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Abstract 

In this paper, we consider so-called Google matrices and show that all 
eigenvalues ( )λ  of them have a fundamental property .1≤λ  The 

stochastic eigenvector corresponding to 1=λ  called the PageRank 
vector plays a central role in the Google’s software. We study it in 
detail and present some important problems. 

The purpose of the paper is to make the heart of Google clearer for 
undergraduates. 

1. Introduction 

Google is one of important tools to analyze modern society. In this paper, 
we want to explain a secret of Google, which is “the heart of Google’s 
software”, to undergraduates. 
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Although we are not experts of IT (information technology) the secret is 
clearly expressed in terms of linear algebra in mathematics. However, it is 
almost impossible to solve the linear algebra version explicitly, so we need 
some approximate method. 

First, we give a fundamental lemma to understand a Google matrix (see 
the definition in the text) and present an important problem to define a 
realistic Google matrix (in our terminology). The problem is a challenging 
one for young researchers. For such a matrix we can use the power method to 
obtain the PageRank vector. 

Second, we pick up an interesting example in [1] and calculate it 
thoroughly by use of MATHEMATICA. A good example and a thorough 
calculation help undergraduates to understand. 

Last, we show an example which does not give the PageRank vector in 
terms of the power method with usual initial vector when H is not a realistic 
Google matrix. For this case we treat the power method with another initial 
vector and present a general problem. 

We expect that undergraduates will cry out “I got Google!” after reading 
the paper. 

2. Main Result 

We introduce a Google matrix (realistic Google matrix) and study its key 
property. 

We consider a collection of web pages with links (for example, a 
homepage and some homepages cited in it). See the figure in the next section 
(eight web pages with several links). 

If a page has k links we give the equal weight k
1  to each link and 

construct a column vector consisting of these weights. See the figure once 
more. For example, since the page 4 links to the pages 2, 5 and 6 (three links) 

each weight is .3
1  Therefore we obtain the column vector like 
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As a result, the collection of web pages gives a square matrix 

 ( ) ∑ =≥=
i

ijijij HHHH 1,0;  (2.1) 

which we will call a Google matrix. Note that 0=iiH  for all i (we prohibit 

the self-citation). From the definition it is a sparse matrix because the 
number of links starting from a webpage is in general small compared to the 
number of webpages. 

If we set 

( ) ,1...,,1,1 TJ =  

where T is the transpose (of a vector or a matrix) then it is easy to see 

 JJH T =  (2.2) 

because row vectors of TH  are the transpose of column vectors of H like 

.0,0,3
1,3

1,0,0,3
1,04page ⎟

⎠
⎞⎜

⎝
⎛→  

From this we know that 1 is an eigenvalue of .TH  By the way, the 

eigenvalues of H are equal to those of TH  because 

,0 THEHE −λ=−λ=  

so we conclude that 1 is just an eigenvalue of H. 
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Therefore, we have the equation 

 ,IHI =  (2.3) 

where we assume that the eigenvector I is stochastic (the sum of all entries    
is 1). This I is called the PageRank vector and plays a central role in Google. 

Now, we give a fundamental lemma to Google matrices: 

Lemma. Let λ be any eigenvalue of a Google matrix H. Then we have 

 .1≤λ  (2.4) 

The proof is easy and is derived from the Gerschgorin’s (circle) theorem 

[2]. Note that the eigenvalues of H are equal to those of TH  and the sum of 
all entries of each row is 1 (see for example (3.2)). Namely, 

 ( )∑ ∑
= =

==
n

j

n

j
jiij

T HH
1 1

1  and ( ) 0== iiii
T HH  (2.5) 

for all i and j. 

We are in a position to state the Gerschgorin’s theorem. Let ( )ijaA =  be 

a nn ×  complex (real in our case) matrix, and we set 

∑
≠=

=
n

ijj
iji aR

,1
 

and 

( ) { }iiiiii RazzRaD ≤−|∈= C;  

for each i. This is a closed disc centered at iia  with radius iR  called the 

Gerschgorin’s disc. 

Theorem (Gerschgorin). For any eigenvalue λ of A we have 

 ( )∪
n

i
iii RaD

1

.;
=

∈λ  (2.6) 
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The proof is simple. Let us consider the equation 

 ( )0xxx ≠λ=A  (2.7) 

and ix  be the maximum 

{ } .10...,,,max 21 ≤⇒≠=
i

j
ni x

x
xxxx  

From (2.7) we have 

( )∑ ∑
= ≠=

−λ=−λ=⇔λ=
n

j

n

ijj
iiiiiiijijijij xaxaxxaxxa

1 ,1
.  

0≠ix  gives 

∑
≠=

=−λ
n

ijj i

j
ijii x

x
aa

,1
 

and we have 

∑ ∑∑
≠= ≠=≠=

=≤=−λ
n
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ijj i

j
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ijj i

j
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∑
≠=

=≤
n

ijj
iij Ra

,1
.  

This means ( )iii RaD ;∈λ  for some i and completes the proof. 

Finally, let us complete our lemma. In our case ,0≥ijH  0=iiH  and 

1=iR  for all i and j, so these give the result 

1≤λ  

for any eigenvalue λ of H. This is indeed a fundamental property of Google 
matrices. 
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A comment is in order. The lemma must have been known. However, we 
could not find such a reference within our efforts. 

Let us go ahead. In order to construct the eigenvector I in (2.3) a method 
called the power method is very convenient for a sparse matrix H of huge 
size. To calculate the characteristic polynomial is actually impossible. 

The method is very simple, [1]. A sequence { }nI  is defined recurrently 

by 

 1−= nn HII  and ,0 1e=I  (2.8) 

where the initial vector is ( ) ,0...,,0,1 T=1e  which is usually standard. This 

is also rewritten as 

.0 1enn
n HIHI ==  

If { }nI  converges to I, then we obtain the equation (2.3) like 

( ) .limlimlim 1 IIHIIHHI nnnnnn
==== +∞→∞→∞→

 

In order that the power method works correctly some assumption on H is 
required. Namely, 

• For a set of eigenvalues { }nλλ=λ ...,,,1 21  we assume 

 .1 21 nλ≥≥λ>=λ "  (2.9) 

Note that 1 is a simple root. The assumption may be strong. 

If a Google matrix H satisfies (2.9) we call H a realistic Google matrix. 
Now, let us present an important. 

Problem. For a huge sparse matrix H propose a method to find or to 
estimate the second eigenvalue 2λ  without calculating the characteristic 

polynomial. 

As far as we know such a method has not been given in mathematical 
physics or in quantum mechanics. This is a challenging problem for 
mathematical physicists. 
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3. Example 

We consider an interesting example given in [1] and calculate it 
thoroughly by use of MATHEMATICA. A good example helps 
undergraduates to understand a model deeply. 

In this section we need some results from linear algebra, so see for 
example [3] or [4] (we do not know a standard textbook of Linear Algebra in 
Europe or America or, etc.). 

Example. A collection of web pages with links1 

 

The Google matrix for this graph is given by 
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1It is not easy for us to draw a (free) curve by use of the free soft WinTpic. 
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and its transpose is 
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If we define a stochastic vector 

T
J ⎟

⎠
⎞⎜

⎝
⎛= 8

1,8
1,8

1,8
1,8

1,8
1,8

1,8
1  

it is easy to see 

 .JJH T =  (3.3) 

Let us study H from the mathematical view point by use of 
MATHEMATICA. The characteristic polynomial of H is given by 
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⎠
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⎛ +λ+λ+λ−λ−λ+λ−λλ=  (3.4) 

The exact solutions are { }0,1 81 =λ=λ  and approximate ones (we round off 

a real number to five decimal places like )8702.087021.0 −=− "  are given 

by 

,5568.0,8702.0 32 −=λ−=λ  

,2914.04251.0,2914.04251.0 54 ii +=λ−=λ  

.2512.02116.0,2512.02116.0 76 ii +−=λ−−=λ  

From these we have 

 .01 87654321 =λ>λ=λ>λ=λ>λ>λ>=λ  (3.5) 

H becomes a realistic Google matrix from (2.9). 

Moreover, the eigenvector for 11 =λ  is given by 

( ) .118,72,81,39,27,12,27,24ˆ TI =  

To check this (by hand) is not difficult and good exercise for undergraduates. 
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Since the sum of all entries of Î  is 400 the stochastic eigenvector (= the 
PageRank vector) I becomes 

 .
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As a result, the ranking of webpages becomes 

.3page1page4page2page5page7page6page8page >>=>>>>  

 (3.7) 

See the figure once more. 

Here, let us show the power method to obtain the PageRank vector I, 
which is very useful if a realistic Google matrix is huge. A sequence { }nI  is 

defined as 

1−= nn HII  and ( )TI 0,0,0,0,0,0,0,10 =  

or 

.0IHI n
n =  
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If the condition 12 <λ  holds, then we have 

IIn
n

=
∞→

lim  

because H can be diagonalized to be 

( ) ( ) 1
82

1
82 ...,,,1diag...,,,1diag −− λλ=⇒λλ= SSHSSH nnn  

with a matrix S consisting of eigenvectors. The speed of convergence 
depends on .2λ  

Let us list the calculation (rule: a real number is rounded off to five 
decimal places): 
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 (3.8) 

The result must be related to the powers of 87.02 =λ  like 

( ) ( ) ( ) ,0009.087.0,0019.087.0,0038.087.0 504540 ===  

( ) .0005.087.0 55 =  (3.9) 

Problem. Clarify a relation between nI  and ( ) .87.0 n  
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4. Counter Example 

We show an example which does not give the PageRank vector in terms 
of the power method with usual initial vector 1e  when H is not a realistic 

Google matrix. 

Example. A collection of web pages with links 

 

The Google matrix for this graph is given by 
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The characteristic polynomial of H is given by 
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and the solutions are 
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Therefore, H is not a realistic Google matrix because of .1−=λ  See (2.9) 
once more. For H it is easy to see that the PageRank vector is given by 
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We show that I is not obtained by the power method. In fact, it is easy to 
see 

 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

==

0

0
1

2
2

n

n

n
n

c

a

HI e  and ,
0

0

1
12

12

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

== +
+

n

nn
n

d

b
HI e  (4.5) 

where we do not need exact values of .,,, nnnn dcba  As a result, { }nI  does 

not converge. 

Next, as a trial we change the initial vector. For example we set 
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because of .00 JJH T =  Let us list the calculation: 
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From the result 10=n  is enough. 

Last, we present an important. 

Problem. We speculate that ( )TnnnJ 1...,,1,10 =  is in general better 

than ( )T0...,,0,11 =e  as an initial vector. Study this point in detail. 
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