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Abstract 

Investigating the expression ( ) pp nn −+ 1  for natural n and prime p 

we will show some interesting properties of divisibility of integers and 
a way to follow up a simple idea, to obtain nice generalisations while 
teaching elementary algebra. We will make use of some theorems 
suitable for secondary school mathematics teaching. 

The Story of the Problem 

While teaching mathematical induction in a secondary vocational school, 
one of the students, Attila Nemes has “discovered” the following interesting 

property: if a number of the form ( ) 331 nn −+  is divided by 3, the remainder 

always will be a multiple of 3 plus 1, in other words congruent to 1 mod 3. I 
have shown him the proof, he got disappointed, but continued his 
“investigations” using a pocket calculator. We worked similarly about three-
four weeks, discovering, and finding the proof of some properties, which are 
equivalent to the so-called Fermat little theorem. In the following, I will sum 
up our findings, which finally appeared in a joint paper [1]. 
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Divisibility Properties of Positive Integers 

Proposition P.1. For any 3≥p  prime, and ,N∈n  we have: 

( ) ,11 +⋅=−+ p
pp Mpnn  where Z∈pM  and ( ) .1 pMnn |+  

Remark R.1. If ,5≥p  then in the above proposition, we will have: 

( ) pMnn |++ 12  as well. 

Proof. Let 3≥p  be a prime and n be an arbitrary natural number. We 

have 

( ) .1 122110 pp
p

p
p

p
p

p
p

p
p

pp nCnCnCnCnCnn −+++++=−+ −−−  

In other words, 

 ( ) .11 12211 ++++=−+ −−− nCnCnCnn p
p

p
p

p
p

pp  (1) 

It is easy to see that 

( ) ( ) ( )
( ) ( ) ,1,1.2.321

121 pkLpkkk
kppppC k

k
p <≤⋅

−−
+−−−

=  

where kL  is an integer as the binomial coefficients k
pC  are integers and the 

factor p is a prime, ,1 pk <≤  so it has no divisors, while the possible 

simplifications are done. Summing up: 

pkLpC k
k
p <≤⋅= 1,   and  .Z∈kL  

Let us introduce the notation Z∈′=−
k

kp
k LnL  in relation (1): 

( ) 11 121 +′++′+′=−+ −p
pp LpLpLpnn  

( ) ,1121 +′++′+′= −pLLLp  

hence 

( ) ,11 +⋅=−+ p
pp Mpnn  where .121 Z∈′++′+′= −pp LLLM  (2) 
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Now we need to show ( ) ,1 pMnn |+  and if ,5≥p  then ( ) .12
pMnn |++  

(a) First, based on the relation (1), we can see 

 .pMn |  (3) 

(b) We can express pMp ⋅  from the relation (2): ( ) −+=⋅ p
p nMp 1  

,1−pn  in other words, pMp ⋅  is a polynomial in n. Let us denote it 

( ) ( ) .11 −−+=⋅= pp
p nnMpnf  

Using the Bézout theorem for ( ),nf  we will show that ( ) ( ).1 nfn |+  

Indeed, ( ) ( ) 01101 =−−−=− pf  (as 3≥p  is prime, so ,)12 += kp  

hence ( ) ( ),1 nfn |+  in other words, ( ) ,1 pMpn ⋅|+  and as p is a prime, we 

finally have: 

 ( ) .1 pMn |+  (4) 

(c) If ,5≥p  then we need to show ( ) .12
pMnn |++  

Let us consider again the polynomial ( )nf  introduced in before, and use 

again the Bézout theorem to show that ( ) ( )nfnn |− 1  and ( ) ( ),2 nfnn |−  

where 1n  and 2n  are the complex roots of the quadratic polynomial nn +2  

,1+  i.e., 

,3
2sin3

2cos2
3

2
1

1
π+π=+−= iin  

.3
4sin3

4cos2
3

2
1

2
π+π=−−= iin  

Remark R.2. Considering divisibility by 6 the prime 5≥p  can belong 

only to the residue classes 16 +k  or ,56 +k  as all other ,36,26,6 ++ kkk  

46 +k  are divided by 2 or 3. Consequently, let us consider the following 
two cases: 
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( )1c  If the prime 5≥p  has the form ,,16 Z∈+ kk  then 

( ) ( ) 11 16
1

16
11 −−+= ++ kk nnnf  

and we know that 

,3
2sin3

2cos1
π+π= in  

and we compute .3sin3cos2
3

2
111

π+π=+=+ iin  Hence, 

( ) ( ) ( ) ( )
3

216cos3
16sin3

16cos1
π+

−
π+

+
π+

=
kkiknf  

( ) 13
216sin −
π+

−
ki  

⎟
⎠
⎞⎜

⎝
⎛ π+π+⎟

⎠
⎞⎜

⎝
⎛ π+π= 32sin32cos

3
kik  

,13
24sin3

24cos −⎟
⎠
⎞⎜

⎝
⎛ π+π−⎟

⎠
⎞⎜

⎝
⎛ π+π− kik  

( ) 13
2sin3

2cos3sin3cos1 −π−π−π+π= iinf  

,012
3

2
1

2
3

2
1 =−−++= ii  

( ) ,01 =nf  consequently, ( ) ( ).1 nfnn |−  (5) 

Similarly, for ,2n  we have 

3
4sin3

4cos2
3

2
1

2
π+π=−−= iin   and  .3

5sin3
5cos12

π+π=+ in  

( ) ( ) ( ) ( )
3

416cos3
516sin3

516cos2
π+

−
π+

+
π+

=
kkiknf  

( ) 13
416sin −
π+

−
ki  
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⎟
⎠
⎞⎜

⎝
⎛ π+π+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+π= π

3
510sin3

510cos
3

kik  

,13
48sin3

48cos −⎟
⎠
⎞⎜

⎝
⎛ π+π−⎟

⎠
⎞⎜

⎝
⎛ π+π− kik  

( ) 13
4sin3

4cos3
5sin3

5cos2 −π−π−π+π= iinf  

,012
3

2
1

2
3

2
1 =−++−= ii  

( ) ,02 =nf  thus ( ) ( ).2 nfnn |−  (6) 

( )2c  If the prime p has the form ,56 +k  with ,Z∈k  and we know that: 

3
2sin3

2cos1
π+π= in   and  ,3sin3cos11

π+π=+ in  

respectively, 

3
4sin3

4cos2
π+π= in   and  .3

5sin3
5cos12

π+π=+ in  

Thus, 

( ) ( ) ( ) ( )
3

456cos3
556sin3

556cos2
π+

−
π+

+
π+

=
kkiknf  

( ) 13
456sin −
π+

−
ki  

⎟
⎠
⎞⎜

⎝
⎛ π+π−⎟

⎠
⎞⎜

⎝
⎛ π+π+⎟

⎠
⎞⎜

⎝
⎛ π+π= 3

208cos3
2510sin3

2510cos kkik  

,13
208sin −⎟

⎠
⎞⎜

⎝
⎛ π+π− ki  

( ) ,013
2sin3cos3sin3cos2 =−π−π2−π+π= iinf  

( ) ,02 =nf  and thus ( ) ( ).2 nfnn |−  (6′) 
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Similarly, for ,1n  

( ) ( ) ( ) ( )
3

256cos3
56sin3

56cos1
π+

−
π+

+
π+

=
kkiknf  

( ) 13
256sin −
π+

−
ki  

⎟
⎠
⎞⎜

⎝
⎛ π+π−⎟

⎠
⎞⎜

⎝
⎛ π+π+⎟

⎠
⎞⎜

⎝
⎛ π+π= 3

104cos3
52sin3

52cos kkik  

,13
104sin −⎟

⎠
⎞⎜

⎝
⎛ π+π− ki  

( ) ,013
4sin3

4cos3
5sin3

5cos1 =−π−π−π+π= iinf  

( ) ,01 =nf  thus ( ) ( ),1 nfnn |−  too. (5′) 

Based on (5), (6), respectively, on (5′), (6′), it is clear that 

 ( ) ( ).12 nfnn |++  (7) 

The given property can be generalized if taking kn +  instead of .1+n  

Proposition P.2. If 3≥p  is a prime, n and k are natural numbers, then 

( ) ( ) ,ppp kMknknpnkn +⋅+⋅⋅=−+  where .Z∈M  

Proof. Let 3≥p  be a prime, n and k be two natural numbers. 

One can write: 

( ) 11222110 −−−− ++++=−+ pp
p

p
p

p
p

p
p

pp nkCknCknCnCnkn  

,ppp
p nkC −+  

( ) .1122211 ppp
p

p
p

p
p

pp knkCknCknCnkn ++++=−+ −−−−  (8) 

From the previous proof, we know that k
k
p LpC ⋅=  and take .kp

kk nLL −=′  
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( ) ,1
1

2
21

pp
p

pp kkLpkLpkLpnkn +′++′+′=−+ −
−  

thus ( ) ,p
p

pp kMpnkn +⋅=−+  where 1
1

2
21

−
−′++′+′= p

pp kLkLkLM  

.Z∈  

We need to prove that 

(a) pMn |  (b) ( ) pMkn |+  (c) .pMk |  

According to the relation (8), 

( ) ppp
p

p
p

p
p

pp knkCknCknCnkn ++++=−+ −−−− 1122211  

p
p kMp +⋅=  

or 

p
pp

p
p

p
p

p MpnkCknCknC ⋅=+++ −−−− 1122211  

and because p is a prime, it follows that 

 pMn |   and  .pMk |  (9) 

(b) Let us denote now ( ) ( ) .ppp
p knknnfMp −−+==⋅  

According to the Bézout theorem, 

( ) ( ) ,00 =−−−=− pp kkkf  we have ( ) ( ),nfkn |+  

thus ( ) .pMkn |+  (10) 

Another possible generalization of Proposition P.1 is the following: 

Proposition P.3. If 3≥p  is a prime, respectively, n and k are positive 

integers, then 

( ) ,kMpnkn p
pp +⋅=−+  where .Z∈pM  

Proof. Let us apply Proposition P.1 for the integers knnn ++ ...,,1,  
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,,1 kn +−  consequently, we will have respectively, 

( ) ,11 1, +⋅=−+ p
pp Mpnn  

( ) ( ) ...,,112 2, +⋅=+−+ p
pp Mpnn  

( ) ( ) ,121 1, +⋅=−+−−+ −kp
pp Mpknkn  

( ) ( ) .11 , +⋅=−+−+ kp
pp Mpknkn  

Summing up all, we have 

( ) ( ) kMMMMMpnkn kpkpppp
pp ++++++=−+ − ,1,3,2,1,  

 (11) 

and thus 

( ) .kMpnkn p
pp +∗=−+  

Applications 

(1) As a simple consequence of Proposition P.3, it follows the Fermat’s 
little theorem. 

If we put 0=n  and ,ak =  then according to P.3, p
p Mpa ⋅=− 0  

,a+  hence p
p Mpaa ⋅=−  (Fermat’s little theorem). 

(2) Based on Propositions P.2 and P.3, we can prove the same theorem in 
another way as well: 

From P.2, we have ( ) ( ).akaMpnan p
p

pp =+⋅=−+  

From P.3, we have ( ) ( ).akaMpnan p
pp =+⋅=−+  

Their difference is ,0 aaMp p −+′⋅=  and thus ,Mpaa p ′∗=−  

where .Z∈−=′ pp MMM  
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The Follow Up of the Story, or Does Computer Algebra Help? 

Propositions P.1-P.3 were presented in the Self Made Mathematics 
Group organized for talented secondary school students, and we have used 
computer algebra tools to check the validity of the properties. While 

factoring the polynomial ( ) ( ) 11 −−+= pp nnnf  for different values of the 

prime p, we did observe that it works indeed for all primes we checked, 
moreover for some of the primes, the polynomial is divided not only by the 

quadratic factor ,12 ++ nn  but even its square, ( )22 1++ nn  appears as a 

factor. We became excited, and we continued the factoring, just as in the case 
with the pocket calculator, but now we used the power of computer algebra. 
We did the checking up the computer slowed down, and even more, and soon 
we did formulate a new “conjecture”. From the series of checking, it seemed 
that the new property is valid only for the upper pair of twin primes over 5, 
like for 7, 13 or 19. 

Proposition P.4. For any ,7≥p  prime, such as 2−p  is prime as well, 

and ,N∈n  we have 

( ) ,11 +⋅=−+ p
pp Mpnn  where Z∈pM  and ( ) ( ) .11 22

pMnnnn |+++  

Proof. If 7≥p  is such a prime, it can be only of the form ,16 +k  as 

2−p  can be only of the form ,16 −k  equivalent to .56 +k  Take now           

the derivative of the polynomial ( ) ( ) 11 −−+= pp nnnf  will be ( ) =′ nf  

( ) .1 11 −− −+ pp pnnp  We have to show that both ( )1nf ′  and ( )2nf ′  are 0, 

for 3
2sin3

2cos2
3

2
1

1
π+π=+−= iin  and +π=−−= 3

4cos2
3

2
1

2 in  

.3
4sin πi  

Indeed, as before, we compute 3sin3cos2
3

2
111

π+π=+=+ iin  and 

.3
5sin3

5cos2
3

2
112

π+π=−=+ iin  
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For ,16 += kp  we have ,61 kp =−  and thus 

( ) ( ) 1
1

1
11 1 −− −+=′ pp pnnpnf  

kk
ipip

66

3
2sin3

2cos3sin3cos ⎟
⎠
⎞⎜

⎝
⎛ π+π−⎟

⎠
⎞⎜

⎝
⎛ π+π=  

( ) ( ) .04sin4cos2sin2cos =−=π+π−π+π= ppkikpkikp  

Similarly, 

( ) ( ) 1
2

1
22 1 −− −+=′ pp pnnpnf  

kk
ipip

66

3
4sin3

4cos3
5sin3

5cos ⎟
⎠
⎞⎜

⎝
⎛ π+π−⎟

⎠
⎞⎜

⎝
⎛ π+π=  

( ) ( ) .08sin8cos10sin10cos =−=π+π−π+π= ppkikpkikp  

As we have proven that both the polynomial and its derivative are 

divided by 1nn −  and ,2nn −  this means that both ( )21nn −  and ( ) ,2
2nn −  

and thus ( )22 1++ nn  is a factor of ( ) ( ) .11 −−+= pp nnnf  
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