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Abstract 

We consider a higher order of Korteweg-de Vries (KdV) equation 
which is an important water wave model. We find the approximate 
analytical solution of the proposed model by Exponential Homotopy 
Analysis Method (EHAM). By using this method, we solve the 
problem analytically and then compare the numerical result with       
exact solution. Numerical results reveal that the EHAM provides 
highly accurate numerical solutions for higher order KdV equation. 
The EHAM solution includes an auxiliary parameter. This     
parameter provides a convenient way of adjusting and controlling the 
convergence region of solution series. 

1. Introduction 

There are many nonlinear partial differential equations which are quite 
useful and applicable in engineering and physics such as the Korteweg-de 
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Vries (KdV) equation. The KdV equation represents a first order 
approximation in the study of long wavelength, small amplitude waves of 
inviscid and incompressible fluids. Furthermore, if one allows the appearance 
of higher order terms, then more complicated wave equations can be 
obtained. The higher order of KdV equation is generally difficult to be 
solved and their exact solutions are difficult to obtain. Marinakis [11] 
showed that the higher order of KdV equation is integrable for a particular 
choice of its parameters, since in this case, it is equivalent with an integrable 
equation which has recently appeared in the literature. During the last 
century, asymptotic method [7] has often been used to obtain approximate 
analytical solution to these problems. These methods are typically dependent 
on the presence of a small parameter, consequently, asymptotic methods 
often fail to provide accurate results for large values of the parameters. In the 
recent years, much effort has been spent on this task and many significant 
methods have been established such as tanh-function method [5], integral 
bifurcation method [13] and F-expansion method [3]. An extended F-
expansion method was proposed by Yomba in 2005 [2] by given more 
solutions of the general subequation. Using the new method, exact traveling 
solutions of higher order wave equation of KdV type are successfully 
obtained [10]. A new analytic approach named Homotopy Analysis Method 
(HAM) has seen rapid development. The basic idea of the HAM is to 
produce a succession of approximate solution that tends to the exact solution 
of the problem [9]. This method has been successfully applied to solve many 
types of nonlinear problems in dynamical fluid by many authors. Liao and 
Cheung [8] successfully applied HAM in fully analytical way to nonlinear 
waves propagation in deep water and the HAM solution in finite water depth 
was obtained by Tao et al. [6]. 

The goal of this paper has been to derive an approximate analytical 
solution for the higher order wave equation of the KdV type. We have 
achieved this goal by applying Exponential Homotopy Analysis Method 
(EHAM). Results are compared with the exact solution. 
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2. Evolution Equation 

Based on the physical and asymptotic considerations, Fokas [1] derived 
the following generalized KdV equations: 
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The function ( )tx,η  represents the amplitude of the fluid surface with 

respect to its level at rest, while μ  and δ  characterize, respectively, the long 

wavelength and short amplitude of the waves, compared with the depth of  
the layer. Parameters ,iρ  7,6,5,4,3,2,1=i  are free parameters. Fokas  

[1] assumed that ( )δO  is less than ( ).μO  According to this assumption,         

we know that ( ) ( )22 μ<δμ OO  and ( ) ( ).2 μδ<δμ OO  Neglecting two high 

order infinitesimal terms of ( ),, 23 δμμO  equation (1) can be reduced to 

another high order wave equations of KdV type as follows: 
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Equation (2) is a special case of equation (1) for .07654 =ρ=ρ=ρ=ρ           

If ,0321 =ρ=ρ=ρ  then equation (2) becomes the classical KdV equation. 

Equation (2) is studied by many researchers and some useful results are 
obtained when ,iρ  3,2,1=i  takes special values. Equation (2) was examined 

in [4] and it was found that it possesses solitary wave solutions which for 
small values of the parameters μ  and ,δ  behave like solitons. As mentioned 

in [12], equation (2) is, in general, nonintegrable in the sense that some of its 
ordinary differential equation reductions do not possess the Painlevé property 
and a Lax pair does not seem to exist. However, it was still found to possess 
the traveling wave solution [10]: 
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when 01 =ρ  and ,2 23 ρ−=ρ  where ,4
1 2

1 ABB +=  ,41 1BC δ+=  A        

and B are free constants, and 0x  being the arbitrary location of the center     

of the wave. Equation (3) can be written in the form of the well-known            
sech2-soliton solution of the classical KdV equation: 
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which is exactly the one-soliton solution of the KdV if 02 =ρ  in which 

case, equation (2) reduces exactly to the classical KdV equation [4]. By 
setting ,2 12 ρ=ρ  ,2 13 ρ−=ρ  ,01 ≠ρ  the solution of (2) is 
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3. Approximate Analytical Solution 

In this section, we implement the EHAM to the higher order wave 
equation of KdV type. Making a transformation ( ) ( ),, ζφ=η atx  with =ζ  

,Ctx −  equation (2) can be reduced to the following ordinary differential 
equation: 
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where C is the wave velocity which moves along the direction of x axis and 
.0≠C  Suppose 

 ( ) ( )λζ−ζφ exp~ D  as ,∞→ζ  (6) 
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where 0>λ  and D are constants. Substituting equation (6) into equation (5) 
and balancing the main terms, we have 
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Defining ,λζ=ξ  equation (5) becomes 
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Assuming the nondimensional wave elevation φ  arrives its maximum at 

the origin, we have the boundary condition as follows: 
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where nb  is a coefficient to be determined. From equation (7), we define the 

nonlinear operator N as 

( ) ( ) ( )
ξ
ΦΦμρ+

ξ
ΦΦμ+

ξ
Φ−+

ξ
φ−−=Φ d

dad
da

d
dCd

dCAN 222
13

3
11,  

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ξ
Φ

ξ
Φρ+

ξ
ΦΦρμ−+ 2

2
33

3
21

d
d

d
d

d
daC  



Jaharuddin 202 

and the linear operator L is chosen as 
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with the property ( ) ( )( ) ,0expexp 321 =+ξ+ξ− CCCL  where ,1C  2C  and 

3C  are constants. According to the boundary condition (8), the initial guess 

is chosen as 

( ) ( ) ( ).2expexp20 ξ−−ξ−=ξΦ  

The EHAM is based on a continuous transform ( ) ( )( ),,, pApξΦ  as the 

embedding parameter p increases from 0 to 1, ( ) ( )( )pAp ,,ξΦ  varies from 

the initial guess ( )ξΦ0  to the exact solution ( )( )., aξφ  To ensure this, let 

0≠h  denote an auxiliary parameter. We have the zeroth order deformation 
equation 
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Note that equation (10) contains the auxiliary parameter h, so that 
( )p,ξΦ  and ( )pA  are dependent on h. Assuming that h is so properly 

chosen that the series is convergent at ,1=p  we obtain 
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Differentiating equations (10) m times with respect to p, then setting 
0=p  and finally dividing them by ,!m  the mth order deformation equation 

is 

 ( ) ( )( ) ( )mmmmmm ahRL ,1 φ=ξφχ−ξφ −  (11) 

subject to the boundary conditions 

 ( ) ( ) ( ) ,000 =∞φ=
ξ

φ
=φ m

m
m d

d  (12) 

where 1=χm  for 0,1 1 =χ>m  and 

( ) ∑ ∑
−

= =

−−
−

−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

ξ
φ

φμ+
ξ

φ
−−=

1

0 0

111
m

i

i

j

im
jij

m
m d

dad
dCR  

( ) 3
1

3
1

ξ

φ
−+ −

d
dC m  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
φφ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

ξ
φ

μρ+ ∑∑ ∑ ∑
−−

=
−−−

−

= = =
−

−
im

t
timt

m

i

i

j

j

r
rjr

ji aad
d 1

0
1

1

0 0 0

2
1  



Jaharuddin 204 

( ) .1
1

0 0
2

1
2

33

3
1

2 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ξ

φ
ξ

φ
ρ+

ξ

φ
φρ−μ+ ∑∑

−

= =

−−−−−
−

m

i

i

j

imjiim
jij

d
d

d
d

d
daC  

The solution of equation (11) is 

( ) ( ) ( ) ( ),~expexp 321 ξφ++ξ+ξ−=ξφ mm CCC  

where ( )ξφm
~  is a special solution of equation (11) with the unknown terms 

.1−ma  According to the boundary condition (12) and equation (9), we have 
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4. Result and Discussion 

Suppose given the following data [4]: ,1=μ  ,01.0=δ  ,024.1=C  

,01 =ρ  ,12 =ρ  .2 23 ρ−=ρ  By using equations (11), (12) and (13), we 

successively obtain: 
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and so on. In the same manner, the rest of the components can be obtained 
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using the symbolic package. According to the EHAM, we can obtain the 
solution in a series form as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ,43210 +ξφ+ξφ+ξφ+ξφ+ξΦ=ξφ  

.43210 +++++= aaaaaa  (14) 

The above series (14) contains the auxiliary parameter h which influences the 
convergent region. For different values of h, a converges to the same value -
the approximation of the exact solution. It can be seen in Figure 1, the nearly 
horizontal line segments of ha −  curves correspond to the convergence 

regions of the h values. The valid region of h in this case is 212 −<<− h  

as shown in Figure 1. The convergence region enlarges as more high order 
terms are included in the series. Based on the above arguments, the auxiliary 
parameter is chosen as 9.0−=h  for all the EHAM solutions presented in 
this section. 

 

Figure 1. The h-curves of a by EHAM. 
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The comparison of the EHAM solution and the exact solution is shown 
in Figure 2. It can be seen in Figure 2 that the present EHAM solution is 
almost identical with the exact solution. There exists a very good agreement 
between EHAM solution and exact solution. 

 
Figure 2. Comparison of the exact solution with the 6th order EHAM 
solution of η. 

5. Conclusions 

In this paper, EHAM has been successfully applied to find the 
approximation analytical solution of the higher order wave equation of 
Korteweg-de Vries. The convergence region is controlled by the non-zero 
parameter, providing us a simple way to adjust convergence. The present 
method holds promise in providing traveling wave solution for more 
complicated wave equations. 
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