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Abstract 

This study aims at presenting fuzzy optimal production ∗∗Q  and 

shortage quantity ∗∗b  for fuzzy production inventory with backorder 
when setup, holding, and shortage costs are fuzzy. For this purpose, 
two different fuzzy models, one of which includes crisp production 
and crisp shortage quantity, and the other of which involves those that 
are fuzzy, have been presented by making use of trapezoidal fuzzy 
numbers. For each model, fuzzy total cost FTC has been attained via 
function principle. In order to defuzzify the FTC, graded mean 
integration method has been used, and as to solve inequality 
constrained problems, extension of the Lagrangean method has been 
applied. 
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Nomenclature 

 ∗Q  Optimal production quantity 

 ∗∗Q  Fuzzy optimal production quantity 

 Q  Production quantity 

 Q~  Fuzzy production quantity 

 ∗b  Optimal shortage quantity 

 ∗∗b  Fuzzy optimal shortage quantity 

 b  Shortage quantity 

 b~  Fuzzy shortage quantity 

 OC  Setup cost 

 OC
~  Fuzzy setup cost 

 hC  Item holding cost 

 hC
~  Fuzzy item holding cost 

 π  Item shortage cost 

 π~  Fuzzy item shortage cost 

 P  Production rate 

 D  Demand rate 

 maxI  Maximum stock level 

1. Introduction 

In classical inventory models with backorder, orders are granted taking 
the production capacity into consideration, and also shortage is allowed. In 
Figure 1, it is shown that inventory increases in P-D rate during 1T  period, 

that production comes to a halt at the end of ,1T  that forthcoming demands 
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are provided from stocks, that stock decreases to zero level at the end of 2T  

period, that the demands cannot be met and clients are made to buy on credit 
until the end of 3T  period, and that production process restarts at the 

beginning of 4T  period. The assumptions of the model are as follows: 

 The demand is crisp and constant in each period. 

 Production rate is crisp in each period. 

 Shortage is allowed. 

 Production rate is greater than demand rate.  

 

Figure 1. Classical production model with backorder. 

In classical production model with backorder, all the parameters are crisp 
numbers. Here are the optimal production and optimal shortage quantity that 
minimize the total cost: 
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According to the traditional decision making theory, all the parameters 
affecting the models are either certain or those that involve vagueness are 
made certain via possibility theory. In accordance with the modern decision 
making theory, on the other hand, vagueness exists in every aspect of real 
world. Since the beginning of the early 1950’s, uncertainties in inventory 
systems are fit into a model through possibility theory. Inventory control 
model is a part of material flow system, which is one of the subsystems of 
supply chain. Zarandi et al. [1] suggest that it is functional to use fuzzy set 
theory since all activities and their network contain a high degree of 
imprecision. It may not be probable to explain all uncertainties, which exist 
in inventory system as a subsystem of supply chain, by randomness. 
Therefore, as uncertainties cannot be prevented, models that take the 
imprecision of the environment into account produce more valid results. 

In 1982, Kacpryzk [2] proposed using fuzzy set theory in inventory 
problems. Making use of the fuzzy set theory in 1987, Park [3] was to first to 
identify the term fuzzy inventory cost, and he found fuzzy optimal order 
quantity using extension principle. In 1996, Chen [4] presented fuzzy 
inventory model with backorder employing function principle. Previously, 
Chen [5] also introduced second function principle. Similarly in 1996, Yao 
and Lee asserted inventory model with backorder [6] through extension 
principle [7]. In 1999, Chang [8] put forward the membership function of 
FTC for fuzzy production model using the extension method, and attained 
optimal order quantity via centroid method. Additionally, Chen and Hsieh [9, 
10] developed inventory models with trapezoidal fuzzy numbers. Petrovic et 
al. [11] studied on supply chain in fuzzy environments. In 2002, Chiang and 
Hsu [12] presented single-period inventory model with fuzzy demand, as 
Chih [13] presented single-period production model. In 2005, Dutta [14] 
developed single-period inventory model in an imprecise environment. In 
2006, Li and Zhang [15] optimized fuzzy inventory model with backorder. 

In this study, fuzzy setup, fuzzy inventory, and fuzzy shortage costs are 
assumed as fuzzy trapezoidal numbers; and hence, fuzzy optimal order 
quantity and fuzzy optimal shortage quantity are obtained. In fuzzy 
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arithmetical operations, Chen’s function principle [16], and in defuzzification 
of fuzzy total cost Chen’s and Hsieh’s graded mean method [17] were used. 
Besides, extension of Lagrangean method was applied in order to obtain 
results when production quantity and shortage quantity are fuzzy. Fuzzy 
production inventory with backorder was explained by an example. 

2. Methodology 

2.1. Fuzzy arithmetical operation under function principle 

For operations with fuzzy trapezoidal numbers, Chen developed function 
principle [16]. Some basic arithmetical operations with function principle are 
shown below: 

Let ( )4321 ,,,~ aaaaA =  and ( )4321 ,,,~ bbbbB =  be two fuzzy 

trapezoidal numbers. Thus, 

1. The addition of A~  and ;~B  ( ),,,,~~
44332211 babababaBA ++++=⊕  

where ,,,,,,, 3214321 bbbaaaa  and .4 Rb ∈  

2. The multiplication of A~  and ;~B  ( ),,,,~~
4321 ccccBA =⊗  where =T  

{ },,,, 44144111 babababa  { };,,, 332332221 babababaT =  ,min1 Tc =  =2c  

,min 1T  ,max3 Tc =  .max 14 Tc =  If ,1a  ,2a  ,3a  ,4a  ,1b  ,2b  3b  and 4b  

are positive real numbers, the multiplication of A~  and B~  is =⊗ BA ~~  
( ).,,, 44332211 babababa  

3. The subtraction of A~  and ;~B  ( ),,,,~
1234 bbbbB −−−−=−  then 

( ),,,,~~
14233241 babababaBA −−−−=  where ,,,,,, 214321 bbaaaa  

., 43 Rbb ∈  

4. ( ),1,1,1,1~~1 1234
1 bbbbBB −−== −  where ,1b  ,2b  3b  and 4b         

are positive real numbers. If ,1a  ,2a  ,3a  ,4a  ,1b  ,2b  ,3b  4b  are all         

nonzero positive real numbers, then the division of A~  and B~  is =∅ BA ~~  

( ).,,, 14233241 babababa  
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5. Let .R∈α  Then 

a. ( ),,,,~,0 4321 aaaaA αααα=⊗α≥α  

b. ( ).,,,~,0 1234 aaaaA αααα=⊗α<α  

2.2. Graded mean integration representation method 

In order to defuzzify fuzzy numbers, Chen and Hsieh developed graded 
mean method [17] in 1999. 

Let ( )dcbaA ,,,~
=  be a fuzzy trapezoidal number as shown in Figure 

2. The real numbers set is defined in R. The specifications of membership 
function ( )A~μ  provide the following: 

1. A~μ  is a continuous mapping from R to the closed interval [ ],1,0  

2. ,,0~ axA ≤<∞−=μ  

3. ( )xLA =μ ~  is strictly increasing on [ ],, ba  

4. ,,~ cxbwAA ≤≤=μ  

5. ( )xRA =μ ~  is strictly decreasing on [ ],, dc  

6. ,0~ =μA  ,∞<≤ xd  where ,10 ≤< Aw  and a, b, c and d are real 

numbers. 

Fuzzy trapezoidal numbers can generally be expressed as: =A~  
( ) .;,,, LRAwdcba  When upper value of membership function ,1=Aw  the 

fuzzy trapezoidal number can be expressed more simply as ( ).,,,~ dcbaA =  
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Figure 2. The graded mean of ( ) .;,,,~
LRAwdcbaA =  

In Figure 2, it is illustrated that 1−L  and 1−R  are inverse functions of L 

and R, and that the graded mean of ( )LRAwdcbaA ;,,,~
=  is ( ( )hLh 1−  

( )) 21 hR−+  in h level. Consequently, the graded mean integration 

representation of A~ ( )AP ~  with grade ,Aw  

 ( ) ( ) ( ) ∫∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +=
−− AA ww

hdhdhhRhLhAP
00

11
,2

~  (3) 

where Awh ≤<0  and .10 ≤< Aw  

Let D~  be a fuzzy trapezoidal number and be shown as =D~  

( ).,,, 4321 dddd  Therefore, by formula (3), the graded mean of D~  is given 

below: 

( ) ( )
∫ ∫⎟

⎠
⎞

⎜
⎝
⎛ +−−++

=
1

0

1

0
341241 ,2

~ hdhdhhddddddhDP  

.6
22 4321 dddd +++

=  (4) 

2.3. Extension of the Lagrangean method 

Taha [18] presented how non-linear models involving equality 
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constraints can be solved by Lagrangean method. This method is broadly 
based upon the fact that optimal solution is on bounded constraint(s). 

Let the model be: 

( )xfy =Min  

( ) mixgi ...,,2,1,0 =≥  

.0≥x  

The steps of Lagrangean method are given below: 

Step 1.  Solve the unconstrained problem 

( ).Min xf=  

If optimal solution meets all constraints, stop. All constraints are redundant. 
Otherwise, set 1=k  and go to Step 2. 

Step 2.  Activate any k constraints (i.e., convert them into equality) and 
optimize ( )xf  subject to the k active constraints by the Lagrangean method. 

If the resulting solution is feasible with respect to the remaining constraints, 
stop; it is a local optimum. Otherwise, activate another set of k constraints 
and repeat the step. If all sets of active constraints taken k at a time are 
considered without encountering a feasible solution, go to Step 3. 

Step 3. If ,mk =  stop. There is no feasible solution. If not, set =k  
1+k  and go to Step 2. 

3. Fuzzy Inventory Model with Fuzzy Setup, Fuzzy Inventory, 
and Fuzzy Shortage Cost 

( ),,,,~
4321 OOOOO CCCCC =  ( ),,,,~

4321 hhhhh CCCCC =  ( ,,~
21 ππ=π  

)43, ππ  are positive trapezoidal fuzzy numbers. ⊕, ⊗, ⊖ and ∅ sequentially 

symbolize operations of fuzzy addition, fuzzy multiplication, fuzzy 
subtraction and fuzzy division. 

The membership functions of fuzzy setup cost ,~
OC  fuzzy holding cost 
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hC
~  and fuzzy shortage cost π~  are as follows: 
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Figure 3. Fuzzy setup cost .~
OC  
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Figure 4. Fuzzy holding cost .~
hC  
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Figure 5. Fuzzy shortage cost .~π  

In this model, the annual FTC is: 
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As a result of arithmetical operations by function principle [16], FTC will be 
a positive fuzzy trapezoidal number as given below: 

⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛ +

−⎥⎦
⎤

⎢⎣
⎡ −⎟

⎠
⎞⎜

⎝
⎛ −+= DDPbP

DQQ
DC

Q
DCF hO 1112

~ 2
11  

⎟
⎠
⎞⎜

⎝
⎛ +

−⎥⎦
⎤

⎢⎣
⎡ −⎟

⎠
⎞⎜

⎝
⎛ −+⎟

⎠
⎞⎜

⎝
⎛ +

−
π

+ DDPbP
DQQ

DC
Q
DC

DDPQ
Db hO 1112,11
2

2
22

2
1  

⎟
⎠
⎞⎜

⎝
⎛ +

−⎥⎦
⎤

⎢⎣
⎡ −⎟

⎠
⎞⎜

⎝
⎛ −+⎟

⎠
⎞⎜

⎝
⎛ +

−
π

+ DDPbP
DQQ

DC
Q
DC

DDPQ
Db hO 1112,11

2

2
33

2
2  



Fuzzy Optimal Production and Shortage Quantity … 83 

⎟
⎠
⎞⎜

⎝
⎛ +

−⎥⎦
⎤

⎢⎣
⎡ −⎟

⎠
⎞⎜

⎝
⎛ −+⎟

⎠
⎞⎜

⎝
⎛ +

−
π

+ DDPbP
DQQ

DC
Q
DC

DDPQ
Db hO 1112,11
2

2
44

2
3  

.11
2

2
4

⎥
⎥
⎦

⎤
⎟
⎠
⎞⎜

⎝
⎛ +

−
π

+ DDPQ
Db  (6) 

Then, when FTC function is defuzzified through graded mean method [17], 
graded mean of FTC will be: 
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The production quantity that minimizes ( )1
~FP  is optimal. If ( )1

~FP  is derived 

with respect to Q and is equalized to zero in order to find optimal production 
quantity, the following equation is obtained: 
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The shortage quantity that minimizes ( )1
~FP  is optimal. If ( )1

~FP  is derived 

with respect to b and is equalized to zero in order to find optimal shortage 
quantity, the following equation is obtained: 
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When b stated in equation (9) is placed in equation (8), fuzzy optimal 

production quantity ∗∗Q  is 
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When ∗∗Q  stated in equation (10) is placed in equation (9), fuzzy optimal 
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shortage quantity ∗∗b  is 
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4. Fuzzy Inventory Model with Fuzzy Production and 
Fuzzy Shortage Quantity 

In this model, in addition to the assumptions of the previous model, 
production quantity and shortage quantity are taken as fuzzy numbers, and 

hence fuzzy optimal production quantity ( )∗∗∗∗∗∗
4321 ,,, qqqqQ  and fuzzy 

optimal shortage quantity ( )∗∗∗∗∗∗
4321 ,,, bbbbb  are tried to be found 

accordingly. 
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are positive trapezoidal fuzzy numbers. 

Subject to ,0 43214321 qqqqbbbb ≤≤≤≤≤≤≤<  FTC function is: 
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Then, when FTC function is defuzzified through graded mean method [17], 
graded mean of FTC will be: 
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432143210 qqqqbbbb ≤≤≤≤≤≤≤<  inequality can be converted into: 

,012 ≥− bb  ,023 ≥− bb  ,034 ≥− bb  ,041 >− bq  ,012 ≥− qq  23 qq −  

,0≥  034 ≥− qq  and .01 >b  

Finding ,1b  ,2b  ,3b  ,4b  ,1q  ,2q  ,3q  4q  that minimize the ( )2
~FP  by 

Lagrangean method [18] is explained below: 

Unconstrained problem is solved. When the function is derived with 
respect to ,1q  ,2q  ,3q  4q  and is equalized to zero in order to find the 
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production quantity that minimizes ( ),~
2FP  the following equalities hold: 
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When the function is derived with respect to ,1b  ,2b  ,3b  4b  and is 

equalized to zero in order to find the production quantity that minimizes 

( ),~
2FP  the following equations hold: 
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When 4b  in equation (21) is placed in equation (14), 
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When 3b  in equation (20) is placed in equation (15), 
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When 2b  in equation (19) is placed in equation (16), 
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When 1b  in equation (18) is placed in equation (17), 

 
( )

⎟
⎠
⎞⎜

⎝
⎛ −π

π+
=

P
DC

CDCq
h

hO

1

2

11

111
4  holds. (25) 

When 4q  in equation (25) is placed in equation (18), 
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When 1q  in equation (22) is placed in equation (21), 
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These solutions show the possibility of >>>>>>> 2143210 qqbbbb  

43 qq >  and they do not satisfy the ≤≤≤≤≤≤< 2143210 qqbbbb  

43 qq ≤  constraint. ( )2
~FP  has to be optimized subject to .012 =− qq  

Lagrangean function is as follows: 

( ) ( ) ( ).~,,,,,,,, 12243214321 qqFPbbbbqqqqL −λ−=λ  

If ( )λ,,,,,,,, 43214321 bbbbqqqqL  is derived with respect to ,1q  ,2q  

,3q  ,4q  ,1b  ,2b  ,3b  4b  and λ, and is equalized to zero in order to be 

minimized, the following equations hold: 
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When 4b  in equation (37) is placed in equation (30), 
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When 3b  in equation (36) is placed in equation (31), 
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If equations (39) and (40) are added and rearranged, 
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When 2b  in equation (35) is placed in equation (32), 
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When 1b  in equation (34) is placed in equation (33), 
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These solutions show the possibility of 4321 qqqq >>=  and they do not 

satisfy the 4321 qqqq ≤≤≤  constraint. ( )2
~FP  has to be optimized subject 

to 012 =− qq  and .023 =− qq  The new Lagrangean function is as follows: 

( )2143214321 ,,,,,,,,, λλbbbbqqqqL  
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If ( )2143214321 ,,,,,,,,, λλbbbbqqqqL  is derived with respect to ,, 21 qq  

,3q  ,4q  ,1b  ,2b  ,3b  ,4b  1λ  and ,2λ  and is equalized to zero in order to be 

minimized, the following equations hold: 
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When 4b  in equation (51) is placed in equation (44), 
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When 3b  in equation (50) is placed in equation (45), 
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When 2b  in equation (48) is placed in equation (47), 
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If equations (54), (55) and (56) are added and rearranged, 
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When 1b  in equation (49) is placed in equation (48), 
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These solutions show the possibility of 4321 qqqq >==  and they do not 

satisfy the 4321 qqqq ≤≤≤  constraint. ( )2
~FP  has to be optimized subject 

to ,012 =− qq  023 =− qq  and .034 =− qq  The new Lagrangean function 

is as follows: 
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If ( )32143214321 ,,,,,,,,,, λλλbbbbqqqqL  is derived with respect to ,1q  

214321432 ,,,,,,,, λλbbbbqqq  and ,3λ  and is equalized to zero in order 

to be minimized, the following equations hold: 
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When 4b  in equation (66) is placed in equation (59), 
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When 3b  in equation (65) is placed in equation (60), 
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When 1b  in equation (63) is placed in equation (62), 
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If equations (70), (71), (72) and (73) are added and rearranged, 
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It is concluded that the feasible solution converges in a single point. 

Additionally, shortage quantity that minimizes ( )2
~FP  has to be found. ,1b  

,2b  3b  and 4b  in equations (26), (27), (28) and (29) do not satisfy ≤1b  

432 bbb ≤≤  constraint. For this reason, ( )2
~FP  has to be optimized subject 

to 012 =− bb  constraint. The Lagrangean function is as follows: 
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If ( )λ,,,,,,,, 43214321 bbbbqqqqL  is derived with respect to ,,, 321 qqq  

43214 ,,,, bbbbq  and λ, and is equalized to zero in order to be minimized, 

the following equations hold: 
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( ) ,0
~

1
2 =

λ∂
∂ FP  then .21 bb =  (83) 

When 4q  in equation (78) is placed in equation (79), 3q  in equation (77) is 

placed in equation (80), and these two obtained equations added and 
rearranged, 

 ( ) ( ) ( )
( ) ( )PCC

DPCCDCCbb
hh

hhOO
212121
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21 222

222
π+π++π+π
−++

==  holds. (84) 

When 2q  in equation (76) is placed in equation (81), 

 ( )
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h
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When 1q  in equation (75) is placed in equation (82), 

 ( )
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h
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44

4
2

π+π
−

=  holds. (86) 

These solutions show the possibility of 4321 bbbb >>=  and they do not 

satisfy the 4321 bbbb ≤≤≤  constraint. ( )2
~FP  has to be optimized subject 

to 012 =− bb  and .023 =− bb  The new Lagrangean function is as follows: 

( )2143214321 ,,,,,,,,, λλbbbbqqqqL  

( ) ( ) ( ).~
2321212 bbbbFP −λ−−λ−=  

If ( )2143214321 ,,,,,,,,, λλbbbbqqqqL  is derived with respect to ,, 21 qq  

1432143 ,,,,,, λbbbbqq  and ,2λ  and is equalized to zero in order to be 

minimized, the following equations hold: 
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∂ FP  then ,21 bb =  (95) 

( ) ,0
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2
2 =

λ∂
∂ FP  then .32 bb =  (96) 

When 4q  in equation (90) is placed in equation (91), 3q  in equation (89) is 

placed in equation (92), and 2q  in equation (88) is placed in equation (93) 

and these three obtained equations added and rearranged, 
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When 1q  in equation (87) is placed in equation (94), 
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These solutions show the possibility of 4321 bbbb >==  and they do not 

satisfy the 4321 bbbb ≤≤≤  constraint. ( )2
~FP  has to be optimized subject 

to ,012 =− bb  023 =− bb  and .034 =− bb  The new Lagrangean function 
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is as follows: 
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214321432 ,,,,,,,, λλbbbbqqq  and ,3λ  and is equalized to zero in order 

to be minimized, the following equations hold: 
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∂ FP  then .43 bb =  (109) 

When 4q  that provides equation (102) is placed in equation (103), 3q  that 

provides equation (101) is placed in equation (104), 2q  that provides 

equation (100) is placed in equation (105), 1q  that provides equation (99) is 

placed in equation (106), and these four obtained equations are added to each 

other and reorganized, fuzzy optimal shortage quantity ),,,( *
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** bbbbb  

holds as follows: 
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It is concluded that the optimal result occurs at a single point. Moreover, it 

has been observed that ∗∗Q  and ∗∗b  are the same. 

5. Example 

In this example, an item whose annual demand is 3650 and whose daily 
production rate is 20 is given. As shown in Table I, the item’s inventory costs 

are assumed crisp and fuzzy. In this regard, ,∗Q  ,∗∗Q  ,∗b  ∗∗b  are calculated 
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and given in Table II, and so are total cost (TC) and fuzzy total cost (FTC) in 
Table III. 

Table I. Crisp and fuzzy inventory costs 

PLAN 1 
Crisp inventory costs 

PLAN 2 
Fuzzy inventory costs 

OC  ($) 1000 OC
~  ($) (900, 950, 1100, 1200) 

hC  ($/item year) 12 hC
~  ($/item year) (8, 9, 11, 13) 

π ($/item year) 55 π~  ($/item year) (40, 45, 55, 60) 

Table II. Optimal production and shortage quantities 

PLAN 1 PLAN 2 

∗Q  1217, 42 ∗∗Q  1336, 28 

∗b  109, 02 ∗∗b  112, 90 

Table III. Crisp and fuzzy total costs 
 Total setup cost 

($) 
Total holding cost 

($/item year) 
Total shortage 

cost ($/item year) 
Annual total 

cost ($)  
Graded annual 
total cost ($) 

  ;OC  

 ( )4321
~

,
~

,
~

,
~~

OOOOO CCCCC  

 ;hC  

 ( )4321
~

,
~

,
~

,
~~

hhhhh CCCCC

 ;π  

 ( )4321
~,~,~,~~ πππππ

  

PLAN 1 2998, 14 2461, 17 536, 95 5.996, 26 5.996, 26 

PLAN 2 
(2698.33, 2848.24, 
3297.95, 3597.77) 

(1640.78, 1845.88, 
2256.08, 2666.27) 

(390.51, 439.32, 
536.95, 585.76) 

(4729.62, 
5133.44, 
6090.98, 
6849.80) 

5.671, 38 

6. Conclusion 

Decision makers may not be sure of the factors that affect their decisions. 
In such cases, it is practical and useful to make use of basics and principles of 
fuzzy logic. In this study, two cases in which fuzzy logic is applied in 
inventory models that are subsystems of supply chain are presented. The 
same results are obtained in both cases. Additionally, an example is given in 
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order to clarify the models. Consequently, it has been observed that outputs, 
attained through models with fuzzy parameters instead of those that are crisp, 
are closer to real-world since the models include vagueness. 
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