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Abstract 

A two-species Leslie-type ratio-dependent predator-prey periodic 
system with time delay in a two-patch environment is investigated. By 
using the comparison theorem of differential equations, we establish 
sufficient conditions for the permanence of this system. As corollaries, 
some applications are listed. 

1. Introduction 

In this paper, we consider the following periodic Leslie-type ratio-
dependent predator-prey system with time delay in a two-patch environment: 
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 (1.1) 

where ix  ( )2,1=i  represents the prey density in the ith patch, and 3x  

represents the predator density. The predator is confined to the first patch 
while the prey can disperse between two patches. id  denotes the dispersal rate 

of the prey in the ith patch. The function ( )xtgi ,  is the growth rate of the 

prey in the absence of predator. The predator consumes the prey according to 
the functional response ( )xtp ,  and grows logistically with growth rate ( )tr  

and carrying capacity proportional to the population size of prey. 

The form of the predator equation in (1.1) was first proposed by Leslie 
[1, 2]. Since Leslie, this type of predator-prey model has been studied 
extensively and seen great progress (see, e.g., [3-9] and the reference cited 
therein). The ratio-dependent response arises in the situations when predators 
have to search for food [10, 11]. Many authors [8, 12-17] have studied ratio-
dependent predator-prey models, and observed that the ratio-dependent 
models can exhibit much richer, more complicated and more reasonable or 
acceptable dynamics. Dispersion takes into account the effect of spatial 
factors which play a crucial role in the permanence and stability of a 
population dynamics (see, e.g., [9, 16-25] and the reference cited therein). In 
fact, because of the ecological effects of human activities and industry, 
dispersal between patches often occurs in natural ecological environments, 
and more realistic models should include the dispersal process. 

In [16], by using Gaines and Mawhin’s continuation theorem of 
coincidence degree theory, Ding et al. obtained sufficient conditions for the 
existence of positive periodic solutions in system (1.1). However, to our 
knowledge, there is no published paper concerned with the permanence of 
system (1.1). 
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The aim of the present paper is, by applying the comparison theorem of 
different equations, to establish sufficient conditions which guarantee the 
permanence of system (1.1). For the sake of generality and convenience, we 
always make the following fundamental assumptions for system (1.1): 

)A( 1  ( ),1 td  ( ),2 td  ( )tc  and ( )tτ  are positive continuous periodic 

functions with a common period 0>ω  and ( )tr  is a continuous 

ω-periodic function. 

)A( 2  ( )xtg ,1  is a continuous function, ω-periodic in t, continuously 

differentiable in ( ) ( ) 0,, 1 <∂∂ xtxgx  for ,R∈t  ,0>x  and there 

exists a positive constant 1Γ  such that ( ) 0, 11 <Γtg  for .R∈t  

)A( 3  ( )xtg ,2  is a continuous function, ω-periodic in t, continuously 

differentiable in ( ) ( ) 0,, 2 <∂∂ xtxgx  for ,R∈t  ,0>x  and there 

exists a positive constant 2Γ  such that ( ) 0, 22 <Γtg  for .R∈t  

)A( 4  ( )xtp ,  is a continuous function, ω-periodic in t, continuously 

differentiable in x, and there exists a positive continuous ω-periodic 
function ( )tα  such that ( ) ( ) xtxtp α≤≤ ,0  for .0, >∈ xt R  

Readers familiar with predator-prey models may notice that the above 
assumptions are reasonable for population models. The assumption of 
periodicity of the parameters is a way of incorporating the periodicity of the 
environment. By the theory of functional differential equations, it is clear 
that under the above assumptions system (1.1) with initial condition 

( ) ( ) [ ] [ ] ( )( ) ,3,2,1,,0,0,,0,, =∞+ν−∈φν−∈φ= iCsssx iii  (1.2) 

has a unique positive solution, where [ ] ( ).max ,0 tt τ=ν ω∈  

2. Permanence 

In this section, we consider the permanence of system (1.1). First, we 
state some results which will be useful to establish our main results. 
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In what follows, we use the notations: 
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where ( )tf  is a continuous ω-periodic function, and ( )xtg ,  is a continuous 

function and is ω-periodic in t. 

Definition 2.1. System (1.1) is said to be permanent if there exist 
positive constants ,3,2,1,, =imM ii  which are independent of the solution 

of system (1.1), such that 

( ) ( ) ,3,2,1,supliminflim =≤≤≤
+∞→+∞→

iMtxtxm ii
t

iti  

for any solution ( ) ( ) ( )( )txtxtx 321 ,,  of system (1.1) with the initial condition 

(1.2). 

Consider the following logistic equation: 

 ( ) ( ) ( ) ( ) ( )[ ],txtbtatxtx −=′  (2.1) 

where ( )ta  and ( )tb  are ω-periodic continuous functions. By Lemma 2.2 of 

[26], we have the following result. 

Lemma 2.1. If 0ˆ >a  and ( ) 0>tb  for all ,R∈t  then equation (2.1) 

admits a unique positive ω-periodic solution which is global asymptotically 
stable. 

Next consider the following single species dispersion system: 
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By Lemma 3.1 of [22], we have the following result. 
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Lemma 2.2. In addition to ),A(-)A( 31  suppose further that ( ) 11
ˆ0~ dg >  

or ( ) 22
ˆ0~ dg >  hold. Then system (2.2) admits a unique positive ω-periodic 

solution which is globally asymptotically stable. 

We are now in a position to state our result on the permanence of system 
(1.1). 

Theorem 2.1. In addition to ),A(-)A( 41  suppose further that the 

following hold: 

)A( 5  ( ) 11
ˆˆ0~ dg +α>  or ( ) ,ˆ0~

22 dg >  

)A( 6  .0ˆ >r  

Then system (1.1) with initial condition (1.2) is permanent. 

Proof. For any positive solution ( ) ( ) ( )( )txtxtx 321 ,,  of system (1.1), we 

get from the first two equations of system (1.1) that 

( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )⎩
⎨
⎧

−+≤′

−+≤′

.,

,,

2122222

1211111

txtxtdtxtgtxtx

txtxtdtxtgtxtx
 

By Lemma 2.2 and ),A( 5  the following auxiliary system 
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admits a globally asymptotically stable positive ω-periodic solution 
( )( ( ))., 21 tutu  Let ( ) ( )( )tutu 21 ,  be the solution of (2.3) with ( ) ( )( )0,0 21 uu  

( ) ( )( ).0,0 21 xx=  It follows from the comparison theorem that, for all ,0≥t  

( ) ( ) .2,1, =≤ itutx ii  

The global stability of ( ) ( )( )tutu 21 ,  gives that 

( ) ( ) .2,1,suplimsuplim =≤≤
+∞→+∞→

iututx u
ii

t
i

t
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Thus there exists 01 >T  such that for all ,1Tt ≥  

 ( ) .2,1,:2
3 =η=≤ iutx i

u
ii  (2.4) 

Again from the first two equations of system (1.1), we get that 
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By Lemma 2.2 and ),A( 5  the following auxiliary system 
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also admits a globally asymptotically stable positive ω-periodic solution 
( ) ( )( )., 21 tvtv  Let ( ) ( )( )tvtv 21 ,  be the solution of (2.5) with ( ) ( )( ) =0,0 21 vv  

( ) ( )( ).0,0 21 xx  It follows from the comparison theorem that, for all ,0≥t  

( ) ( ) .2,1, =≥ itvtx ii  

The global stability of ( ) ( )( )tvtv 21 ,  gives that 

( ) ( ) .2,1,infliminflim =≥≥
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ivtvtx l
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Thus there exists 02 >T  such that for all ,2Tt ≥  

 ( ) .2,1,:2
1 =ξ=≥ ivtx i

l
ii  (2.6) 

For any positive solution ( ) ( ) ( )( )txtxtx 321 ,,  of system (1.1), we get 

from the third equation of (1.1) that 

( ) ( ) ( ),33 txtrtx ≤′  

that is, 

( )
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3
3 trtx

tx
≤

′
 



Permanence for a Two-species Leslie-type Ratio-dependent … 7 

Integrating both sides of the above inequality over the interval ( )[ ]ttt ,τ−  

leads to 

 ( ) ( )( )
( )( ) ( )( ) .333

u
t

tt rdssr
ettxettxtx ντ−≤τ−≤ ∫ τ−  (2.7) 

It follows from the third equation of (1.1), (2.4) and (2.7), that for all ≥t  
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By Lemma 2.1 and ),A( 6  the following auxiliary equation 
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1
 (2.8) 

admits a globally asymptotically stable positive ω-periodic solution ( ).tw  Let 

( )tw  be the solution of (2.8) with ( ) ( ).131 ν+=ν+ TxTw  It follows from the 

comparison theorem that, for all ,1 ν+≥ Tt  

( ) ( ).3 twtx ≤  

The global stability of ( )tw  gives that 
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u

tt
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Thus there exists 03 >T  such that for all ,3Tt ≥  

 ( ) .:2
3

33 η=≤ uwtx  (2.9) 

In view of the third equation of (1.1), (2.6) and (2.9), we find that, for 
,32 ν++≥ TTt  
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that is, 
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Integrating both sides of the above inequality over the interval ( )[ ]ttt ,τ−  
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It follows from the third equation of (1.1), (2.6) and (2.10) that, for all ≥t  
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By Lemma 2.1 and ),A( 6  the following auxiliary equation 
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also admits a globally asymptotically stable positive ω-periodic solution ( ).tz  

Let ( )tw  be the solution of (2.11) with 
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It follows from the comparison theorem that, for all ,32 ν++≥ TTt  
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The global stability of ( )tz  gives that 
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The proof is complete. ~ 

By Theorem 2 of [27], we can get the following existent result about 
positive periodic solutions of system (1.1). 

Theorem 2.2. Assume that )A(-)A( 61  hold. Then system (1.1) admits at 

least one positive ω-periodic solution. 

We remark that Theorems 2.1 and 2.2 remain valid for the following 
system 
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and Theorem 2.2 supplements Theorem 2.1 of [16]. 

3. Applications 

In this section, we list some applications of our above results. 

Example 3.1. Consider the following Leslie-type ratio-dependent 
predator-prey dispersion system with Holling-type II functional response and 
time delay 
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where ( ),1 ta  ( ),2 ta  ( ),3 ta  ( ),1 td  ( ),2 td  ( ),tb  ( )tm  and ( )tτ  are positive 

continuous ω-periodic functions, and ( ),1 tr  ( )tr2  and ( )tr3  are continuous 
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ω-periodic functions. Let 

( ) ( ) ( ) ( ) ( ) ( ) ,,,, 222111 xtatrxtgxtatrxtg −=−=  

( ) ( )
( ) ( ) ( ) ( ) ( ),,,, 33 tatctrtrxtm
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+

=  

in system (1.1). By Theorems 2.1 and 2.2, we have the following result. 

Theorem 3.1. Suppose that 

(1) +> 11
ˆˆ dr ( )b m  or ,ˆˆ 22 dr >  

(2) ,03̂ >r  

hold, then system (3.1) is permanent and admits at least one positive                  
ω-periodic solution. 

Example 3.2. Consider the following delayed Leslie-type ratio-
dependent predator-prey dispersion system with Monod-Haldane functional 
response 
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where all functions are defined as above. Let 

( ) ( ) ( ) ( ) ( ) ( ) ,,,, 222111 xtatrxtgxtatrxtg −=−=  

( ) ( )
( )
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in system (1.1). By Theorems 2.1 and 2.2, we have the following result. 



Permanence for a Two-species Leslie-type Ratio-dependent … 11 

Theorem 3.2. Suppose that 

(1) +> 11
ˆˆ dr ( )b m  or ,ˆˆ 22 dr >  

(2) ,03̂ >r  

hold, then system (3.2) is permanent and admits at least one positive            
ω-periodic solution. 

4. Conclusion 

In this paper, we investigate a delayed two-species ratio-dependent 
Leslie-type predator-prey system with the prey dispersal in a two-patch 
environment. By using the comparison theorem of differential equations, we 
establish sufficient conditions for the permanence of this system. In the proof 
of our results, the monotonicity of the prey growth plays a crucial role. 
Therefore, our method is not adapted to the non-monotonic case for the prey 
growth. We leave these for our future work. 
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