D'(RN) corresponding to a
regular cone C does not attain U as boundary value when y — 0, y € C in

D'(RN). Also, in [10, Theorem 5.4 and 5.5] and [8, Theorem 4.2.5 and
4.2.6], we see that the Cauchy integral C(U; x + iy) of U in D'(x, L ®RNY)
corresponding to a regular cone C does not attain U as boundary value when
y >0, yeC in D'(x, Li(RN)), where D'(x, Li(RN)) is ultradistributions
of Beurling type D'(My), LS(RN)) of Lg-growth or of Roumieu type
D'({Mp}, L(RV)) of Lg-growth. Here M p» P=0,12,.., is a certain

sequence of positive numbers and 2 < S < o. In case of the Schwartz
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distributions ',_p (RN), the Cauchy integral C(U; X +iy) of U in
D'Lp (RN), 1< p <2, corresponding to a regular cone C does not attain U

as boundary value as y >0, yeC in S'(RN) ([7, Theorem 9] and
[9, Lemma 5.5.8]) but C(U; x +iy) does have U as boundary value when

the Cauchy integral of U is identical in tempered distributions, S'(RN ),

with the Fourier-Laplace transform of the inverse Fourier transform of U
([7, Theorem 10] and [9, Theorem 5.5.3]).

Let S'(w)(RN) be the spaces of Beurling’s generalized tempered
distributions and let D’Lz’(@)(RN) be the spaces of Beurling’s
ultradistributions of L,-growth, which is a dual of DLz’(m)(RN ). Let
U eDi, )R") be a convolutor in Dy, (,)(RY), ie, Uxge
DLz,((D)(]RN) when ¢ € DLz,(w)(]RN ). In this paper, we show that if U is
a convolutor in DLz,((D)(RN) and is identical in S{) with the Fourier-
Laplace transform of the inverse Fourier transform of U in DLZ,(m)(RN )

then the Cauchy integral C(U; z), z = x+1y € TC of Uin D’Lz,(w)(RN)
corresponding to C has U as boundary value when y >0, yeC in

Szm)(RN ). Since D'Lz,(m)(RN) is the natural generalization of the space

’|_2 (RN ), our results are extensions of [7, Theorem 10] and [9, Theorem
5.5.3] in the sense of D'LZ (RN ). Also, since we can find a weight function k
such that D'((M ), LS(}RN ) = ,LS,(K)(RN ) from Remark 3.11 in [13], our
results contain the conditions under which the Cauchy integral C(U; z),

z=x+iyeTC of Uin D(M o) L, (RN)) corresponding to C has U as

boundary value when y — 0, y € C in S’(M p) _ S’(K)(]RN ).
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2. Beurling’s Ultradistributions of L, -growth

We will review Beurling’s ultradistributions of L -growth in RN and

establish some of their properties which will be needed in the later. Firstly,
we will review Beurling’s ultradistributions which introduced by Braun et al.
in [3].

Definition 1. A weight function is an increasing continuous function
o : [0, ©) — [0, o) with the following properties:

(o) There exists L > 0 with o(2t) < L(e(t) + 1) forall t > 0,
®) [, (ot)/t*)dt < e,

(7) log(t) = o(mw(t)) ast tends to oo,

(8) v :t— o(e') is convex.

For a weight function ®, we define @ : CN — [0, ») by &(z) = o z])

and call this function o to avoid abuse of notation. Here |z | = Z?:l' zj |

By (8), w(0)=0 and limy_,,, X/w(x) =0. Then we can define the

Young conjugate y* of y by

v [0, 0) > R, y(y) = sup(xy — w(x)).

x>0

Let o be a weight function. For a compact set K < RN, we define
D(w)(K) ={f € D(K):| f | ; < oo for every A > 0},
where | f i 5 = supyer sup,_un | () lexp(-2y" (/).

Then D(m)(K) equipped with its natural topology is a Fréchet space. For

a fundamental sequence (K ) jeny of compact subsets of RN, we define
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N .
D(m)(R ) = 1nde(m)(Kj).

The dual D'(m)(]RN ) of D(m)(RN ) is equipped with its strong topology

and the elements of D'(m)(RN ) are called Beurling’s ultradistributions.

We denote by & (@)(RN ) the set of all C* functions fin RN such that

| g, <o forevery compact K and every A > 0. For more details about

D(m)(RN) and E(m)(]RN ), we refer to [3].

A function ¢ e COO(RN) is in the space S(w)(]RN) when, for every

meNandneNN,

Pm.n(®) = sup ™) ¢(M(x)| < w
XGRN

and

n.n(@) = sup €™ §M(x) | < oo,
XeRN

S(w)(RN) is endowed with the topology generated by the family

{Pm.n> Tm,n}>» where me N and n e NN of semi-norms. Then S(m)(RN)
is a Fréchet space and the Fourier transform F defines an automorphism of

S(m)(RN ). D(m)(RN) is a dense subspace of S(w)(]RN ). The dual space
of S(w)(RN) is S'(w)(RN) and the Fourier transformation is defined on
S&m)(RN) as the transposed map of F, thus F defines an automorphism
of the strong dual S Em)(RN ). For more details about S (m)(RN) and
Szm)(RN ), we refer to [2].

Forevery < p<o, ke N and ¢ € C*(RN), Tk, p(0) is defined as

follows:
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Tp(@) = sup | ) eV (),

aeN

where |||, denotes the usual norm in Lp(RN )- (|| f ], means the infimum
of supg(t) as g ranges over all functions which are equal to f almost

everywhere.) If 1 < p < o, then the space DLp’(w)(RN) is the set of all
C* -functions ¢ on RN such that Yk, IO((1)) < oo for each k € N. A function
¢ e C*RN) is in BLW((D)(]RN) when vy (¢) <. We denote by
DLOO,((D)(RN) the subspace of BLOO,((D)(RN) that consists of all those
functions ¢ e BLOO,(m)(RN) for which limy |, ¢(a)(x) =0 for each
o e NN, The topology of DLp,(m)(RN ), 1< p <o, is generated by the
family {yi p(0)}ycyy of semi-norms. Then it is obvious that DLp,(m)(RN)
is continuously contained in the Schwartz’s test spaces DLp, 1< p<Loo.

For more details about DLp, (w)(RN ) and D’Lp,(m)(RN ), we refer to [1].

From Proposition 2.1 of [1] and Proposition 2.9 of [1], we have the
following:

Theorem 1. (i) DLp,(m)(RN ), 1 < p < oo, are Fréchet spaces.

(i) DLp,(m)(RN) is continuously contained in D,_q,(m)(]RN), when
I<p<g=Loo.

(iii) D) (RN) < Dpr(m)(]RN ) © E()(RN), 1< p < oo with continuous
and dense inclusions.

(iv) S,(RN) is continuously contained in DLI,(OJ)(RN), hence in

DLp,(m)(RN), 1< p<o.
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The dual of DLp,(m)(RN) will be denoted by D'Lp,(m)(RN) and it
will be endowed with the strong topology. The elements of D’Lp’(m)(RN)

are called the Beurling’s ultradistributions of Lg-growth where q is the

conjugate exponent of p.

From Proposition 2.2 in [1], we have the following:
Theorem 2. Let T e D',_p’(w)(RN), 1<p<w and ¢ e Dm(]RiN) be

given.Then T * ¢ e Lq(RN), where 1/p + 1/q = 1.
Definition 2. T is a convolutor in DLp’(m)(RN ) if Tisin D’Lp,(m)(RN )
suchthat T x¢ € DLp’((D)(RN ) forevery ¢ € DLp’(m)(RN ).

Assume that G is an entire function such that log| G(z)| = O(o(] z|)) as

| 2| = 0. The functional Tg on &, (RN) is defined by
2 @
(e 4) = 2 * S0 4(00) ¢ e gy (®Y).
a=0
The operator G(D) defined on Dim)(RN) by
G(D): D(w) = D(w)» K= G(D)u=pn*Tg,

is called an ultradifferential operator of (®)-class. When G(D) is restricted
to £ ((D)(RN ), G(D) is a continuous operator from & (m)(RN ) into & (m)(RN )

and if for every ¢ € E(Q)(RN ),

SN o g UMM

a=0
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We see from [10, Proposition 2.4] that each ultradifferential operator

G(D) of (w)-class defines a continuous linear mapping from DLp, (w)(]RN )
into itself for every 1 < p < oo.

Definition 3. An ultradifferential operator G(D) of (w)-class is said
to be strongly elliptic if there exist M > 0 and | > 0 such that |G(z)| >

Me' 2D when |Imz|< M|Rez|.

From [1, Corollary 2.8(i)], we have the following:

Theorem 3. For a fixed 1< p <o, a function ¢ € Lp(RN) is in
DLp’(m)(RN) if and only if G(D)¢ e Lp(RN) for every ultradifferential
operator G(D) of (w)-class.

We know from Theorem 2 that T * ¢ € Lq RN) for T e D'Lp,(m)(RN )

and ¢ e D(m)(RN ), where T(¢)=T(¢) and 1/p+1/q=1. For every
ultradifferential operator G(D), we have that G(D)(T *¢) =T *G(D)¢ €
Lq (RN ) and we can apply Theorem 3 to conclude that T *¢ e DLq ,(m)(RN ).

(Remark of [1, Definition 3].)

3. Cauchy Integral of Beurling Ultradistributions of L, -growth

In this section, we will find the condition under which the Cauchy
integral C(U; x +iy) of U in D’Lz’(@)(RN ) does have U as boundary value
when y > 0, y e C in S'(w)(RN).

Let C be a cone with vertex at 0, i.e., if y € C implies Ay € C for all
A > 0.

Definition 4. An open convex cone C such that C does not contain any

straight line will be called a regular cone.
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For a cone C, O(C) will denote the convex hull(envelop) of C and
TC - RN yiccCNisatubein CN. The set C* = {t eRN;(t, y) =0,
y € C} is the dual of the cone C.

Definition 5. Let C be a regular cone in RN. The Cauchy kernel

K(z-t), ze TC =RV 4 iC, te RN, corresponding to the tube TC is

K(z-t)= -[C* e2ni<(z_t)’n>dn, 2T, terN

We see from Theorem 13 in [14] that for a regular cone C in RN ,
K(z-t)e DLp,(w)(RN ), 2< p < asafunction of t € RN for z e T©.
Hence, we can define the following:

Definition 6. Let U e D’Lp,(w)(RN ), 2 < p < o. The Cauchy integral

C(U; z) of Uin D'Lp’(w)(RN) corresponding to C is

CU;2)= U, K(z-t), z=x+iyeTC.
Now we will show that the Cauchy integral C(U; z) of U in

',_p,(m)(RN ), 2< p <o, corresponding to C is analytic in TC. If g
Diw)(RY) and T < D’Lp,(m)(RN), 1< p<o, then T*¢ e Ly, 1/p+1/q
=1, by Theorem 2. Since G(D) is a continuous operator from D((D)(RN)
into D(m)(]RN ), we see from the remark of Theorem 3 and Theorem 2 that
for ¢ € D(y)(R") and T e D'Lp,(m)(]RN), 1< p <o,

N N
GD)(T *¢) =T *G(D)p =T * D,)(R™) = Lg(R™),

where 1/p + 1/q = 1. Hence, we have from Theorem 3 that for 1 < p < o,

if T e D'Lp’(m)(RN) and ¢ € D) (RN), then T * ¢ < D'Lq’(w)(RN ),
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where 1/p + 1/ = 1. Then, by the exactly same lines in the proof of Lemma
8 in [14] (or Proposition 2.3 in [1]), we have the following:

Lemma 1. Let U e D',_p,(w)(RN), 1< p<o. Then there exist a
strongly elliptic ultradifferential operator G(D) of (w)-class and f, g e

D,_q,(w)(]RN), 1/p+1/q=1suchthat U = G(D)f +g.

By combining Lemma 1 above and Lemma 9 in [14], we have the
following:

Theorem 4. Let U e D’Lp’(m)(RN), 1< p<o. Then there exist a
strongly elliptic ultradifferential operator G(D) of (w)-class and f e

D,_q,(w)(]RN), 1/p +1/q =1 such that

- (@
U(X) = GD)F(x)= 3 ()" GT,(O) £(@)(x).

a=0

Then, by the exactly same lines in the proof of Theorem 16 in [14], we
have the following:

Theorem 5. Let C be a regular cone in RN and let U e D',_p’(@)(RN ),
2 < p <. Then the Cauchy integral C(U; z) of U in D',_p,(m)(RN),
2 < p < oo, corresponding to C is analytic in TC,

Let C be a regular cone in RN and let U be a convolutor in
DLz,(w)(RN ). Since the Cauchy kernel K(z —t) e DLp’(m)(RN ), p=2,

Ky = K(x +iy) = IC* 2T (XY Mgy DL, (®Y), )

where yeC and p>2. Since U is a convolutor in DLZ,(Q,)(]RN ),

CU; x+iy) = (U * Ky)(x) € Dp, ()(RY), yeC. Since D () R")
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< DL, (0)RY) and Sy < D, () RN,
(CU; x +1y), @(x)) = (U * Ky)(x), 9(x)) = ((U (1), K(x + iy = 1)), o(x))

is well-defined for ¢ € S (m)(RN) and y € C. From the representation of a
convolutor U € D’Lz’(m)(RN) in Theorem 10 of [14], there exist a strongly
elliptic ultradifferential operator G(D) and f e DLzy(w)(RN) such that
U =G(D)f. Since f(t),K(z-1t)e DLz,((D)(RN), we see that f(a)(t)
‘K(z-t)e Li(RN) as a function of t € RN for z € TC. Hence, we see

from change of order of integration that if ¢ € S (m)(RN ),

(CU; x +1iy), o(x)) = (U (1), K(x +iy = 1)), o(x))

- ”i.a% @)K (z — t)dte(x)dx
a=0 ’

_ I i jo % f(“)(t)I K(z - t)o(x)dxdt
a=0 '

= UKz -1), o(x))) 2

for z=x+1iy, y e C.

We note that the reason for using ¢ € S(w)(]RN) in above is that the
symmetry of S (m)(RN) under the Fourier and inverse Fourier transforms
will be needed later.

Combining (1), Lemma 19 in [14] and the continuity of convolutor U in

DLZ,(m)(RN ), we have the following:

Theorem 6. Let C be a regular cone in RN. Let U be a convolutor in
DL, () (RY). If 9 € S(o)(RY), then
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lim (C(U; X +iy), o(x)) = (U, F~'[I.«()é(n) : t]),
y—0

where Ic*(n) is a characteristic function of C*.

We see from Theorem 6 that the Cauchy integral C(U; X + iy) of the
convolutor in DLZ,((D)(RN ) corresponding to a regular cone C in RN does
not attain U as boundary value when y — 0, y € C in S'(w)(]RN ). To find

the conditions under which U e Di.

27(0))(RN) is represented as the

boundary value of analytic function C(U; z), the Cauchy integral of U
in D’Lz’(m)(RN) corresponding to C, in tube when y -0, yeC in
S(m)(RN), we need definition of the convolution U *V for U e
Lp,(m)(RN) and V e D’Lq’(w)(RN ), 1/p +1/q =1 and its properties.
Definition 7 [1, Definition 3]. Let U e D'Lp’(m)(RN) and V e
',_q,(m)(]RN), I/p+1/g=1. Then the convolution U *V is the
ultradistribution U *V & D{,) given by (U *V, ¢)=(U,V *¢), where
V() =V(9).
Let ¢ € Dy)(RN) and h e Ly(RN)  S()(RN) = D) (RN). By the

definition of Tg,

(G(D)h, ¢) = (h *Tg, ¢) = (h(x), (T (y), o(x + Y)))

i (o)
= (h(x). Z(—i)a%¢<“>(x>>
a=0

= G(D)(h, ¢). 3)
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IfU e D',_p,(m)(RN) and V e D’Lq,(m)(RN ), 1/p+1/q =1, then there
exist elliptic ultradifferential operators G;(D), G,(D) of (w)-class and
f ely, gelpsuchthat U=G|(D)f andV =G,(D)g. Hence, we see
from (3) that
U *V =Gy(D)Gy(D)(f * g) in D) (RY). (4)
We now consider Fourier transform of ’D'Lp,(m)(]RN ), p=1or 2<
p < o. From the proof of Proposition 2.9 in [1], we know the following:

S '((D)(RN) c DLly(w)(RN) with continuous and dense inclusion,
consequently, each element of D'Ll,(w)(]RN ) can be considered as an element
of S{)(RN). Then, if T € D}, ()(R), then the Fourier transform (T)
is given by

(FT) ) =(T. 4). ¢eSe)RY).

By Theorem 2.5 in [1], there exist f e L,(RN) and an elliptic
ultradifferential operator G(D) such that T = G(D)f. Then it follows
that F(T) = G(-t) F(t) on D(m)(RN ). We note that if T € D’Lp’(m)(RN ),
2< p<oo,isrepresented as T = G(D) f, f e Lq(]RN ), where 1/p +1/q
=1, then F(T) = G(=&) f ().

Now we will find the conditions under which U e DLZ,(co)(RN) is
represented as the boundary value of the Cauchy integral C(U; z), z =
X+iy e TC ofU corresponding to C in tube when y — 0, y € C.

Lemma 2. Let S(RN) be the set of all C* functions polynomially
rapidly decreasing at infinity with the appropriate semi-norms in the

sense of Schwarz. Then S(RN) is contained in DLI’((D)(RN), hence in

DLp,(m)(RN)» p=L
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Proof. It suffices to show the results in one dimensional Euclidean space

R. Let ¢ € S(R). By the facts for Fourier transform, for every n e N,
200(x) = (=D i)' d(y)edy
2in so\n—=17%, eixyd
+2i _[R('y) ¢'(y)e™dy
s AN A (2) ixy
# [ "6 (y)eay. ®)
Since (n/k)/w"(n/k) is decreasing and goes to 0 as n goes to o for

every k e N,

n < ky*(n/k), neN, (6)
for every k e N. From (2), (3), and the fact that ¢ € S(R), we have that for
every kK € N,

| x20M(x) | < C¢ek"’*(”/k), neN,

where Cy is a constant depending on ¢. Thus, ¢ € Dy (o)(R). O

Theorem 7. Let C be a regular cone in RN Let U be a convolutor in

Di,, ()(RY) and U = FV] in S{,)(RN) for V e DY

2,((0)(RN ) with

supp(V) = C* and C(U; z), z=x+iy e TC, be the Cauchy integral of
U corresponding to C. Then there exist an entire function G(z) with

log|G(z)| = O(w(|z|)) as z - o and f e L, such that
V = G(x) f(x) in S, (RY) (7)
and

CU; z)=(V, ezni(z’t>), z=x+iyeT® (8)
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as elements of Szm)(RN) and
C(U; 2) > U in S(,)(RY) as y >0,y eC. 9)
Proof. Since U = F[V] in S'(w)(RN) and F defines an automorphism
of the strong dual S'((D)(RN ), V=F1U] in S'((D)(]RN ). From the
representation theorem of U in DLz,(w)(RN ), we let U =G(D)f, where

G(D) is a strongly elliptic ultradifferential operator and f e DLZ,(m)(RN ).

Then if ¢ e S(m)(RN), we see from Theorem 1(iv) that (V, ¢) is well-
defined and

V(x), 0(x) = UE), 7 To(x); 1]
= (f(t), 6(D)F'[o(x); t]
= G)(F(t), 7 '[o(x); t])
= (G(x) f(x), 9(x)),

hence (7) is satisfied.

Now let og(t) € C®(RN) which is 1 on an e-neighborhood of C* and

has support in a 2e-neighborhood of C*. By Lemma 2,

o, (H)e2™2Y ¢ s®N) DL, (®"), 1<p<x (10)

as a function of t for z € TC. Then

WV (t), eZni<Z,t>> = (V(1), ag(t)eZnKz,t))

is well-defined from (10) and the fact that supp(V ) = C* and analytic in TC

by Theorem 4.7.4 in [9]. If ¢ € S()(R"), then
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o (e Uj(t) € S()(RN) € D, () ®V), yeC,

hence (V(t), o, (t)e_2n<y’t>(p(t)> is well-defined.

Since G(t) satisfies log|G(z)|=O(w(|z|)) and lim¢_,., o(t)/t =0 from
[Remark 1.2, 11], G(t)e_2n<y’t> e L(RN), yeC. Since f eLy(RY), we
see that f e L, (RN ) by Parseval’s identity. Hence, G(t) f (t)o, (t)e_2n<y’t>

el (RN ). By change of order of integration that if ¢ € S (m)(RN ), then
(V0. &), () = (V (1), o (07, g(x)
= (V (1) o (D)"Y ()
= (FV ()15« Do (0e 2™V o(x), (1)

where Z = X +1iy € T€ and IC* is the characteristic function of C*. On the

other hand, for ¢ € S(m)(RN) and y € C, by change of order of integration,
(FIV]* F[1 ooe 2™ )
= (FIV (1) X} (F1 e O tp @05 X o0x+ X))
= (Vv (), e, (1 a0 Y, @ T8 g(x + X))
= (VO Do (D™, 4(0)
= (FVIgrotee 071 0(). (12)

Since U * IC* ezni<(x+iy)’n>dn € DLz’(m)(RN ) by (1) and hypothesis on

U and S(m)(RN) c DLz,(U))(RN) c D'Lz’(w)(]RN ), we see that
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<U . J‘ 2Oy g (P(X)>
c* ’

is well-defined for ¢(x) € S(m)(RN ). From (11) and (12), we have that for
N
o(X) € S()(R7),

(v (1), 20, (%)

= (FIV () % FL1 e (Ot >Y; 1, 000)

- <U x Ic* 2O +y). gy, (P(X)>

= (C(U; x+1y), ¢(x)), yeC, (13)
hence (8) is satisfied.

Since ag(t)e2VV(t) > ag(t)(t) in Sy (RV) as y -0, yeC,
we see from (11), (13), and the continuity of V € D{, (,)(R") that for
P(X) € S(e)»

(CUs x +iy), (X)) = (V (1), ™Y, 9(x)
= (V (1), o (06> V(1)
= (V(t), o (1) (1))
=V, 9)=({U, )

as y = 0, y € C. Thus, (9) is satisfied. O
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