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Abstract 

Bootstrap sampling is gaining popularity as computational tools are 
becoming more accessible. In bootstrap sampling, usually, samples of 
equal sizes are selected with replacement and with equal probability in 
obtaining each element of the original sample at hand. It is the key 
question in the researchers’ mind that whether unequal sampling 
would provide more accurate results. Here we introduce three 
alternative unequal probability sampling procedures. A comparison 
among the three unequal probability choices and the equal probability 
sampling are conducted using the Monte Carlo simulation. 

1. Introduction 

Bootstrapping is a general approach to statistical inference based on 
building a sampling distribution for a statistic by resampling from the data at 
hand. The term bootstrapping, due to Efron and Tibshirani [2], Efron [1], 
Hall and Martin [3], Higgins [4], use the sample data as a population from 
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which repeated samples are drawn. The approach may seem concentrating 
only on the sample at hand and overlooking the ‘big picture’, but has been 
shown to be sound. It always gives a way to estimate the variability of an 
estimate when no plausible method is available. 

Suppose that we draw a sample { }nXXXS ...,,, 21=  from a population 

{ }....,,, 21 NxxxP =  The essential idea of the nonparametric bootstrap is as 

follows: We proceed to draw a sample of size n with replacement from the 

elements of S. Call the resulting bootstrap sample { },...,,, 21
∗∗∗∗ = iniii XXXS  

,...,,2,1 Li =  where L is the number of bootstrap samples often chosen a 

fairly large number, say, 10,000. It is necessary to sample with replacement, 
because we would otherwise simply reproduce the original sample S. 

Let ( )SgT =  be an estimate of a parameter θ for which the functional 

form of the standard error of the estimate is either unavailable or the sample 
size is so small that the standard error estimate is highly volatile. In such 
situations, L bootstrap samples can produce a reliable estimate of the 
sampling distribution of the statistic T and hence the standard error of the 
estimate. 

2. Motivation 

Bootstrap sampling is gaining popularity as computational tools are 
becoming more accessible. In bootstrap sampling, usually, samples of equal 
sizes are selected with replacement and with equal probability in obtaining 
each element of the original sample at hand. It is the key question in the 
researchers’ mind that whether unequal sampling would provide more 
accurate results. Here we introduce three alternative unequal probability 
sampling procedures. 

Mecatti [5] studied equal and unequal probability sampling in bootstrap 
sampling. In this study, the author re-enforced the importance of with 
replacement sampling while bootstrapping. In addition, Davison et al. [8] 
summarized recent developments in bootstrap sampling. 
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More recently, Ranalli and Mecatti [6] presented a comparison of recent 
approaches for bootstrapping in sample surveys. In their study they 
considered effects on variances for different sampling designs. 

3. Bootstrap Sampling 

3.1. Equal probability sampling 

Each element of the sample { }nXXXS ...,,, 21=  is selected with 

probability npei
1=  with replacement. 

3.2. Normal probability sampling 

Let us consider the ordered sample { ( ) ( ) ( )},...,,, 21 nXXXSO =  ordered 

from the smallest to the largest. Then each element of the ordered sample SO 
is selected with replacement and with probabilities ( ( ) ),11 Zpg Φ=  where Φ 

stands for the standard normal cumulative distribution function (CDF), and 

( ( ) ) ( ( ) )1−Φ−Φ= iigi ZZp  for ,...,,3,2 ni =  ( )
( ) ,

X

i
i s

XX
Z

−
=  X  stands 

for the sample mean and Xs  stands for the sample standard deviation, then 

the s’gip  are adjusted to ensure the total probability is one, ....,,3,2,1 ni =  

3.3. Kernel probability sampling 

Each element of the ordered sample SO is selected with replacement and 
with probabilities ( ( ) ),11 XGpk =  where G stands for the kernel cumulative 

distribution function, and ( ( ) ) ( ( ) )1−−= iiki XGXGp  for ,...,,3,2 ni =  where 

( ) ( )∫ ∞−
=

x
dxxgxG ,  where 

( ) ∑
=

⎟
⎠
⎞

⎜
⎝
⎛ −

=
n

i

i
h

XxKnhxg
1

,1  



Mezbahur Rahman and Mohammad Shaha Alam Patwary 194 

where 

( ) ( )
⎪⎩

⎪
⎨
⎧ ≤−=

otherwise,0
,1if,14

3 2 uuuK  

is the Epanechnikov kernel and 5
1

214.2
−

σ= nh  is the smoothing parameter 
(see Simonoff [7, pp. 40-45]), σ  is the population standard deviation and can 
be replaced by s (the sample standard deviation) whenever necessary. Then 
the s’kip  are also adjusted to ensure the total probability is one. 

3.4. Empirical unequal probability sampling 

Each element of the ordered sample SO is selected with replacement   

and with probabilities ( )
2
2

1
Upu =  and ( )iUpui =  for ,...,,3,2 ni =  where 

( ) ( ) ( )
( ) ( )

,
1

1
XX
XX

iU
n

i
−
−

=  then the s’uip  are adjusted to ensure the total probability 

is one, note that ( )1U  is zero and ( )nU  is one. 

4. Monte Carlo Simulation 

One thousand samples are selected from each of the standard normal 
distribution ( )( ),1,0N  the standard exponential distribution ( )( ),1E  a normal 

mixture distribution ( ) ⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛+ 3

1,2
3

4
11,04

3 NN  which is a skewed bimodal 

distribution), and the standard uniform ( )( )1,0U  distribution. Samples are 

selected of sizes 10, 50, and 100. From each sample mean ( ),μ  standard 

deviation ( ),σ  the first quartile ( ),1Q  and the third quartile ( )3Q  are 

computed. Then these parameters are recomputed using bootstrap sampling 
000,10( =L  samples in each case) are performed for all four sampling plans 

mentioned above. The total values of the absolute error as 

∑
=

θ−θ=
L

i
i

1

ˆabsolute  
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and the squared error as 

( )∑
=

θ−θ=
L

i
i

1

2,ˆsquared  

where θ̂  is the bootstrap estimate of the parameter θ (which are ,,, 1Qσμ  and 

)3Q  are computed and stored. 

All computations are performed using the MATLAB computational 
software and the codes are available on request from the first author. 

In Tables 1-4, the means (mean) and the standard deviations (SD) for 
both the absolute and the squared distance measures are displayed. The ranks 
of the total values are also displayed to have a quick impression of the 
comparisons. 

Overall values are not clearly distinguished but the rankings showed that 
the equal probability sampling should be preferred. 

In conclusion, the equal probability sampling should be the choice in 
sampling for bootstrap sampling. 
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Table 1. Normal samples 
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Table 2. Exponential samples 
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Table 3. Normal mixture samples 
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Table 4. Uniform samples 

 


