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Abstract

In this paper, we establish common fixed point results for mappings
satisfying new contractive conditions in partially ordered b-metric-like
space. These results extend, generalize and improve many existing
results in the literature. Also, some examples are given here to
illustrate the usability of obtained results.

1. Introduction

Fixed point theory is one of the most powerful tools in nonlinear
analysis. Its core is concerned with the conditions for the existence of one or
more fixed points of mapping T from a topological space X into itself;
that is, we can find x € X such that Tx = x. Recently, many researchers
have focused on different contractive conditions in complete metric spaces,
ordered b-metric spaces and obtained many fixed point results in such
spaces.
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Alghamdi et al. [1] introduced the concept of h-metric-like space. Since
then, several papers dealt with fixed point theory for single valued and
multivalued in b-metric space [14, 15, 17-19, 23, 25, 27]. For more details on
the fixed point results, their applications, comparison of different contractive
conditions and related results in ordered metric spaces, we refer the reader to
(3, 4, 24, 8-10, 13, 20, 24].

In this paper, we have proved some common fixed point results for
g-weakly isotone increasing mappings satisfying new contractive conditions
in partially ordered h-metric-like space. Our main results extend, generalize
various well known results in literature. The paper is organized in four
sections as follows: in Section 2, we give some required definitions and
results related with b-metric-like space. Sections 3 and 4 accomplish the
lemmas and main results which are the generalization of some existing
results. Also, some examples are provided for the existence of our results.

2. Preliminaries

In this section, we recall some of the metric spaces and mappings as
follows:

Definition 2.1 [1]. A b-metric-like on a nonempty set X is a function
D: X x X — [0, +) such that for all p, g, » € X and a constant K > 1

the following three conditions hold true:

(D1 if D(p, q)=0= p =g,

(D2) D(p. 9) = D(g, p),

(D3) D(p. q) < K(D(p, r) +D(r, q)).
The pair (X, D) is called a b-metric-like space.

Example 2.2 [1]. Let X = [0, +o). Define the function D : X? —>
[0, +0) by D(p, q) = (p + q)z. Then (X, D) is a b-metric-like space with

constant K = 2. Clearly, (X, D) is not a b-metric or metric-like space.

Indeed, for all p, ¢, r € X,



Common Fixed Point Theorems 21
Dp.q)=(p+a) <(p+r+r+qf
=(p+r) +(r+af +2Ap+r)(r+q)
<2(p+r)+(r+9q)°]
= 2(2(p, ) +D(r, q))
and so (D3) holds. Clearly, (D1) and (D2) hold.

Definition 2.3 [1]. Let (X, D, K) be a b-metric-like space. Define D° :

X2 5[0, ©) by

2°(p. 9) =122(p, 9) - D(p, p) - D(q. 9)|.
Clearly, ©°(p, p) =0 forall p € X.
Let (x, <) be a partially ordered set and let f; g be two self-maps on X.
We will use the following terminology:

(a) elements p, g € X are called comparable if p < q or ¢ < p holds;

(b) a subset S of X is said to be well ordered if every two elements of S

are comparable;

(c) fis called nondecreasing w.rt. < if p < g implies fp < fg;

(d) [8] the pair (f, g) is said to be weakly increasing if fp < gfp and
gr = fgp forall p € X;

(e) [22] fis said to be g-weakly isotone increasing if for all p € X we

have fp < gfp < fefp.

If f,g:X —> X are weakly increasing, then f is g-weakly isotone
increasing. Also, in (e), if f = g, then we say that f is weakly isotone

increasing. In this case, for each p € X, we have fp < fip.
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Definition 2.4 [2]. Let (X, <) be a partially ordered set and d be a

metric on X. We say that (X, <, d) is regular if the following conditions
hold:

(1) if a non-decreasing sequence x,, — x, n — o, then x,, < x for all #,

(2) if a non-increasing sequence y, — y, n — o, then y, = y for all n.

3. Lemmas

The following lemmas are required in the proof of our main results.

Lemma 3.1 [1]. Let (X, D, K) be a b-metric-like space and {p,} be a

sequence in X such that lim D(p,,, p) = 0. Moreover, z € X, we have
n—»o0

L o(p, 2) < liminf D(p,,, 2) < limsup D(p,,, 2) < KD(p, 2).
K H—>00

n—»©

Lemma 3.2. Let (X, D) be a b-metric-like space and let {p,} be a

sequence in X such that

lim D(p,, pys1) = 0. 3.1)

n—»oo
If {p,} is not a b-Cauchy sequence, then there exist € >0 and two
sequences {m(k)} and {n(k)} of positive integers such that for the following
four sequences D(Du(k)s Pu(k)ls D (Pm(k)> Pm(k)+1) D(Pm(k)+1s Pn(k))
and D(Pp(k)+1> Pu(k)+1)» it holds:

]—)

& < liminf D(p,( ), Pn(j)) < hmsup Dpm(j)> Pn(j)) < Ke,
i

< lim inf g(pm(j)’ pn(])+1) < lim sup g(pm(j)s pn(])+1) < K €,
J—o®© oo

>=|

< iminf D(pyu( 11> Pa(j)) < W SUPp D(pyu( jyi1- Puj)) < K.
J—o® Jj—o

NI
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K2 hjrn_:nf Q(pm(j)+1: pn(/)+1) < lim sup g(pm(j)+la pn(])+1) = K €.
j=

Proof. If {p,} is not a Cauchy sequence, then there exist € > 0 and
sequences {m(;)} and {n(;)} of positive integers such that
n(j) > m(j) > j, D(Pm(j)> P(j)-1) < & D(Pwm(j)> Pu(j)) 2 (3.2)

for all positive integers j. Now, from (3.2) and using the triangle inequality,

we have
& S D(P(j)s Pu(j)) S KIDDm(j)s Pu(j)-1) + D(Pu(j)-1> Pu(j))]
< Ke + KD(pp(j)-15 Pn(/))- (3.3)

Taking the upper and lower limits as j — o in (3.3), and using (3.1), we

obtain that

& < liminf D(p,,( ), Pn(j)) < lim sup D(Pm(j)» Pu(j)) < Ke. (3.4
j—=

] —>0
Using the triangle inequality again, we have
D(Pm(j)> Pu(j))

< K®D(Pm(j)> Pu(j)e1) + D(Pn(j)+15 Pu(j))]

< K2 [D(P(jys Pu() + D(Pu()a1s Pa()]+ KD(Pag 15 1(7)-

Taking the upper and lower limits as j — oo, we have
. 3
& < K1imsup D(pyy( ), Pu(j)+1) < K€
Jo®

or

=< h;njupﬁ(pm]), Pu(j)+1) < Ke.

The remaining two conditions of the lemma can be proved in a similar way.

0
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4. Main Results

Let (X, <, D) be an ordered h-metric-like space with K > 1 and f, g :
X — X be two mappings. For all p, g € X, let

Mg(p, q) = maX{\v(@(p, 7)) v(D(p, fp)),

v(D(g, g9)), \v( aled gq);,;@(q’ fp ))} 4.1)

and

Ny(p, 9)

= min{y(D°(p, ), w(D°(¢, g9)), w(D*(p. g9)), w(D’ (g, )}, (4.2)

where v : [0, ©) — [0, ) is a continuous function with y(¢) < ¢ for each
t >0 and y(0) = 0.

Theorem 4.1. Let (X, <, D) be a complete partially ordered b-metric-
like space. Let f,g: X —> X be two mappings such that f is g-weakly
isotone increasing. Suppose that for every two comparable elements p, q

e X, we have

K*D(fp, 2q) < M(p, q);r Ny(p, 4) 43)

Then the pair (f, g) has a common fixed point z in X if one of f or g is
continuous. Moreover, the set of common fixed points of f and g is well
ordered if and only if f and g have one and only one common fixed point.
Proof. Let p, be an arbitrary point of X. Choose p; € X such that
fpo = pp and py € X such that gp; = pp. Continuing in this way,

construct a sequence {p,, } defined by:

Pon+1 = fo2n  and  prui0 = Doy



Common Fixed Point Theorems 25

for all n > 0. As fis g-weakly isotone increasing, we have
P = Jpo < gfpo = g = X3 < J8fpo = Jfp2 = p3-
Repeating this process, we obtain p, < p,,; Vn > 1.
We will prove the theorem in three steps:

Step 1. First, we prove that lim D(p,, p,+1) = 0.
n—

Suppose D(pjy, pj,+1) =0 for some jo. Then p; = p; 4. In this

case, jo = 2n, pa, = Pan+1- We need to show that py,.1 = pr,42,

4
K*D(pay+1s Pan+2)

4 M , + N, ,
=K @(ﬁ?zn’ gp2n+1) < s(pZn p2n+1)2 s(p2n p2n+1)’ (4.4)

where

Ms (pZn’ p2n+1)

_ max{w@(pzn, Pone ) WD (Pans S ) WD (Panet. Pams):

v z)(pZn’ gp2n+1) + Q(p2n+1’ ﬁ72n)
6K

= maX{W(g(pZn’ Pan+1) V(P2 P2n41)) V(D(P2n+1> Pan+2))s

v D(Pon> Pan+2) + D(Poyi1s Pans1)
6K

_ max{w<@(pzn+l, et e WO(Panets Dame s WD (Damers Pansa)):

v D(Pon+1> Pan+2) + D(Pons1> Pan+1)
6K
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= maX{W(Q(Pan, Pan+1))s V(D(P2ns1> Pan+2))s

v D(Pon+1> Pan+2) + D(Ponst> Pon+1)
6K )

By (D3), we have
D(Pan+1> Pan+1) < 2KD(Popits Pans2)s
D(P2n+1> P2n+2) < KD(Pons1s Pans2)s
D(P2n+1> P2n+1) + D(P2ni1> Pans2) < 3KD(P2nsts Pans2)s

D(P2n+1> Pans1) + DPans1> Pant2) o D(Poni1s Poans2)
6K B 2 ’

Ms (p2n > p2n+1)

2 ;
< maX{W(ZK@(Pan, P2n+2) W(D(P2n+1> P2n42)): \V( (p2”+12 P 2”*2))}.

Now,
Ny(Pans Pans1) = min{y(D*(p2y, f020)) WD (P2n+15 8P20+1)):
(@' (P2ns &P2041)) V(D (P2ns1> P20))}
= min{y(D*(p2n, P2ns1)) V(D' (P2n11> P2n+2))s
Y@ (P2ns P2n+2)) WD’ (P2n415 P2ns1))-
If No(P2n> Pan+1) = V(D' (P2ns1> P2ns1))s

D°(Pan+1> Pan+1)
= 29(pan+1> Pan+1) = D(P2n+1> Pan+1) = D(Pans1> Pans1)]

clearly, Ny(p2,> Pan+1) = 0, then from (4.3), we have

4 M p s P +N p , p
K*®(pan+1s Pans2) < S( = 2n+1)2 S( 2n 2n+1),
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4 My (pan, Pons1) +0
K*D(papsts Panen) S =2 22n+1 ,

4 M ,
K™®(pan+1> Pan+2) < s(p2n2 Pans1), (4.5)

where

M(pan> Pan+1)

&) ,
< maX{W(zKQ(anH: Pon+2 ))5 \V(Q(pZnH > P2n+2 ))3 \V( (p2n+12 Pon+2 )j}

If M(pans Pan+1) = VRKD(poys1> Pan+2)), then from (4.5), we have

! 2KD(Pon+1s Pan+2)
K™D(pan+1> Pan+2) € W2KD(p2ps15 Pan+2)) < SR

4
K*®(pan+1> Pan+2) = KD(Paps1> Pans2) <0,

K(k3 - 1)©(p2n+la p2n+2) <0

a contradiction. If M(ps,,, Pan+1) = W(D(P2y41> Pans2)), then from (4.5),

we have

4 D(Pan+1> P
K*®(pan+1> P2n+2) S W(D(Pan+1> Pan+2)) < ( S 2:2),

4 1
(k _Ejg(erH—l’ Pan+2) <0

@(p2n+1, p2n+2)) then from

a contradiction. If M (ps,, Pons1) = \V( 5

(4.5), we have

4 9 p » P ) 0 V4 > P )
K ©(p2n+1ap2n+2)S\V( ( 2n+12 Zn+2 )< ( 2’“'14 2n+2 ,

4 1
(k - Zj@(Pznﬂa Pan+2) <0,

thatis, py,41 = Pap+2-
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Similarly, if jo = 2n+1, then py,.1 = popi2 8IVES pPryi2 = Pops3-

Consequently, the sequence {p; } becomes constant for j > j, and {p o) 18
a coincidence point of f and g. For this, let j; = 2n. Then we know that
Pan = P2n+1 = P2n+2- Hence

Pan = Pan+l = JP2n = Pan+2 = &P2n+1-
This means that fp,, = gp,,+1- Now, since py, = pa,4+1, We have fp,, =
8P2n-

In the other case, when kj = 2n + 1, similarly, it can be easily shown

that p,,,; is a coincidence point of the pair (f, g).
Suppose now that D(p;,, pj,+1) >0 for each jj. We claim the
inequality
D(pjy+15 Pjg+2) < D(Pjys Pjg+1) (4.6)
holds for each j, =1, 2, ....
Let jy = 2n and for n > 0,

D(pan+1> Pan+2) > D(P2ns Pan+1) > 0. 4.7)

Then, as py, < py,41, using (4.3), we obtain that

4
K*D(pay+1s Pan+2)

4 M (pan, p + Ny(psy,, p
=K g(fp2na ngn+1)S s(P2n 2n+1)2 s(Pan 2n+1)’

where

Ms(p2n’ p2n+l)

_ max{\ll(@(mn» Pone ) WD (Do Soan ) VD Dmsr. ot

v D(Pans &P2n+1) + D(Pon+1s 2n)
6K ’
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M(pan> Pan+1) = max{\lf(@(l?zn, Pon+1) VO(P2n+1> Pan+2))s

v D(Pon> Pan+2) + D(Poys1s Pan+1)
6K

and

Ns(pZna p2n+l) =0.
If My(pays Pon+1) = V(D(P2n+1> Pan+2)), then from (4.5), we have

! D(Pans1s P
K g(p2n+19 p2n+2) < ‘V(Q(Pznﬂ, P2n+2)) < ( 2n+12 2”"'2) ,

4 @ p > p
K™"D(papi1s Pan+2) = ( 2"+12 2n+2) <0,

4 1
(k - 5)@(1?2;”1: Pan+2) <0

a contradiction. If M (pa,, Pans1) = V(O(P2,> Pans1)), then from (4.5),

we have

! D(P2nt1s P
K"®D(pan+1> Pan+2) < W(D(P2ns Pant1)) < ( 2”+12 2n+2)’

4 1
(k - §)©(P2n+1a Pan+2) <0

D(Pon> Pan+2) + D(Pons1s Pantl )j

a contradiction. If M (py,, Pans1) = \V( T

then from (4.5), we have

4
K*D(pap+1> Pan+2)

< o 2(P2n> Pan+2) + D(P2p+1> P2n+1)
=V 6K

- D(Pons Pan+2) + D(Poni1s Pans1)
12K

< D(Pan> P2n+1) + D(Pops1s Pan+2) + 29(P2n+1> Pon+2)
a 12
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< D(pan+1> Pan+2)
3 b

4 1
(k - §)©(P2n+1a Pan+2) < 0.

That is, py,+1 = Pan+2- Hence, (4.7) is false, that is, D(pr,41> Pons2) <
D(p2,> Pans1) holds for all n. Therefore, (4.6) is proved for jy = 2n.

Similarly, it can be shown that

D(Pan+2s P2n+3) < D(P2ns1s Pans2)-
Hence, {D(pj,, pj,+1)} is a nondecreasing sequence of nonnegative real
numbers.

We claim that Iim D(p; , p; =0.
Jim (Pjy> Pjg+1)

Assuming that j;iinw D(pj,» Pjy+1) = 7> Where r > 0, we have

Ms(pan p2n+1) < maX{W(zKQ(lQnHa p2n+2))a \V(@(pZn-t-la p2n+2))a

\V( D(Pan+1> P2n+2))} (4.8)

2

and Ns(pZn’ p2n+1) = 0.

Now, taking the upper limit as » — o in (4.8), we obtain

limsup M (pr, Pons1) S 7

n—>0

Taking the upper limit, we have

4 M p ) p +N p , p
K™D(pans Pans1) < (P2 2n+1)2 s (P2 2”+1)a

4 r
K%' <=
r<=,
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(K4 —%)r <0

a contradiction. Hence,

r=lim D(p;, pi i) =0.
Jim (Pjy> Pjg+1)

Step 2. Next, we show that {p,} is a b-Cauchy sequence in X. That is,

for every ¢ > 0, there exists J € N such that for all m, n > J, D(p,,, p,)
<e.

Assume to contrary, that {p,} is not a b-Cauchy sequence. Then, from

Lemma 3.2, there exists € > 0 for which we can find subsequences { Pm( j)}‘
and {p,;)} such that n(;j) = m(j) > j and:
(@) m(j)=2t and n(j)=2¢'+1, where t and ¢' are non-negative integers,
(b) D(Pm(j)> Pn(j)) 2 & and

(c) n(j) is the smallest number such that the condition (b) holds; i.e.,
CD(Pm(j), p,,(j)_l) < &. Then we have

g < lirp sup D(Pm(j)» Pa(j)) < Ke,

J—>®

e _ . 2
% < limsup D(py( ), Pu(j)+1) < K%,

J—>®

€ . 2
x5 11m SUp D(P(j)+1> P(j)) < K78,
jo®

£ . 3
2 < limsup D(Pm(j)+1> Pu(j)1) < K'e.

J >

Since n(j) > m(j), we have Pm(j) = Pn(j)>

K*D(p(jy+1 Pa(j)1) = K D(fom( j)» &Pn( )

< Ms(Pm(j)> Pu(j)) + No(Pm(j)> Pn()
—_ 2 b
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where

M (Pi(j)> Pn(j))

= maX{W(Q(Pm( 70 (i) WP ) om(j): W(Pu(j)s &Pn( 1))

D(Pm(j)s &n(j)) + D(Pa(j)s om(j))
v 6K

= maX{w(@(pm( 7> Pa())s V(P j)> Pm(j)+1)) W(D(Do(j)s Pr(j)+1))

D(Pm(j)> P(j)+1) + D(Pu(j)> Pm(j)+1)
v 6K

< maX{Q(pm( 72 Pyl D(Pm(j)> Pm( )1 D(Pa(j)s Pr(j)+1)s

Q(pm(j)’ pn(j)+1) + Q(pn(j)a pm(j)+1)
6K '

Taking the upper limit as j — oo, we have
limsup M (p( )> Pn(j))
j—oo©
< max{lim sup Q(pm(])’ pn(j))’ lim Sup Q(pm(])’ pm(j)+l)’
J—®© Jj—>®©

lim sup @(pn(j), Pu(j)+1 )

Jj—>©

[lim up D(Pn( ) Pr(j)+1 )6}-( D(Pa(j)> Pl j)s1 )J}

Jo®©

2 2
< max{Kg, 0, 0, M} = Ke.

6K
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Similarly,
Ns(Pu(j): Pu()
= min{y(D* (P j)> m(j))) VO (Pu(j)> &Pn()))>
YO (P ) &n(j)) WD (D) om(j))}
= min{y(D* (Pu(j)> Pm(j)+1) VO (D(j)s Pu(j)+1))>
VO (Pun(j)s Pu(j)+1)) WD (Pa(j)s Pm(j)e1))}-
Now,
D*(Pn(j)> Pn(j)+1)
<129(pu(j)> Pu(j)+1) = D(Pa(j)s Pu(j) = D(Pu(j)+15 Pu(j)+1)]
<129(pu( jy> Pu(j)+1) — @a(j)s Pa(j) + D(P(j)+1> Pu(j)1)]
<|D(Pa(j)s La(j)) + DPa(j)s1s Pa(j)e1) = 22(Pu(j)s Pu(j)e1)-
By (D3),
D(Pn(j)> Pn(j)) < 2KD(Pu( j)> Pu(j)+1)s
D(Pu(j)11> Pu(j)1) S 2KD(Pu(j)> Pu(j)+1)-
D(Pu(j)> Pu(j)) + D(Pu(j)s1s Pa(i)e1) < 4KD(Pu(j)s Pu(j)+1)>

gs(pn(j)’ pn(j)+l) = |(4K - 2) (pn(j)> pn(j)+l)|’

limsup D° (py(j)> Pa(jy1) < (4K = 2)limsup(py( ). Pa(j)+1)]s

Jjo oo

Clearlya NS(pn(])a pm(])) = 0

33
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Hence, by taking the upper limit as j — oo, we have

4 ;.
K™ lim sup Q(pm(j)ﬂa pn(j)+1)
j

limsup M (i j)> Pn(j)) + imsup Ny(ppu(j)> Pu(j))

< Jj—>®© j—

—_ 2 b

- Ke
K llm SUp D(Pi( j)11> P(j)+1) < ik ke

J—>®

which implies that limsup D(py,( )15 Pn(j)+1) < % < iz a contradiction
Jj—oo K K

to (4) property proving above. Hence {p,,} is a b-Cauchy sequence.

Step 3. In this step, we will show that f and g have a common fixed

point. Since {p,} is a b-Cauchy sequence in the complete h-metric-like

space X, there exists z € X such that

lim D(py,, z) = lim D(pypsis z) = lim D(fpy,, z) =0.  (4.9)
n—0 n—>0 n—o0

By the triangle inequality, we have
(fz, z)
< K[Q(fz, fp2n ) + Q(fPQn’ Z)] = K[Q(fza JfDZH ) + g(p2n+lv Z)] (4-10)

Suppose that f is continuous. Letting n» — oo in (4.10) and applying (4.9),

we have
D(fz, 2) < K[nli_f)fio Dz, foan) + nli_fgo D(fpan» 2)] =0
which implies that fz = z.
Let ©(z, gz) > 0. As z and gz are comparable by (4.3), we have

M(z, z) + Ny(z, 2)

K*D(z, gz) = K*D(fz, gz) < 5

4.11)
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where
M(z, z)
- max{ y(D( ) WD ) WDz, g2) v DEEL DE L

By the triangle inequality, we have
D(z, z) < 2KD(z, gz),
D(z, gz) < KD(z, gz),
D(z, z) + Dz, gz) < 3KD(z, gz2),

D(z, 2) + (2, g2) _ (D(z, 7))
6K h 2 ’

M(z, z)
< max{w(zm(z, 22)), W2KD(z, g2)), w(D(z, g2) W(Mj}

< 2K®(z, gz).

Similarly,
Ny(z, 2) = min{y(D°(z, f2)), w(D*(z, g2)), (D’ (2, g2)), w(D° (2, f2))},
D%(z, z) = | 29(z, z) - D(z, z) — D(z, z)| = 0.

Clearly, N,(z, z) = 0.

Hence, (4.11) gives K 4@(2, gz) < K9D(z, gz), which is a contradiction.
Thus, D(z, gz) = 0. Similarly, if g is continuous, then the desired result is

obtained. O

Theorem 4.2. Let (X, <, D) be a complete partially ordered b-metric-
like space. Let [, g: X — X be two mappings such that [ is g-weakly
isotone increasing. Suppose that for every two comparable elements p, q

e X, we have
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K*D(fp. gq) < Ms(2: Q);r Ny(p, 9) @.12)

Then the pair (f, g) has a common fixed point z in X if X is regular.

Moreover, the set of common fixed points of f and g is well ordered if and
only if f and g have one and only one common fixed point.

Proof. Following the proof of Theorem 4.1, there exists z € X such that

lim ®©(p,, z) = 0.

n—»o0

Now, we prove that z is a common fixed point of f'and g. Since pj,.1 — z

as n — oo from regularity of X, p;, .1 < z. Therefore, from (4.3), we have

K4©(Jtz’ gp2n+1) < MS(Z’ p2n+1);’ Ns(Za p2n+1) , (413)

where

M (2 pann) = max{w(@(z, Poms D WO ) WPt &)

Taking the limit as n — o in (4.13) and using Lemma 3.1, we obtain that

K*D(fz, 2)

1 .
= k* 7 O, 2) < K* limsup D(fz, gpay+1)

n—o0

lim sup MS(Z’ p2n+1) + lim sup NS(Z’ p211+1)
< _n—o© n—%0

2

max{lim sup D(z, pay+1)s limsup D(z, f2), limsup D(pry 115 8P2n+1)-

n—>0 n—>© n—>0
lim sup 2 & 2"“)6}'{9(1) 221 J2 )} + limsup Ny(z, poni1)
— n—>x n—»00

2
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< %max{@(z, 2), Dz, f2), Dz, 2), Dz, fZ)612 Dz, z)}

+ lim sup Ns(z, p2n+1)-
n—o0

By the triangle inequality, we have
D(z, z) < 2KD(z, f2),
9z, f£) < KDz, [2),
D(z, z)+ Dz, fz) < 3KD(z, fz),

9z, 2)+ D(z, f£) _ Bz, f2))
6K h 2 ’

M(z, z)
< max{y(2KD(z. £)). wKD( £ v ) v PGED |

< 2KD(z, f2).
Similarly,
Ny(z, 2) = min{y(D*(z, f2)), w(D'(z, g2)), W(D'(2, g2)), w(D*(z, L))},
D(z, 2) = | 20(z, z) - D(z, z) - D(z, z)| = 0.
Clearly, N,(z, z) = 0.

Hence, by (4.13), we have

2KD(z, )+ 0
2 9

2KD(z, )+ 0
—2 <

K*D(z, f2) <

K*D(z, f2) - 0,

KK =1)D(z, £)<0
a contradiction, this implies that fz = z.

Similarly, it can be shown that z is a fixed point of g. O
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Corollary 4.3. Let (X, =, d) be a complete partially ordered b-metric
space. Let f, g : X > X be two mappings such that f is g-weakly isotone
increasing. Suppose that for every two comparable elements x, y € X and a

constant s > 1, we have

s4d(fx, gv) < M (x, p). (4.14)

Then the pair (f, g) has a common fixed point z in X if one of f or g is
continuous. Moreover, the set of common fixed points of f and g is well
ordered if and only if f and g have one and only one common fixed point.
Corollary 4.4. Let (X, <, d) be a complete partially ordered b-metric
space. Let [ :X —> X be a mapping such that [ is weakly isotone
increasing. Suppose that for every two comparable elements x, y € X and a

constant s > 1, we have

std(fx, gv) < My(x, »),

where

M(x, y)

= max{y(d(x. 3)) wldx, ) w(d (. ). S AL

Then f has a fixed point z in X if either:
(a) fis continuous or
(b) X is regular.

Moreover, the set of fixed points of f is well ordered if and only if f has one
and only one fixed point.

Theorem 4.5. Let (X, <, d) be a complete partially ordered b-metric-
like space with K >1. Let f,g: X — X be two mappings such that f

is g-weakly isotone increasing. Suppose that for every two comparable

elements p, q € X, we have
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K*D(fp, ¢q) < N(p, q)+2Ns(p, 9) 4.15)
where
N(p, q) = max{y(D(p, q)), v(D(p, /b)), v(D(q. g9)),
v(D(p, g9)). w(D(q, /) (4.16)
and
Ns(ps q)

= min{y(D*(p, /), W(D°(¢, g9)). (D (p. g9)), w(D* (¢, fp))} (4.17)

and y : [0, ) — [0, o) is a continuous function with y(t) < ﬁ for each

t >0 and y(0) = 0. Then the pair (f, g) has a common fixed point z in X

if one of f or g is continuous. Moreover, the set of common fixed points of f
and g is well ordered if and only if f and g have one and only one common

fixed point.

Proof. Let py be an arbitrary point of X. Choose p; € X such that
fpo =p; and p, € X such that gp; = p,. Continuing in this way,

construct a sequence {p, } defined by:
Ponsl = J2n  and pyuin = 8Pop4
for all n > 0. As fis g-weakly isotone increasing, we have
L= /o < gfpo = g0 = X2 < fefpo = Jp2 = P
Repeating this process, we obtain p, < p,,; Vn 2 1.

We will prove the theorem in three steps:

Step 1. First, we prove that lim D(p,,, p,+1) = 0.
n—oo

Suppose D(pjy, pj,+1) =0 for some jo. Then p; = p;i 41. In this
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case, pg =2n, Py, = Pap+1- We need to show that p,,. | = pr,ior. If

D(pap+1> Pan+a) > 0, then, from (4.15), we have

4
K*®(p2ys1s Pan+2)

= K4©(pr2n’ gp2n+l) < N(p2n’ p2n+1) -;Ns(pZIfl’ p2n+1) , (418)

where
N(p2ns Pan+1)

= max{y(D(p2n> P2n+1)) V(D(P2n> f021))s WD (P21 415> 8P2041))5
V(D(Pan, gP2n+1)) W(D(P2n+15 f020))}

= max{y(D(p2n> Pan+1)) WD(P2ns P2n+1)) WD(P2ns15 P2n+2))s
Y(®(P2n> P2n+2)) W(D(P2ns1s P2n+1)}

= max{y(D(p2n+1> P2n+1)) V(O(P2ns1s P2ns1)) W(D(P2us1s P2ns2))s
Y(®(P2n+1> P2n+2))s V(D(P2ns1s P2ns1))}

= max{y(D(p2n+1> Pan+1)): V(D(P2ns1s Pan+2))}-

By (D3), we have
D(Pan+1> Pan+1) < 2KD(payi1s Pan+2)s
N(pan> Pan+1) S WQRKD(p2p+1> P2n+2))s V(D(P2ys1s P2ns2))}

= Y(2KD(p2y+1> Pans2))-

Now,
Ns(pZn’ p2n+1) = min{W(gs(pZn’ ﬁ72n )), \V(gs(pZnHa gp2n+1))’

V(D' (p2n» &P2n+1)) V(D (P2n11s 20))}



Common Fixed Point Theorems 41
= min{y(D*(p2n, P2n+1)) V(O (P2n11> P2n+2))s
V(D (pan> P2n+2)) V(D (P2ns15 P2ns1))}-
If No(p2n> P2ns1) = WD (P2n41> P2n+1))s then

D*(Pan+1> Poan+1)
=1 29D(pon+1s Pan+1) = D(P2an+1> Pan+1) = D(Pan+s1> Poans1) |

clearly, Ny(p2,> Pan+1) = 0, then from (4.15), we have

4 2KD(P2n+1> P
K*®(papi1s Pan+2) S WCRKD(poyi1s Pant2)) < (2K 22}% 2"+2))-

Hence, [2K* —=1]D(pans1s Pansa) < 0, which is a contradiction, so py,.; =

Pon+2-

Similarly, if j, =2n +1, then py,.1 = Prye2 EIVES Prui2 = Panas-

Consequently, the sequence {p; } becomes constant for j > jo and {p;,} is
a coincidence point of f and g. For this, let j, = 2n. Then we know that
Pan = Pan+l = P2n+2, hence

Pan = Pan+l = fP2n = Pan+2 = EP2n+1-
This means that fp,, = gpy,+1- Now, since py, = pr,+1, We have fp,, =
8P2n-

In the other case, when jj = 2n + 1, similarly, it can easily be shown

that p,,.; is a coincidence point of the pair (f, g).

Suppose now that D(p;i, pj,41) >0 for each jj. We claim the
inequality

Dpjy+1> Pjg+2) < D(pjys Pjy+1) (4.19)

holds for each jj =1, 2, ....
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Let j = 2n and foran n > 0,

D(Pan+1> Pan+2) > D(P2ns Pans1) > 0. (4.20)

Then, as py, < pr,41, using (4.15), we obtain that

4
K*®(pays1s Pan+2)

4 N , + N R
- K Q(prna gp2n+l)g (p2n p2n+1) 5 S(p2n p2n+1)’ (421)

where, by the definition, clearly, N(ps,, pas+1) = 0 and

N(p2ns Pan+1)

= max{y(D(p2n, P2n+1)) WD(P2n> 21)) W(D(P21 415 8P204+1))s
V(®(p2ns &P2n41)) W(D(P2n+15 f020))}

= max{y(D(p2n, P2n+1)) V(D(P2n11> P2n+2))s
Y(®(p2ns P2n+2)) W(D(D2p41> P2ns1))}

< max{y(D(p2, P2n+1)) W(D(P2n115 P2ns2))s
V(D(Pan> P2n+2)) W(2KD(Pay, P2ns1)))-

If N(pans P2ns1) = W(D(P2n415 P2ns2)), then from (4.21), we have

4 @ p s p
K*D(pons1> Pan+2) S W(D(P2pt1> Pans2)) < ( 2"231( 2n:2)

a contradiction. If N(ps,,, Pa,+1) = W(D(P2,> Pans2)), then from (4.21),

we have

4
K*D(pay+1s Pan+2)

D(pans
S W(®D(pans Pans2)) < %

1
< ﬁK[Q(pZW Pan+1) + D(P2n+1> Pan+2)] < D(P2ns1> Poan+2)
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a contradiction. If N(pay,, Pan+1) = V(D(P2,> Pans+1)), then from (4.21),

we have

4
K™D(pay+1> Pan+2)

@ p P} p @ p , p
< y(®(pans pans1)) < X o 1) _ D onsts 2ne2)

a contradiction. If N(pa,, P2,t1) = V(2KD(p2,, Pan+1)), then from (4.21),

we have

4
K™D(pap+1> Pan+2)

<KDy paysy) < SXXP2 Pans1)  DPonsss Do)

a contradiction.

Hence, (4.20) is false, that is, D(p2,,41> P2n+2) < D(Paps Pan+1) holds
for all n. Therefore, (4.19) is proved for j, = 2n. Similarly, it can be shown

that

D(Pan+2s P2n+3) < D(Pans1s Panv2)-
Hence, {D(pj,, pj,+1)} is a nondecreasing sequence of nonnegative real

numbers. We claim that lim ’D(pjo, pj0+1) = 0.
Jo—>®

Assume that lim ’D(pjo, pj0+1) = r, where » > 0, then we have
Jo—>®

N(pZna p2n+1)

1
< ﬁmaXQK@(Pzna Pan+1) D(Pans1> Pan+2)r D(Pons Poans2))  (4.22)

1
< ﬁmax{zK@(Pzna Pan+1) D(Pans1> Pan+2)» KD(P2y»> Poan+1)

+ KD(pop+1> Pan+2)) (4.23)

and Ns(p2n9 p2n+1) =0.
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Now, taking the upper limit as » — o in (4.23), we obtain

limsup N(p2,,> Pans+1) < %max{r, 2Kr} =r. (4.24)

n—

Taking the upper limit as n — o in (4.21) in (4.23), we have K4 <r.

Therefore, (K* —1)r < 0 a contradiction with K > 1. Hence,
r=lim ®(p;, p; = 0. 4.25
nyo0 (p]() pjo+1) ( )
Step 2. We show that {p,} is a b-Cauchy sequence in X. That is, for
every € > 0, there exists J € N such that for all m, n > j, D(p,,, p,) < &

Assume to contrary, that {p,} is not a b-Cauchy sequence. Then, from
Lemma 3.2, there exists € > 0 for which we can find subsequences { Pm( j)}
and {p,(;)} such that n(j) = m(j) > j and:

(@) m(j)=2t and n(j)=2¢+1, where ¢ and ¢ are non-negative
integers,

() D(Pm(j)> Pn(j)) = € and

(c) n(j) is the smallest number such that the condition (b) holds; i.e.,

@(pm(j), Pn(j)_l) < ¢. Then we have

g < lim sup D(pm( j)> Pa(j)) < K,

J®

e . 2
X < 11m sup @(pm(j), pn(j)+1) < K7e,
Jj—®

< limsup D(pi(j)+1> Pu(j)) < K7,

Jj—>®

ik

€ . 3
e < limsup D(Pm(j)+1> Pa(j)+1) < K&
jo»
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Since n(j) > m(j), wehave p,,(jy < py(j),

K* ()10 Pu(jye1)

N m(j)> Fn(j +Ns m(j)> Fn(j
= KDy @) < (Pm(j)> Pn(j)) d (P> P())

where
N(Pu(j)- a(j))
= max{y(D(pp( ) Pn(j)))s YO(Pm(j)s m( i) V(D(Pn(j)> &Pn(j)))
Y(O(P( j)> &n(j)) VD(Pu(j)> m())}
= max{y(D(pu( ;) Pu(j))» VO(Pm(j)s Pm(j)+1)s V(D(Pu(j)> Pn(j)+1))s

V(D) Pu(j)+1) YVO(Pn(j)s Pm(j)+1))}

1
2K maX{@(pm(])’ pn(])) g(pm(])’ pm(j)+1) z)(pn(])’ pn(j)+1)

YO(Pm(j)> Pa(j)+1)) V(D(Da(j)s Pm(j)+1)}-

Taking the upper limit as j — oo, we have

limsup N(pp( j)> Pn(j))

J®
1
< ﬁmax{hm sup @(pm(J), pn(J)) 11m sup @(Pm(J)a Pm(j)+l)

J—®

lim sup @(pn(J), Pn(1)+1) hm SUP Q(Pm(J)’ Pn(1)+1)

J—o®

lim sup ®(pn(j), Pm(j)+1 )}

Jj—o®

1 2 ) Ke
< — _ A&
5% max{Ke, 0, 0, K¢, K&} 5
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Similarly,
Ny(Pm(j)> Pa(j)) = Min{@(D* (P j)> om( i) WO (Pu(j)> &Pn(j)))»
VO (P ) &n(j)) VD (Pu(j)s om( )}
= min{y(D* (Pu(j)> Pm(j)+1)s V(O (P(j)> Pu(j)+1))s
YO (P j)s Pu(j)+1)s WO (Pu(j)> Pm(j)+1)}-
Now,
D (Pn(j)> Pn(j)+1)
<129(pu(j)> Pa(i)+1) = D(Pu(j)s Pu(j)) = D(Pu(j)+15 Pu(j)+1)]
<129(pu(j)> Pai)+1) = O(Pa()s Pa(j)) + D(Pu( )15 Pu(j)+1)]
<UD j)> Pu()) + D(Pa( )15 P(jye1) = 29(Pu( ) Pu(jy)|-
By (D3),
D(Pu(j)s Pu(j)) < 2KD(Pu(j)> Pu(j)+1)-
D(Dn(j)+1> Pn(j)+1) < 2KD(Dn(j)s Pa(j)+1)s
D(Pu(j)> Pu(j)) + D(Pa(j)s1s Pa(i)1) < 4KD(Du(j)s Pu(j)+1)>
D (Pu(j)> Pu(j)+1) < (4K =2)(P(j)s Pu(j)e1) s

lim sup D° (py(j)> Pu(j)1) < [(4K = 2)limsup(py( jy> Pu(jy+1)]>

Joo oo

clearly, Ny(p,(j), p,(j)) = 0.

Hence, by taking the upper limit as j — o, we have

K* lim sup D(Pm(j)+15 Pn(j)+1)

j—oo

imsup N(py(j)> Pn(j)) + limsup Ny(py, (/) Pa(/))
P Jo®

< 5 ,
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4. Ke
K limsup D(pyu( j)+1, Pu(j)+1) < =~ < Ke

J >

which implies that 1im sup D(p( j)+15 Pu(j)+1) < % < % a contradiction
Jj—®© K K

to (4) property proving above. Hence {p,,} is a b-Cauchy sequence.

Step 3. In this step, we will show that f and g have a common fixed

point.

Since {p,} is a b-Cauchy sequence in the complete b-metric-like space

X, there exists z € X such that
Jim D(pan» 2) = Jim D(pan+1» 2) = Jim O(foon> 2)=0.  (4.26)
By the triangle inequality, we have
D(fz, 2) < K[D(fz, fpan) + D(fp2n> 2)]

= K[D(fz, fpan) + D(Pan+1» 2)] 4.27)

Suppose that f'is continuous. Letting n — o in (4.27) and applying (4.26),

we have
D(fz, 2) < K[ lim D(f, fog,) + lim D(fpay, 2)] = 0
n—»0 n—»0
which implies that fz = z.

Let ©(z, gz) > 0. As z and gz are comparable by (4.15), we have

N(z, z) + N,(z, Z)’

K*D(z, gz) = K*D(fz, g2) < 5

(4.28)

where

N(z, z)

= max{y(D(z, z)), y(D(z, f2)), w(D(z, g2)), W(D(z, g2)), W(D(z, f2))}.
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By the triangle inequality, we have
D(z, z) < 2KD(z, g2),
N(z, z) < max{y(2KD(z, gz)), w(2KD(z, g2)), w(D(z, g2)),
v(D(z, g2)), w(2KD(z, gz))} < Dz, g2).
Similarly,
Ny(z, z) = min{y(D*(z, f2)), W(D’(z, g2)), w(D*(z, g2)). w(D°(z, f2))},
D(z, z) = | 20(z, 2) - D(z, z) - D(z, z)| = 0.

Clearly, N,(z, z) = 0.

Hence, (4.28) gives K 4@(2, gz) < M, which is a contradiction.

Thus, D(z, gz) = 0. Similarly, if g is continuous, then the desired result is

obtained. O

Theorem 4.6. Let (X, <, D) be a complete partially ordered b-metric-
like space with K > 1. Let [, g: X — X be two mappings such that [ is

g-weakly isotone increasing. Suppose that for every two comparable

elements p, g € X, we have

K*D(fp. gq) < M2 Q)+2Ns(p, 9) (4.29)
where
N(p, q) = max{y(D(p, q)), w(D(p, /b)), v(D(g, g9)).
v(D(p, gq)), w(D(g, b))} (4.30)
and
Ny(p, q)

= min{y(D°(p, /), w(D*(¢, g9)). w(D*(p. g9)), (D’ (g, fp))}. (4.31)
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Then the pair (f, g) has a common fixed point z in X if X is regular.

Moreover, the set of common fixed points of f and g is well ordered if and

only if f and g have one and only one common fixed point.
Proof. Following the proof of Theorem 4.5, there exists z € X such that

lim ©(p,, z) = 0.

n—®

Now, we prove that z is a common fixed point of f'and g. Since p;,.; — 2

as n — o from regularity of X, p,,,; < z. Therefore, from (4.3), we have

N(z, + N.(z,
K4©(f‘z, gp2n+1) < ( p2n+l) 5 S( p2n+l), (432)

where
N(z, pap41) = max{iy(D(z, pr,41)) W(D(z, f2)), W(D(P2y+41> EP20+1))-
v(D(z, gp2n+1) W(D(P2n115 F2))}-

Taking the limit as # — o in (4.32) and using Lemma 3.1, we obtain that

K3©(fz, z)

= k4 %@(fz, z) < K lim sup D( £z, &P2n+1)

n—>0

limsup N(z, py,41)+ limsup Ny(z, pr,41)

< _n—o® n—o
a 2
max{lim sup @(Z, P2n+1 )a limsup Q(Z’ fZ), limsup g(erH—l > 8P2n+1 )’
oo n—>00 n—w
limsup @(z, 8P2n+1 )’ limsup g(pZn-k—l ) fz)} + limsup N (Za P2n+1 )
— n—0 n—om n—>0
4K

1
< H(max{@(z, 2), Dz, f2), D(z, z), Dz, z), Dz, fz)}

+ limsup Ny(z, pr,41))-
n—»o0
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By the triangle inequality, we have

D(z, z) < 2KD(z, fz),

Dz, f£) < KD(z, f2),

N(z, z) < max{y(2KD(z, f2)), y(KD(z, f2)), w(2KD(z, f2)),

v(D(z, )} < 2KD(z, f2).
Similarly,
Ny(z, z) = min{y(D*(z, f2)), ¥(D’(z, g2)), w(D*(z, g2)), w(D*(z, f2))},
D%(z, z) =1 29(z, z) - D(z, z) - D(z, z)| = 0.
Clearly, Ny(z, z) = 0.
Hence, by (4.32), we have

2KD(z, )+ 0

4
K*D(z, f2) < A% ,

KYD(z, f2) - w <0,

(K4 —%)’D(z, £)<0
a contradiction. This implies that fz = z.
Similarly, it can be shown that z is a fixed point of g. OJ

Example 4.7. Let X =[0, o) be equipped with the b-metric-like D(p, q)

=|p+g |2, p, g € X, where K =2 according to Example 2.2 and define
a relation X on X by p < ¢q iff ¢ < p, where < is the usual ordering on
R. Define function f, g: X — X by

_D _ P
ﬁ)—g and gp 7

Define y : [0, ) — [0, ©) by y(¢) = % Then we have the following:
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(1) (X, =, D) is a complete partially ordered b-metric-like space.
(2) fis g-weakly isotone increasing with respect to <.
(3) fand g are continuous.

(4) For every two comparable elements p, g € X, the inequality (4.3)
holds, where M ((p, q) and N¢(p, q) are given by (4.1), (4.2), respectively.

Proof. Step 1. The proof of (1) is clear.

Step 2. To prove (2), for each p e X, fp = g <p and gp = g < p.

Thus, for each p € X, we have gfp = g(%) = % < fp and fgfp = f(%j

= % < gfp, ie., fp = gfp = fgfp. Thus, fis g-weakly isotone increasing
with respect to <.
Step 3. To prove (3), it is easy to see that fand g are continuous.

Step 4. To prove (4), assume p, g € X with p <X ¢, ie., g < p,

K*D(fp, gq) < MsP> @)+ Ns(p> q)

3 : (4.33)

where

My(p, q)

— max{w(D(p. 4)). W(D(p. o). w(Dlg. ga)) w| L8 DR

My(p, q)

6K

2 2
= maxi w((p+4)°), w((w%)z} w((wgf}w (p+%) +(q+§j
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We have the following cases:

Case 1. If 4P then we have

7°9°
M(p, q)
2 2
<max \VE(p+7ij2J, W((IOTPJZJ’ WE(%jzl’w (p—i_%j 6—;(q+%)
My(p.q)

ol (T )

2
Clearly, M (p, q) = %(MTPJ and
Ny(p,q)
= min{y(D*(p, /), v(®*(g, g9)). w(D*(p. g9)). w(D°(q. )}

Ny(p, q)

-onfu(= (5 &)} (o (o ) (oo £))
o (p4)s2 (. p) (48]

=129(p, p) - D(p, p)-D(p, p)|
- 0.

Clearly, Ny(p, g) = 0. Then, by (4.33),

2 2 2
P )PP <1422 _16x16xp”
16@(9,7j_16(9+9j _16(9j ULy
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P 9 M(p.q)+Ns(p, q)
Clearly, 16@( 9 7) < > .

Case 2. If £ < 1, then we have

I C O L
(52 {5 A 5

2
Clearly, M (p, q) = %(qu and
Ns(p. q)

= min{y(D°(p, ). v(D°(q, &9)), (D’ (p. gq)), (D’ (g, )},
Ny(p, q)

-mls@ (o P( o (o)

o £)ev (- <ted

=129(q, ) - D(q, 9) — (g, q)|

= 0.
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Clearly, Ny(p, g) = 0. Then, by (4.33),

2 2 2
P 9)qf[ 4. 9) < 2P) _16x16xp”
16@(9’7)‘16(7+7j ‘16(7j 9x4

Clearly, 16@(2 1) < My(p, @)+ No(p. 4)

9°7)" 2

By combining all cases together, we conclude that £, g and v satisfy all

the hypotheses of Theorem 4.1 and hence f'and g have a common fixed point.

Indeed, 0 is the unique fixed point of fand g. O

(1]

(2]
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