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Abstract 

By introducing a transformation containing two trial functions and 
selecting the appropriate trial functions, we successfully find the exact 
solutions for several higher-order nonlinear wave equations named the 
Kuramoto-Sivashinsky equation and the Kawahara equation as well as 
the KdV-Burgers-Kuramoto equation hard to be solved in usual ways. 
The technique used herein can also be applied to construct the exact 
solutions of other nonlinear wave equations. 

1. Introduction 

As more and more problems in branches of modern mathematics, physics 
and other interdisciplinary science are described in light of suitable nonlinear 
models, directly seeking the explicit and exact solutions of nonlinear wave 
equations (NWEs for short) plays a very important role in the nonlinear 
science, especially in the nonlinear physics science. In recent years, a lot of 
simple and direct methods have been presented to construct the explicit and 
exact solutions to NWEs. Among them are the hyperbolic tangent function 
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expansion method [1, 2], the homogeneous balance method [3, 4], the Jacobi 
elliptic function expansion method [5, 6], the modified variable separated 
ODE method [7, 8], the combination method [9, 10], and so on. Nevertheless, 
there is no general rule to solving NWEs. As a result, it is still a very 
significant work to explore more powerful and efficient methods to solve 
NWEs. 

In the present paper, by introducing a transformation which contains two 
trial functions and selecting the appropriate trial functions, we successfully 
obtain the exact solutions to several higher-order nonlinear wave equations 
which are hard to be solved in usual ways. 

2. Summary of the Method 

The basic idea of our approach is as follows. Consider the following 
NWEs: 
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In order to solve equation (1) easily, here we introduce a transformation 
of the following form: 

 ( ) ( ),,,,0 txwwwvvx
vuu ==
∂
∂+=  (2) 

where 0u  is a undetermined constant, ( )wv  and ( )txw ,  are two trial 

functions. 

Firstly, we determine the trial function ( )., txw  As is well known, the 

solutions of NWEs should contain the phase factor ( ),tkx ω−  i.e., ( ).ctxk −  

Therefore, we choose directly the trial function ( )txw ,  as the following 

form: 

 ( ) ,ξ− == kctxk eew  (3) 

where k and c are the wave number and wave speed, respectively. However, 
the other trial function ( )wv  is not of a given form but varies from equation 
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to equation. It must be flexibly selected according to the specific NWE. After 
determining the trial functions ( )wv  and ( ),, txw  equation (1) can be easily 

solved. In what follows, we shall make use of the technique stated above         
to solve several higher-order NWEs, namely the Kuramoto-Sivashinsky 
equation, the Kawahara equation and the KdV-Burgers-Kuramoto equation, 
and seek their exact solutions. 

3. Applications 

3.1. Kuramoto-Sivashinsky equation 

The celebrated Kuramoto-Sivashinsky equation reads 
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For equation (4), we select the trial function ( )wv  as the following form: 
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where a, b and d are undetermined constants. 

In view of equation (2), equation (3) and equation (5), it is easy to derive 
that 
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Substituting equations (6)-(10) into equation (4), and collecting the 
coefficients of powers of w with the aid of Mathematica, then setting each of 
the obtained coefficients to zero, result in a set of algebraic equations as 
follows: 

α+−−+ 362526
0

25
0

26 244 kabcdkbckabudkbukab  

,0882 555635 =γ+γ+α+ dkbkabdkb  (11) 

343522425
0

24
0

25 425420 dkabkbacdkbckabudkbukab +++−−  

,0456721362 54553435323 =γ−γ−α−α++ dkbkabdkbkabkdb  (12) 

333422324
0

23
0

24 4453240 dkabkbacdkbckabudkbukab −++−−  

,01208401025 53543334322 =γ+γ−α−α+− dkbkabdkbkabkdb  (13) 

323322223
0

22
0

23 76453240 dkabkbacdkbckabudkbukab −++−−  

,01208401025 5253323332 =γ−γ+α+α−+ dkbkabdkbkabkbd  (14) 

3322222
0

2
0

22 685420 abdkkbabcdkckabubdkukab −++−−  

,0456721362 55233232 =γ+γ+α+α−− bdkkabbdkkabkd  (15) 

33222
0

2
0

2 2244 adkbkacdkabckudkuabk ++−−+  

.08822 5533 =γ−γ−α−α− dkabkdkabk  (16) 

Solving the above set of algebraic equations with the aid of Mathematica, 
we obtain 
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 .192
1,19

60,19
60,19

60
0 γ

α−=α−=α−=α= kbdkcua  (17) 

Plugging equation (17) into equation (6) and considering equation (3), 
we obtain the general travelling wave solution of the Kuramoto-Sivashinsky 
equation (4) in the following: 
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Making use of the following identity: 
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and setting 1=b  in equation (18), we obtain the kink-type solitary wave 
solution of the Kuramoto-Sivashinsky equation (4) as follows: 

 .tanh120tanh19
90 33 ξβ+ξα+= kkkkcu  (20) 

Similarly, making use of the following identity: 
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and setting 1−=b  in equation (18), we get the singular travelling wave 
solution to the Kuramoto-Sivashinsky equation (4) as follows: 

 .coth120coth19
90 33 ξβ+ξα+= kkkkcu  (22) 

3.2. Kawahara equation 

The Kawahara equation reads 
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For equation (23), we select the trial function ( )wv  as the following 

form: 
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where a, b, d and e are undetermined constants. 

Based on equation (2), equation (3) and equation (24), it is easy to derive 
that 
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Substituting equations (25)-(29) into equation (23), and collecting the 
coefficients of powers of w with the aid of Mathematica, then setting each of 
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the obtained coefficients to zero, result in a set of algebraic equations as 
follows: 

β+−−+ 482628
0

26
0

28 164444 kabcdkbckabudkbukab  

,0646416 666846 =δ+δ+β+ dkbkabdkb  (30) 

262527
0

2526
0

27 161220121620 cekbcdkbckabudkbuekbukab −+−−+  

β−β−+++ 454732335372 6241128168 dkbkabkdbdkabkba  

,04096117123520256 66656746 =δ+δ−δ−β+ ekbdkbkabekb  (31) 

2426
0
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0

26 7236367236 cdkbckabuekbudkbukab +−+−  

353223436225 4872482436 ekabkdbdkabkbacekb +−−+−  

β−β+β−+ 45444633 1584144043248 ekbdkbkabdekb  

,010310417164812096 656466 =δ−δ+δ+ ekbdkbkab  (32) 
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25 8820128820 cdkbckabuekbudkbukab +−−−  

34323335224 16144961612 ekabkbddkabkbacekb ++−++  

β−β+β−+− 44434532332 1200272030464240 ekbdkbkabkebdekb  

,04060853900815680 646365 =δ+δ−δ+ ekbdkbkab  (33) 

2224
0

23
0

22
0

24 1220881220 cdkbckabuekbudkbukab ++−−−  

333323234223 2409664161688 bdekekabkddkabkbacekb +−−+−+  

β+β−β+− 434244322 27201200304144 ekbdkbkabkeb  

,046080853900815680 626364 =δ+δ−δ− dkbekbkab  (34) 
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32332333222 724848482472 kbedekekababdkkbacekb +−−+−+  

δ−β+β−β+ 6342443 1209614401584432 kabekbbdkkab  

,0171648103104 626 =δ+δ− ekbbdk  (35) 
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β+β+++−+ 4423233222 256112816812 dkkabkeabekkbabcek  

,01171240963520624 66624 =δ−δ+δ+β− bekdkkabbek  (36) 
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.0646416 664 =δ+δ−β+ ekabkek  (37) 

Solving the above set of algebraic equations with the aid of Mathematica, 
we obtain 
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Substituting equation (38) into equation (25) and considering equation 
(3), we acquire the general travelling wave solution of the Kawahara equation 
(23) in the following: 
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Making use of the following identity: 

 ,sech2
1

12 x
e

e
x

x
=

+
 (40) 



Exact Solutions for Several Higher-order Nonlinear Wave Equations 151 

and setting 1=b  in equation (39), we possess the bell-type solitary wave 
solution to the Kawahara equation (23) as follows: 
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Similarly, making use of the following identity: 
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and setting 1−=b  in equation (39), we obtain the singular travelling wave 
solution to the Kawahara equation (23) as follows: 
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3.3. KdV-Burgers-Kuramoto equation 

The famous KdV-Burgers-Kuramoto equation reads 
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For equation (44), we select the trial function ( )wv  as the following 

form: 
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where a, b, d and e are undetermined constants. 

According to equation (2), equation (3) and equation (45), it is easy to 
obtain that 
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Substituting equations (46)-(51) into equation (44), and collecting the 
coefficients of powers of w with the aid of Mathematica, then setting each      
of the obtained coefficients to zero, result in a set of algebraic equations as 
follows: 

2626
0
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0

26
0

26 44444 cdkbckabuekbudkbukab −−++  

β+α+α+α++ 4635363625 168884 kabekbdkbkabcekb  

,08881616 5556564546 =γ+γ+γ+β+β+ ekbdkbkabekbdkb  (52) 

242525
0

24
0

25
0

25 4122041220 cekbcdkbckabuekbudkbukab +−−−+  

323343432535352 81668168 kebdekbekabkdbdkabkba ++++++  
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β−β−α−α−α+ 4545343535 1441672824 dkbkabekbdkbkab  

,01824800288400 54555544 =γ−γ−γ−β− ekbdkbkabekb  (53) 

232424
0

23
0

24
0

24 3284032840 cekbcdkbckabuekbudkbukab +−−−+  

322333332434342 4032884032 kebdekbekabkdbdkabkba −−−+++  

β−β−α−α−α+ 4444333434 160128806416 dkbkabekbdkbkab  

,096641280320640 53545443 =γ+γ+γ−β+ ekbdkbkabekb  (54) 

222323
0

22
0

23
0

23 3284032840 cekbcdkbckabuekbudkbukab ++−−−  

32323232333332 40325682448 kbedekbekabkdbdkabkba +−−−++  

β+β−α+α−α− 4343323333 160128806416 dkbkabekbdkbkab  

,096641280320640 52535342 =γ−γ+γ+β+ ekbdkbkabekb  (55) 

22222
0

2
0

22
0

22 4122041220 bcekcdkbckabubekudkbukab ++−−−  

32332232322 816248832 kebdekabekkdbdkabkba −+−−−+  

β+β−α+α−α− 424233232 1441672824 dkbkabbekdkbkab  

,01824800288400 552524 =γ+γ−γ+β− bekdkbkabbek  (56) 

222
0

2
0

2
0

2 444444 cekbcdkabckuekubdkuabk −+−+−  

β+α−α+α−+−+ 43333332 16888888 abkekbdkabkaekabdkbka  

.03232321616 55544 =γ−γ+γ−β+β− ekbdkabkekbdk  (57) 

Solving the above system of algebraic equations with the aid of 
Mathematica, we obtain the following results: 
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Case 1. .144
47,0

2

γ
β=α>β  

,720,20,480 22
0

2 kdkcuka γ=β+=γ=  

.24,3
720 2

γ
β=γ= kkbe  (58) 

Substituting equation (58) into equation (46) and considering equation 
(3), we acquire the general travelling wave solution of the KdV-Burgers-
Kuramoto equation (44) in the following: 

 
( )

.96020 32

33
2

ξ+
γ−β+= keb
kbkcu  (59) 

Setting 1=b  in equation (59) and using the previous identity (19), we 
obtain the kink-type solitary wave solution to the KdV-Burgers-Kuramoto 
equation (44) as follows: 

.tanh120tanh15tanh47
9015 33222 ξγ+ξβ−ξα+β+= kkkkkkkcu  (60) 

Similarly, taking 1−=b  in equation (59) and using the previous identity 
(21), we get the singular travelling wave solution to the KdV-Burgers-
Kuramoto equation (44) as follows: 

.coth120coth15coth47
9015 33222 ξγ+ξβ−ξα+β+= kkkkkkkcu  (61) 

Case 2. .16,0
2

γ
β=α<β  

.8,240,240,6,0 222
0 γ

β=γ=γ=β−== kkbekdkcua  (62) 

Substituting equation (62) into equation (46) and considering equation 
(3), we get the general travelling wave solution of the KdV-Burgers-
Kuramoto equation (44) in the following: 
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.9609606 22
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Setting 1=b  in equation (63) and using the previous identity (19), we 
obtain the kink-type solitary wave solution to the KdV-Burgers-Kuramoto 
equation (44) as follows: 

.tanh120tanh15tanh309 33222 ξγ+ξβ−ξα−β+= kkkkkkkcu  (64) 

Similarly, taking 1−=b  in equation (63) and using the previous identity 
(21), we get the singular travelling wave solution to the KdV-Burgers-
Kuramoto equation (44) as follows: 

.coth120coth15coth309 33222 ξγ+ξβ−ξα−β+= kkkkkkkcu  (65) 

4. Conclusions 

In summary, the exact solutions to several higher-order NWEs called the 
Kuramoto-Sivashinsky equation and the Kawahara equation as well as the 
KdV-Burgers-Kuramoto equation are successfully presented by introducing a 
transformation containing two trial functions and selecting the appropriate 
trial functions. It is not difficult to see that the technique used herein is 
particularly simple. 
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