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Abstract 

Independence is an optimal property among random variables within a 
semi-martingale and between semi-martingales, and the verification of 
independence can effectively improve and simplify the applications of 
semi-martingale processes. This paper investigates the conditions for 
independence among random variables in a semi-martingale and 
between semi-martingales. Specifically, we establish the conditions       
for independence among random variables in a continuous semi-
martingale, for independence among random variables in a jump 
process, and for independence among random variables between a 
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jump process and a continuous semi-martingale. Corresponding to 
each case of the above independence, the theorems and corollaries                 
are stated and proved to demonstrate the conditions for the purpose                    
of identifying independence among random variables in a semi-
martingale and between martingales. In the proofs of theorems,                   
Itô’s formula is employed. To further detect the conditions for 
independence, we propose the definitions of local independence and 
progressive independence. To explore the conditions with respect to 
independence among random variables in a jump process, the linear 
decompositions of a jump process are initially utilized to prove the 
theorems where a jump process is involved. The results regarding 
independence from the theorems and corollaries are applied to show 
the independence conditions between Poisson processes in Bertoin [1] 
and Poisson process and Brownian motion in Shreve [6]. 

1. Introduction 

In stochastic processes, independence is of importance and to 
characterize the property of independence is a crucial issue. Presently, 
increment independent processes, such as Brownian motion and Poisson 
processes, have been extensively analyzed. However, in the literature, only a 
little study has been fulfilled to effectively investigate independence among 
random variables in the same sequence of a stochastic process and between 
distinct stochastic processes. Bertoin [1] obtained that random variables in a 

Poisson process ( )nNNNN ...,,, 21=  are independent if and only if for any 

{ } ( ) ( ) ( ) 0,...,,2,1 =−−=δ∈≠ tNtNtNnji iii  or ( ) ( ) ( )−−=δ tNtNtN jjj  

0=  almost surely. Shreve [6] studied independence between Brownian 
motion and Poisson processes and concluded that Brownian motion and 
Poisson processes which are adapted to the same family of filtration are 
unconditionally independent of each other. 

Motivated by the ideas in Shreve [6], this paper investigates the 
conditions for independence among random variables in a semi-martingale 
and between semi-martingales. Specifically, we establish the conditions for 
independence among random variables in a continuous semi-martingale, for 



Independence among Random Variables between Semi-martingales 221 

independence among random variables in a jump process, and for 
independence among random variables between a jump process and a 
continuous semi-martingale. For the purpose of identifying these conditions, 
the corresponding theorems and corollaries are stated and proved. In the 
proofs of theorems, Itô’s formula is employed. For further investigating the 
conditions for independence, we propose the definitions of local and 
progressive independence in a weaker sense. We also explore the conditions 
with respect to independence among random variables in a jump process with 
the initial utility of the linear decompositions of a jump process to prove the 
theorems where a jump process is included. We apply the results regarding 
independence from the theorems and corollaries to illustrate the 
independence conditions between Poisson processes in Bertoin [1] and 
Poisson process and Brownian motion in Shreve [6]. 

The conclusions in this paper can be realistically extended to a number of 
fields such as physical and financial processes where a continuous semi-
martingale and a jump process are combined. Moreover, based on the 
theorems and corollaries derived in the paper, we can conclude that 
continuous semi-martingales and jump processes which are adapted to the 
same family of filtration are unsurprisingly independent. 

The effectiveness of the results in this paper are furthermore illustrated in 
that Corollary 3.4 is identical to that in Bertoin [1] and in that Corollary 4.3 
is one of the results in Shreve [6]. This indicates that the theorems in the 
paper possess more general consequences with respect to independence 
among random variables between semi-martingales and simultaneously 
implies that the developed points in the paper are valuable in applications. 

We utilize ( { } { } )Ptt ,,, 0≥Ω FF  to denote a filtered complete probability 

space. All processes thereafter are adapted to a σ -filtration { } .0≥ttF  

Concepts of martingales, local martingales, semi-martingales, pure jump 
processes, and their quadratic variations and covariances are consistent with 
those in Karatzas and Shreve [2], Karlin and Taylor [3], and Klebaner [4]. 
For a semi-martingale X, let ( ) ( ) ( ) ( ) ( ).,, −−=δ≤−=Δ tXtXtXtssXtXX  
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Let ( ) ( )( )( )tXEt θ=θϕ exp,  be the characteristic function of X, where 

,1u−=θ  .R∈u  Let ( ) ( ),,log,loglog st θϕ−θϕ=ϕΔ=ϕΔ  .ts ≤  We 

make use of the characteristic function in the derivations of theorems and 
corollaries. 

The paper is organized as follows: Section 2 analyzes independence 
among random variables in the sequence of a continuous semi-martingale 
and local independence and progressive independence are defined. Section 3 
proposes the linear decompositions of a pure jump process and the 
independence conditions among random variables in a jump process are 
studied. In Section 4, we explore the independence conditions among random 
variables between a continuous semi-martingale and a jump process. Finally, 
Section 5 concludes the paper. 

2. Independence among Random Variables in a  
Continuous Semi-martingale 

2.1. Independence among random variables in a continuous semi-
martingale 

Let ( )mXXXX ...,,, 21=  be a semi-martingale of dimension m, where 

( ) ,...,,2,1,00 miX i ==  and let [ )∞=+ ,0R  be an index set. 

Prior to the presentation of the first theorem, we emphasize that in what 
follows, we assume that all semi-martingales have the decomposition as: 

,iii AMX +=  (2.1) 

where iM  is a square integrable continuous martingale and iA  is a process 
of finite variation. 

The first theorem provides the conditions for independence among 
random variables in a continuous semi-martingale process. 

Theorem 2.1. Let ( )mXXXX ...,,, 21=  be as above, i.e., a continuous 

semi-martingale of dimension m with zero initial values such that 
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,iii AMX +=  

where iM  is a square integrable continuous martingale and iA  is a process 

of finite variation. Let ( )tii ,θϕ  be the characteristic function of .iX  Then, 

within the martingale, mXXX ...,,, 21  are mutually independent if the 

following two conditions hold: 

• (A1) [ ] ;,0, jiMM ji ≠=  

• (A2) (( [ ] ) ) .22 iis
ii

i AME θϕΔ=|Δ+Δθ F  

Note that [ ]iM  is the quadratic variation of ,iM  for ;...,,1 mi =  [ ]iMΔ  

[ ] [ ] is
i

t
i tsMM θ≤−= ;,  is the parameter in the characteristic function 

( ) ,;, j
s

i
t

i
ii AAAt −=Δθϕ  for mji ...,,1, =  and ;ts ≤  and ( )sE F|∗  is the 

expected value of ∗ with respect to the σ -field .sF  Similarly to Section 1, 

let ( ) ( ) .,,log,loglog tsst iiiiii ≤θϕ−θϕ=ϕΔ=ϕΔ  

Proof. Utilizing the semi-martingale process along with the characteristic 
functions, we can define 

( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ϕ−+θ= ∑ ∏

= =

m

i

m

i
i

ii
i AMY

1 1
logexp  

and it is quite apparent that Y is a semi-martingale. According to Itô’s 
formula of a continuous semi-martingale in Protter [5] and Russo and Vallois 
[7], we have 

( ) ( ) ( ) ( ) ( )∑∫ ∑∫
= =

θ+θ+=
m

i

t m

i

t i
i

i
i sdAsYsdMsYtY

1
0

1
0

1  

( ) [ ]( ) ( ) ( )( )( )∑∑ ∫ ∑∫
= = =

θϕ−θθ+
m

i

m

j

t m

i

t
ii

ji
ji sdsYsMMdsY

1 1
0

1
0

.,log,2
1  
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Based on condition (A1), [ ] ,,0, jiMM ji ≠=  we can have 

( ) ( ) ( ) ( ) ( )∑ ∑ ∫∫
= =

⎟
⎠
⎞

⎜
⎝
⎛ θ+⎟

⎠
⎞
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m

i

m

i

t i
i

t i
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1 1
00

1  

( ) [ ]( ) ( ) ( )( )( )∑ ∑ ∫∫
= =

⎟
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⎝
⎛ θϕ−⎟
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⎞

⎜
⎝
⎛θ+

m

i
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i
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t i
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m

i

t i
i sdMsY

1
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1  

( ) [ ]( ) ( ) ( )∑ ∫ ∫
=
⎜
⎝
⎛ θ+θ+

m

i

t t i
i

i
i sdAsYsMdsY

1
0 0

2
2
1  

               ( ) ( )( )( ) .,log
0

⎟
⎠
⎞θϕ− ∫

t
ii sdsY  

We remark that condition (A2), ( [ ] ) ,22 iis
ii

i AME θϕΔ=|Δ+Δθ F                

is equivalent to [ ] ,log2
1 2

i
i

i
i

i
i AMM ϕ−θ+θ=  which is a continuous 

martingale. Then, the expression 

( ) [ ]( ) ( ) ( ) ( ) ( )( )( )∑ ∫ ∫ ∫
=

⎟
⎠
⎞

⎜
⎝
⎛ θϕ−θ+θ

m

i

t t t
ii
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i
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2 ,log2
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yields 

( ) ( ) ( ) ( ) ( )∑ ∑ ∫∫
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where ( ) ( )∫
t i sdMsY
0

 and ( ) ( )∫
t i sMdsY
0

 are continuous martingales, 

respectively, because ( )tY  is continuous. Therefore, ( )tY  is also a continuous 

martingale and we have ( )( ) ( )( ) ,10 == YEtYE  which leads to the equation 

( ) ( )( )∏∑
==

θϕ=
⎟
⎟
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⎞

⎜
⎜
⎝

⎛

⎟
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⎛
θ

m

i
ii

m

i

i
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11
.,exp  

Based upon the properties of characteristic functions, we obtain that 
mXXX ...,,, 21  are mutually independent. ~ 

Corollary 2.2. Let ( )mXXXX ...,,, 21=  be a continuous sub-

martingale of dimension m with zero initial values such that iX  has the 
following Doob-Meyer decomposition 

,iii AMX +=  

where iM  is a uniformly integrable continuous martingale and iA  is a 
predictable increasing process. Let ( )tii ,θϕ  be the characteristic function 

of .iX  Then, mXXX ...,,, 21  are mutually independent if the following 

conditions hold (with obvious notation): 

• (B1) [ ] ;,0, jiMM ji ≠=  

• (B2) ( [ ] ) .22 iis
ii

i AME θϕΔ=|Δ+Δθ F  

Proof. Note that sub-martingales in Corollary 2.2 are a special type of 
semi-martingales in Theorem 2.1. Although the decomposition of Doob-

Meyer is different from that of semi-martingales, by decomposing iM  again, 
we can change the decomposition of Doob-Meyer to that of semi-

martingales, where iM  is a square integrable continuous martingale. Then, 
Corollary 2.2 follows from Theorem 2.1. ~ 
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Corollary 2.3. Let ( )mMMMM ...,,, 21=  be a square integrable 

continuous martingale of dimension m with zero initial values. Then 
mMMM ...,,, 21  are mutually independent if the following conditions hold: 

• (C1) [ ] ;,0, jiMM ji ≠=  

• (C2) ( [ ] ) .2 2
iis

iME θϕΔ=|Δ F  

Proof. Following the proof of Theorem 2.1, it is easy to prove Corollary 
2.3. ~ 

Corollary 2.4. Let ( )mWWWW ...,,, 21=  be a normal Brownian 

motion. Then, it is easily seen that mWWW ...,,, 21  are mutually 

independent if and only if the following condition holds (with obvious 

notation): [ ] ,0, =ji WW  where .ji ≠  

Proof. For a standard Brownian motion, we have [ ]( ) ttW i =  and 

( ) .2
1exp, 2 ⎟

⎠
⎞⎜

⎝
⎛ θ=θϕ tt iii  Then, we get the expression [ ] tsstW i ≤−=Δ ,  and 

( ) .2
1explog22 222 stst iiii −=θ⎟

⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ −θ=θϕΔ  Condition (C2) in Corollary 

2.3 is therefore characterized by a standard Brownian motion. By Theorem 
2.1 and Corollary 2.3, all we need is Condition (C1) in Corollary 2.3, that is, 

mWWW ...,,, 21  are mutually independent if and only if [ ] ,0, =ji WW  

.ji ≠  ~ 

Corollary 2.5. Let ( )mXXXX ...,,, 21=  be an Itô process with ( ) =0iX  

0 such that 

( ) ( ( ) ) ( ) ( ( ) )∫ ∫+σ=
t t i

i
ii

i
i dsssXbsdWssXtX

0 0
,,,  

where σ and b are cádlág predictable integrable processes which satisfy 
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integrable conditions and ( ) mi
iW ≤≤1  is a standard Brownian motion. Then, 

mXXX ...,,, 21  are mutually independent if the following conditions hold: 

• (D1) ( ) ( ) ;,0,
0 0

jisdWsdW
t t j

i
i

i ≠=⎥⎦
⎤

⎢⎣
⎡ σσ∫ ∫  

• (D2) ( ) .222
ii

t

s siii dsbE θϕΔ=⎟
⎠
⎞

⎜
⎝
⎛ |+σθ∫ F  

We need to notice that we have a standard Brownian motion ( ) ,1 mi
iW ≤≤  

as mentioned in Corollary 2.3. 

Proof. Following Theorem 2.1, we get trivially Corollary 2.5. ~ 

We comment that if iσ  and ib  in Corollary 2.5 are constants, then 

plainly the random variables mXXX ...,,, 21  in Itô process are mutually 

independent if and only if mWWW ...,,, 21  are mutually independent, i.e., 

[ ] ,,0, jiWW ji ≠=  as shown in Corollary 2.4. 

2.2. Local independence and progressive independence 

Let iM  be a square integrable continuous local martingale. Since local 

stopping time series have influences on a semi-martingale ...,,, 21 XX ,mX  

the conditions in Theorem 2.1 cannot be applied to infer that ,1X mXX ...,,2  

are mutually independent. However, to employ the essential ideas in 
Theorem 2.1, we can define the following concepts of local and progressive 
independence for utilizing the weaker conditions for independence. 

Definition 2.6. Let mXXXX ...,,, 21=  be a semi-martingale of 

dimension m with zero initial values, and let ( )tii ,θϕ  be the characteristic 

function of iX  which has a decomposition of (2.1) and in which the local 

stopping time series .∞↑τk  We assume that 
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( ) .logexp
1 1 1
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i
ik AMY k  

They have mXXX ...,,, 21  are mutually progressive independent if they 

have ( ) 1lim =∞→ kk YE  and mXXX ...,,, 21  are mutually local independent 

if ( ) 1=kYE  for an arbitrary natural number k. 

The following theorem aims to provide the weaker conditions for the 
previously defined local and progressive independence. 

Theorem 2.7. Let X be as in Definition 2.6. Then, mXXX ...,,, 21  are 

mutually local and progressive independent if the following conditions hold: 

• (E1) [ ] ;,0, jiMM ji ≠=  

• (E2) ( [ ] ) .22 iis
ii

i AME k θϕΔ=|Δ+Δθ τ F  

Proof. It is similar to that of Theorem 2.1. The key point of the proof 
here is that we can apply Itô’s formula to the equation 

( ) .logexp
1 1 1

⎟
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i
ik AMY k  

Now, by conditions (E1) and (E2), we obtain that the process Y is a 
continuous martingale. We therefore have ( ) ,1=kYE  which leads to the 

result written as 

( ( )) ( ) ( )( )∏∑ ∑
== =

τ θϕ=
⎟
⎟
⎠

⎞

⎜
⎜
⎝

⎛

⎟
⎟
⎠

⎞

⎜
⎜
⎝

⎛
θ+θ

m

i
ii

m

i

m

i

i
i

i
i ttAtME k

11 1
.,exp  (2.2) 

By the previous definition, we conclude that mXXX ...,,, 21  are 

mutually local and progressive independent. ~ 

We emphasize that by equation (2.2), we can easily infer that if ,1X  
mXX ...,,2  are mutually independent, then mXXX ...,,, 21  are mutually 
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local and progressive independent. However, the converse proposition is not 
necessarily true, indicating that the conditions for mutually local and 
progressive independence are weaker than those for independence. 

Corollary 2.8. Let ( )mMMMM ...,,, 21=  be as above, and the local 

stopping time series .∞↑τk  Then mMMM ...,,, 21  are mutually local 

independent and progressive independent if the following conditions hold: 

• (F1) [ ] ;,0, jiMM kji ≠=τ  

• (F2) ( [ ] ) .2 iis
i

i kME θϕΔ=|Δθ τ F  

Proof. This corollary follows from Theorem 2.7. ~ 

For the sake of simplicity, this paper concentrates on independence 

among the random variables in the process ( )mXXXX ...,,, 21=  instead 

of local and progressive independence. However, the framework of studying 
local and progressive independence is analogous to that of independence 

among the random variables in the process ( )....,,, 21 mXXXX =  

3. Independence among Random Variables in a Jump Process 

3.1. The linear decompositions of a jump process 

Let ( )nNNNN ...,,, 21=  be an n-dimensional pure jump (counting) 

process with ( ) ....,,2,1,00 niNi ==  A finite number of jump points exist 

for every process iN  in the interval [ ].,0 t  We denote by kS  the set which is 

composed of all combinations of every k elements in { }....,,2,1 n  

We also define φ=0S  and consider different arrangements of ,, 21 jj  

,..., kk Sj ∈  where { }....,,2,1...,,, 21 njjj k ∈  Let ( ) ∈σ= kjjj k...,,, 21  

.kS  Then, it is easy to see that the number of elements in kS  is 

( ) ( ).excluded !!
!

0 φ=
−

Sknk
n  Let ( ) ( ) ( ) ,...,,2,1, kisNsNsN iii jjj =−−=δ  
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and let ( ) .: 1 ⎭
⎬
⎫

⎩
⎨
⎧ =δΩ∈ω= ∑ =

n
i

ik ksNB  Then, it is also apparent to figure 

out that kB  is F -measurable set and { }nBBB ...,,, 10  is a partition of the 

sample space Ω. 

Let 

( ) ( ) ( ) ,...,,,,0,:
1 21

⎭
⎬
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⎨
⎧

≠=δ=δΩ∈ω= ∑ =σ
k
i k
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k jjjpsNksNB i  
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0 BB =σ  Then, ( ) ( ),

k
kSk

k BB k σ∈σ= ∪  which means 

( )
k

kBσ  with ( ) kSk ∈σ  is a partition of .kB  We define a pure jump process 

( )
k

kNσ  in a measurable set ( )
k

kBσ  which satisfies 
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σ
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Clearly, ( ) 00
0 ≡δ σN  and ( ) ( ) ....,,2,1,1

1 nisNN i =δ=δ σ  

Theorem 3.1. Let RRf →:  be a linear function with ( ) ,00 =f  and 

let N be as above. ( ) ( ) ,1 ⎟
⎠
⎞

⎜
⎝
⎛ θ= ∑ =

n
i

i
i tNftY  and let ( ) ∑ =σ θ=θ k

i jk i1 .  If at 

least one of processes nNNN ...,,, 21  produces a jump at the point s, then 

we have 
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Proof. First, we develop ( )sY  as follows: 
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Then, since ( ) ( ) 0,00 0
0 ≡δ= σNf  and ( ) ( ) ,...,,2,1,1

1 nisNN i =δ=δ σ  equation 

(3.1) can be re-written as 
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Equation (3.2) therefore closes the proof of Theorem 3.1. ~ 

Theorem 3.2. Assume that a continuous function RRg →:  possesses 

the exponential nature, i.e., 

( ) ( ) ( ) ( ) .10,,, =∈∀=+ fRyxygxgyxg  

Let ( )nNNNN ...,,, 21=  be an n-dimensional pure jump (counting) process 

with ( ) ....,,2,1,00 niNi ==  The finite number of jump points exists for 

every process iN  in the interval [ ].,0 t  Let ( ) ⎟
⎠
⎞

⎜
⎝
⎛ θ= ∑ =

n
i

i
iNgtY 1  and 

( ) ∑ =σ θ=θ k
i jk i1 .  At least one of processes nNNN ...,,, 21  produces a 

jump at the point s. Then 
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 (3.3) 

By ( ) ( ) 0,10 0
0 ≡δ= σNf  and ( ) ( ) ,...,,2,1,1

1 nisNN i =δ=δ σ  equation (3.3) 

can be re-written as 

( ) ( ) ( ) ( ( ( ) ( ) ) )
( )
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k Sk

k
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( ) ( ) ( ( ( ) ) ( ) )
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n

k Sk

k
kk

k

NgsYsY
1

.1  (3.4) 

Equation (3.4) therefore ends the proof of Theorem 3.2. ~ 

Prior to the further study of independence for jump processes, we 
comment on the utility of Theorems 3.1 and 3.2. Based upon equations (3.2) 

or (3.4), we will apply the stochastic integral of a pure jump family { ( )}
k

kNσ  

constructed by the finite number of pure jump processes to express the jump 
process Y in order to decipher the conditions for independence among 
random variables in a pure jump process. 
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3.2. Independence among random variables in a pure jump process 

Theorem 3.3. Let ( )nNNNN ...,,, 21=  be an n-dimensional pure jump 

(counting) process with ( ) .00 =iN  Then, there exists a finite number of 

jump points for every process iN  in the interval [ ]t,0  and processes 
nNNN ...,,, 21  are mutually independent if the following conditions hold: 

• (G1) ( ( ) ( ) ) ;,1exp tssNtNE
i
i

s
ii ≤

−θ
ϕΔ

=|− F  

• (G2) ( ) .02 =BP  
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n
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i
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Itô’s formula of the jump process (semi-martingale) Protter [5], Russo and 
Vallois [7], and Williams [8], we have 
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We also assume that at least one process of nNNN ...,,, 21  produces a 

jump at the point s ( ) ( )( ).0otherwise =−− sYsY  By Theorem 3.2, we get 

( ) ( ) ( ) ( )
⎟
⎟
⎠

⎞

⎜
⎜
⎝

⎛
−δθ−=−− ∑

=

n

i

i
i sNsYsYsY

1
1exp  

( ) (( ( ( ) ( ) ) )
( )

∑ ∑
= ∈σ

σσ −δθ−=
n

k Sk

k
kk NsY

1
1exp  

( ) (( ( ) ) ( ) )
( )

∑ ∑
= ∈σ

σσ δ−θ−=
n

k Sk

k
kk NsY

1
.1exp  (3.6) 

According to equations (3.5) and (3.6), we further obtain a linear 

decomposition of Y which takes account of the pure jump family { ( )},k
kNσ  

and it can be written as 
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From condition (G1) of Theorem 3.3, we obtain that the equation 

( ) ( )( ) 1exp −θ
ϕΔ

=|−
i
i

ssNtNE F  is equivalent to the fact that the process 

( ) ( ) ( ) ( )ttNtN ii
i

i
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is a martingale. We therefore get that the process 
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is a martingale and ( ) .00 =iN  



Independence among Random Variables between Semi-martingales 235 

By the fact that ( ) ( ) ( ) ,02,002 =δ⇔≥=⇒= σ
k

k
k NkBPBP  almost 

surely, with ( ),2≥k  we have 
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( )
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According to equations (3.7), (3.8) and (3.9), we conclude that ( )( )tYE  

,1=  i.e., ( ) ( )( )∏∑ == θϕ=⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ θ n

i ii
n
i

i
i ttNE 11 .,exp  Again, by the properties 

of characteristic functions, nNNN ...,,, 21  are mutually independent. ~ 

Corollary 3.4 (Bertoin [1]). Let ( )nNNNN ...,,, 21=  be an 

n-dimensional Poisson process. Then, the random variables nNNN ...,,, 21  

are mutually independent if and only if { } ,,...,,2,1, jinji ≠∈∀  

( ) ( ) ,0=−−=δ sNsNN iii  or ( ) ( ) ,0=−−=δ sNsNN jjj  a.s. 

Proof. For a Poisson process ,iN  the moment generating function 

( ) ( ( )).1exp, −λ=θϕ θiett iii  Obviously, the process 

( ) ( ) ( ) ( ) ( ) ttNttNtN iiiii
ii λ−=−θθϕ−= 1exp,log  

is a martingale. Thus, it is quite apparent that condition (G1) of Theorem 3.3 

holds. The condition (G2) from Theorem 3.3 here is equivalent to =δ iN  

( ) ( ) 0=−− sNsN ii  or ( ) ( ) ,,0 jisNsNN jjj ≠=−−=δ  almost surely. 

Therefore, we conclude Corollary 3.4 trivially. 

Compared with the condition for Corollary 3.4, the conditions of 
Theorem 3.3 are evidently weaker. 

Note that Corollary 3.4 is one of the important results in Bertoin [1], 
which demonstrates that Theorem 3.3 is a quite general settlement for 
identifying independence among random variables in a jump process. 
Moreover, the values of the linear decompositions of jump processes and 
Theorem 3.3 are verified. 
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4. Independence among Random Variables between a Continuous  
Semi-martingale and a Pure Jump Process 

Let ( )mXXXX ...,,, 21=  be an m-dimensional continuous semi-

martingale with zero initial values, and ( )nNNNN ...,,, 21=  be an 

n-dimensional pure jump process with zero initial values. Then, we have the 
following theorem. 

Theorem 4.1. Processes nm NNNXXX ...,,,,...,,, 2121  are mutually 

independent if the following conditions hold: 

• (H1) [ ] ;,0, jiMM ji ≠=  

• (H2) ( [ ] ) ;22 iis
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i AME θϕΔ=|Δ+Δθ F  

• (H3) ( ( ) ( ) ) ( ) ;,1exp tssNtNE iis
ii ≤−θϕΔ=|− F  

• (H4) ( ) .02 =BP  
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where ( )tii ,θϕ  and ( )tjj ,γϕ  are the characteristic functions of processes 

iX  and ,iN  respectively. 

Applying Itô’s formula for a semi-martingale and using conditions (H1), 
(H2) and (H3), we have 
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where ii MM ,  and jN  are all martingales (see Theorems 2.1 and 3.3). Due 

to condition (H4), we have ( )[ ] .1=tYE  Therefore, we arrive at 
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which means that processes nm NNNXXX ...,,,,...,,, 2121  are mutually 

independent. 

Corollary 4.2. Let M be a one-dimensional square integrable martingale 
with a zero initial value and N be a one-dimensional pure jump process with 
a zero initial value. Then M and N are independent of each other if the 
following conditions hold: 

• (I1) [ ][ ] ;2 2
MMsME θϕΔ=|Δ F  

• (I2) ( ) ( )[ ] ( ).1exp −θϕΔ=|− NNssNtNE F  

Corollary 4.2 serves as a direct proposition of Theorem 4.1. 

Corollary 4.3 (Shreve [6]). A one-dimension standard Brownian motion 
W and a one-dimensional Poisson process N which are both defined in the 
same filtered complete probability space { }( )Pt ,,, 0≥Ω FF  are independent 

of each other. 

Corollary 4.3 can be derived from Corollary 4.2. For a standard 
Brownian motion W and a Poisson process N, the two conditions of 
Corollary 4.2 are effortlessly fulfilled. So, it is intriguing to emphasize the 
fact that processes W and N are unconditionally independent of each other. 

The unconditional independence provides numerous opportunities for 
applications of Corollary 4.3. For example, if we assume that the price 
processes of two stocks are driven by a Brownian motion W and a Poisson 
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process N, respectively, when we build up a model for stocks, the price 
processes of these two stocks are independent of each other. 

Corollary 4.4. Let W be an m-dimensional standard Brownian motion 
defined in a filtered complete probability space { }( )Pt ,,, 0≥Ω FF  and let  

N be an n-dimensional. Poisson process defined in the same space, then the 
random variables in W and N are mutually independent. 

Corollary 4.5. Let ( )mWWWW ...,,, 21=  be an m-dimensional standard 

Brownian motion, and let ( )nNNNN ...,,, 21=  be an n-dimensional 
Poisson process. Then 

nm NNNWWW ...,,,,...,,, 2121  

are mutually independent if and only if the following conditions hold: 

• (J1) [ ] ;,0, jiWW ji ≠=  

• (J2) ( ) .02 =BP  

We note that Corollaries 4.4 and 4.5 are all quite obvious to obtain from 
Theorem 4.1. 

5. Concluding Remarks 

We first detect the conditions for independence among random variables 
in a continuous semi-martingale, and then local independence and 
progressive independence are defined and the corresponding independence 
conditions are explored. The linear decompositions of a jump process are 
presented for further proofs regarding the independence conditions for 
random variables in a jump process and between a continuous semi-
martingale and a pure jump process. 

More importantly, the results in this paper accommodate certain classic 
results such as Corollary 3.4 and Corollary 4.3, which implies that the 
theorems presented here require weaker conditions for independence. With 
the weaker conditions, the corresponding independence is easier to be 
satisfied and the theorems can be more smoothly applied. 
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The concepts of local independence and progressive independence are 
initially defined in the paper, and they are original and efficient tools for 
studying processes where independence conditions are weaker than those for 
independence defined by the traditional way, as discussed in Subsection 2.2. 

The linear decompositions of a jump process are proposed. Based on the 
linear decompositions, the independence conditions for random variables in a 
jump process are investigated. The independence conditions for random 
variables between a continuous semi-martingale and a pure jump process are 
also inspected. 

Between semi-martingales used in practice, if independence exists 
among random variables (which is the optimal case), the utility of these 
stochastic processes will be quite unproblematic and less complicated. 
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