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Abstract 

In this paper, a Zavadskij’s differentiation algorithm is used to reduce 
some tiled orders to ( )1,0 -tiled orders. 

1. Introduction 

A tiled order over a discrete valuation ring is a Noetherian prime 
semiperfect semidistributive ring Λ with nonzero Jacobson radical. One          
of the main problems regarding this kind of rings (i.e., of the integral 
representation theory) consists of determining the additive category latt Λ of 
all right Λ-modules, its representation type and the corresponding Auslander-
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Reiten quiver ( ).ΛΓ  The tiled order is said to be of finite lattice type if latt Λ 

has only finitely many isomorphism classes of indecomposable objects [1-3]. 

Classification problems of tiled orders can be tackled by using poset 
representation theory introduced by Nazarova and Roiter in 1972. Given       
an algebraically closed field k and a poset ,P  an object U of the additive 
category Prep  of k-linear representations of P  is a system of k-vector spaces 

of the form: 
( ),;0 P∈|= xUUU k  

where yx UU ⊆  provided .yx ≤  

The main tools in poset representation theory are the algorithms of 
differentiation, for instance the algorithm of differentiation with respect to a 
maximal point introduced by Nazarova and Roiter in [5] allowed to Kleiner 
to classify posets of finite type representation type in [4]. Furthermore, posets 
of finite growth representation type were classified in [6] by using the 
algorithm of differentiation with respect to a suitable pair of points DI 
introduced by Zavadskij in [11], defined in such a way that if a poset ( )≤,P  

with: 

,Cba ++= ∆
∇P  

where { },xaxa ≤|∈=∇ P  { }bxxb ≤|∈=∆ P  and ncccC <<<= 21  

is a chain (eventually empty), then the derived poset ( )ba,P′  with respect to 

the pair of points ( )ba,  is a subposet of the modular lattice generated by P  

such that: 

( ) ,, ∆
+−∇ +++=′ bCCabaP  

where { }iii caccC +=|= +++  and { }iii bcccC =|= −−−  are chains with 
+− < ii cc  for all .1 ni ≤≤  

The derivation functor between the corresponding categories of 
representations ( ) ( )babaD ,, reprep: PP ′→  is defined as follows [5, 8, 11, 14]: 
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,00 UU =′  

,ii
cac

UUU +=′+  

,ii
cbc

UUU ∩=′−  

xx UU =′  for the remaining points ,P∈x  

00: VU →ϕ=ϕ′  for any linear map-morphism ( ).,Hom VUk∈ϕ  (1) 

According to Rump [7], the idea of this two point algorithm arose from 
the Zavadskij’s matrix algorithm which forms the essential tool in the 
characterization of representation-finite tiled orders. Further, Zavadskij and 
Revitskaya generalized representations of tiled orders and finite posets over a 
field T by introducing a mixed flat matrix problem over a pair of algebras 
named algebras of transformation [13]. They proved a bounded module 
criterion which generalizes criteria of finite representation type for posets 
and tiled orders. Soon afterwards, Rump generalized in [7] those results 
obtained by Kirichenko and Zavadskij to general orders to do that, instead of 
a suitable pair of points ( ),, ba  he considered a monomorphism PIu →⊂:  

between Λ-lattices with .kIkP =  For such u, Rump associated to each Λ-

lattice E a pair of Λ-lattices 







=∂ −

+

E
EEu  such that ,+− ⊂⊂ EEE  where 

−E  is the largest Λ-sublattice with ( ) PEf ⊂−  for each homomorphism 

,: IEf →  +E  is defined dually. 

If u is such that ,





=∂=∂

P
I

IP uu  then +Λ  is an overorder of Λ and 

∗∗∗ PIu :  induces an overorder −Λ  of Λ. Then it is possible to define 

the derived order: 

( )AMu 2⊂








ΛΛ
ΛΛΛ=∂ −

−

−++
 

of Λ and Λ∂→Λ∂ uu latt:  becomes a functor. 
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In this paper, we use an algorithm of differentiation introduced by 
Zavadskij and Kirichenko in [12] for tiled orders in order to prove which 
( )2,1,0 -tiled orders can be reduced to a ( )1,0 -tiled order. 

This paper is organized as follows: In Section 2, we describe main 
definitions and notation to be used throughout the work. In Section 3, we 
give main results describing which ( )2,1,0 -tiled orders can be reduced to 

( )1,0 -tiled orders. 

2. Preliminaries 

In this section, we introduce notation and results to be used throughout 
the paper [1-3, 12]. 

A field T is said to be of discrete norm or discrete valuation if it is 
endowed with a surjective map: 

{ },: ∞→ν ∪ZT  

which satisfies the following conditions: 

(a) ( ) ∞=ν x  if and only if ,0=x  

(b) ( ) ( ) ( ),yxxy ν+ν=ν  

(c) ( ) ( ) ( ){ }.,min yxyx νν≤+ν  

We let O  denote the normalization ring of T such that 

( ){ }.0≥ν|∈= xTxO  

An element O∈π  such that ( ) 1=πν  is a prime element of .O  Thus, for 

each ,O∈x  we have that: 

O∈x  if and only if ,mx επ=  for some ,0≥m  

where ε is an unit, i.e., .∗∈ε O  Moreover, 

Tx ∈  if and only if ,mx επ=  for some Z∈m  and .∗∈ε O  



On the Reduction of Some Tiled Orders 161 

Ring O  is such that ,OO π⊃  where Oπ  is the unique maximal ideal, 
therefore, ideals of O  generate a chain of the form: 

.2 ⊃π⊃⊃π⊃π⊃ OOOO m  

A tiled order is a subring of the matrix algebra nnT ×  with the form: 

∑
=

λλ

λλ

λλ

λ





















ππ

ππ
ππ

=π=Λ
n

ji
ij

nn

n

n

ije
1,

.

21

221

112

OOO

OOO
OOO

O  

That is, Λ consists of all matrices whose entries ij belong to ,Oijλ
π  in this 

case, nn
ij Te ×∈  are unit matrices such that iljkklij eee δ=  ,1( =δ jk  if 

,kj =  0=δ jk  otherwise). 

Numbers ijλ  are rational integers which satisfy the following conditions: 

(1) ,0=λii  for each i, 

(2) ikjkij λ≥λ+λ  for all i, j, k. 

An order Λ is said to be Morita reduced or reduced if it satisfies the 
additional condition: 

(3) ,0>λ+λ jiij  for each .ji ≠  In this case, projective modules are 

pairwise non-isomorphic, that is, in the decomposition of 21 PP ⊕=Λ  

nP⊕⊕  via projective modules (i.e., the rows of Λ) all summands 

indecomposable projectives are pairwise not isomorphic, i.e., ji PP /  

provided .ji ≠  

Henceforth, we will assume that tiled orders satisfy conditions (1), (2) 
and (3). According to Kirichenko et al., it means that the matrix Λ is an 
exponent reduced matrix [2]. 
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We denote ( ) ,...,,1, njiij =λ=Λ  furthermore, note that ==⊂Λ × QT nn  

,TO⊗Λ  where Q is the rational hull of Λ, 0Rad =Q  and Λ has a unique 

simple right module (up to isomorphism) denoted ( ) == TTTSR ...,,,  

∑
=

n

i
iTe

1
,  where { }niei ≤≤|1  is the standard basis such that .kijjki eee δ=  

We assume the notation ( )tL TTTS ...,,,=  for left modules. 

The main problem in this situation consists of describing all finitely 
generated Λ-modules without O -torsion which are called admissible 
modules. 

A Λ-admissible right module (not null) is said to be irreducible if it          
is a submodule of the unique simple module (up to isomorphism), =RS  

( )....,,, TTT  For instance, any module iP  indecomposable projective is a 

tiled order Λ. Thus, 

( )OOO iniiiP λλλ πππ= ...,,, 21  

is a finitely generated irreducible module without O -torsión. Actually, any 
irreducible right module A has the form: 

( ),...,,, 21 OOO nA ααα πππ=  

where .1,, niijiji ≤≤∈αα≥λ+α Z  

If A is a A left module, then we have that .ijij α≥α+λ  Henceforth,  

we write ( )nA ααα= ...,,, 21  for a right (left) module (( ) ,...,,, 21
t

nααα  

).lyrespective  

Note that AA ′−~  if and only if ,kii +α′=α  for some Z∈k  and any 

.1 ni ≤≤  

Irreducible right modules which are contained in a Q-simple module            
of a Λ-order constitute a lattice ( ) ( ) ( ) ( ).,, Λ=Λ=⊆Λ RLLL ∩∪  The 



On the Reduction of Some Tiled Orders 163 

corresponding lattice of irreducible left modules ( )ΛLL  is antiisomorphic to 

( ),ΛRL  by the correspondence ( ) ( )Λ→Λσ LR LL:  given by the formula: 

( ) ( ) ....,,...,, 11
t

nn α−α−=αασ  

Let ( ) ( )Λ=Λ RPP  be the subposet of ( )ΛL  of irreducible projective 

modules, if ( ) ( ),Λ=Λ RPP  then projective modules iP  are called principals 

where: 

( ) ( ).,...,,, 00
21 Λ∈=λλλ= Riiiniii PPP P  

In this poset, there are so many projective modules as infinite chains. In such 
a case, modules of the form: 

( ) Z∈+λ+λ= kkkP ini
k

i ,...,,1  

are projective modules isomorphic to .0
iP  Therefore, 

( ) { },,1 Z∈≤≤|=Λ kniPk
iP  

where 

l
j

k
i PP ≤  if and only if 

( )
( )




Λλ≥−
Λλ≥−

.,
,,

Rji

Lij
lk
lk

P

P
 

Thus, the poset ( )ΛP  is infinite, periodic and the sum of n chains with the 

form { },,1 Z∈≤≤| kniPk
i  with width ( )( ) .nw ≤ΛP  

The map ( ) ( ),: Λ→Λσ LR PP  given by ( ) k
i

k
i PP −=σ  is a natural poset 

antiisomorphism, thus the pair ( ){ }ΛP,O  defines the tiled order Λ up to 

isomorphism, in the sense that 

Λ′−Λ ~  if and only if pairs ( ){ } ( ){ }.,~, Λ′′−Λ PP OO  

That is, OO ′  and ( ) ( )Λ′−Λ PP ~  which means that there exists a poset 

isomorphism ( ) ( )Λ′→Λϕ PP:  such that 
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BA −~  if and only if ( ) ( ),~ BA ϕ−ϕ  

ϕ preserves isomorphisms, thus Λ and Λ′  are Morita-equivalents. 

In particular, we have the following result proved by Zavadskij in [10]: 

Theorem 1. Two orders Λ and Λ′  are isomorphic if the corresponding 
exponent matrices ( )ijλ  and ( )ijλ′  can be turned into each other with the 

help of the following admissible t-transformations: 

(1) To add an integer n to each entry of a given row i and simultaneously 
subtract n to each entry of the column i. 

(2) To transpose simultaneously rows i and j and columns i and j. 

The following is the finite type representation type for tiled orders 
introduced by Zavadskij and Kirichenko in [12]. 

Theorem 2. A tiled order Λ is of finite representation type if and only if 
( ) ,...,, 51 KK⊃/ΛP  where 

 

Figure 1 

Often, posets 51 ...,, KK  are called the Kleiner’s critical. 

For ,1≥m  a ( )m...,,2,1,0 -tiled order is a tiled order ( ),ijλ=Λ  

,,1 nji ≤≤  where { }....,,2,1,0 mij ∈λ  In particular, 

If ( )ijλ=Λ  is a ( )m,0 -tiled order, then Λ has associated a finite poset 

( ) ( ) { }( ),,...,,2,1, ≤=Λℜ=≤ℜ n  where 

ji ≤  if and only if .0=λij  
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We let ( )Qm,Λ  denote the unique ( )m,0 -tiled order ( )ijλ=Λ  such 

that ( )( ) ,, QQm =Λℜ  where Q is a finite poset, that is, if { },...,,2,1 nQ =  

then 





<

≤
=λ

.if,
,if,0

ijm
ji

ij  

In [12], it is proved that there is a bijective correspondence between 
isomorphism classes of representations of a finite poset Q over a quotient 

ring OOO m
m π=  (where O  is a ring of discrete valuation, π is a prime 

element) and isomorphism classes of admissible modules over a tiled order 
{ }( ),, ∗Λ=Λ ∪Qm  where ∗ is an additional maximal point with ∗<x  for 

all .Qx ∈  Moreover, we have the following result. 

Theorem 3. For a finite poset Q, the following identities hold: 

(a) Q is of finite representation type over the ring .1, ≥mmO  

(b) The corresponding tiled order ( )∗Λ ∪Qm,  is of finite representation 

type. 

(c) The infinite periodic poset ( )ΛP  does not contain the critical 

....,, 51 KK  

(d) Q has not as a subposet one of the following lists. 

 
Figure 2 
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Theorem 2 was proved by Zavadskij and Kirichenko in [12] by using an 
algorithm of differentiation (for tiled orders) with respect to a suitable pair of 
points introduced by Zavadskij. The following lemma allows to define such 
an algorithm. 

Lemma 4. If Λ is a ( )n...,,2,1,0 -tiled order, and ( )ΛP  does not 

contain as a subposet the critical posets ( )1,1,1,1  and ( ),2,2,2  then there 

is a pair of indices ( )lk,  which satisfies either condition (a) or condition 

(b): 

(a) klilki λ=λ+λ  for all i. 

(b) There exists an index m such that klilki λ=λ+λ  and +λkm  

1+λ=λ klml  for all .im ≠  

Note that, if ( ) ( )Znij MbB ∈=  is such that 0=iib  for any i and for 

values { },...,,2,1...,,, 21 niii n ∈  we have that 

 .013221 ≥+++ iiiiii nbbb  (2) 

Matrix ( )ijλ=Λ  generated by B is a tiled order such that: 

{ }.min
322132 ...,,, jiiiiiiiiij nn

bbb +++=λ  

If Λ is a reduced tiled order and lk ≠  with ,1, ≥lk  then we let ( )
−Λ lk ,  

denote the ring generated by ( )ijbB =  with 1−λ= klklb  and ijijb λ=  for 

( ) ( )lkji ,, ≠  entries of this generation matrix satisfies formula (2). 

A pair of points ( ) lklk ≠,,  is said to be suitable for differentiation, if 

it satisfies one of the conditions (a) or (b) in Lemma 4. The derived ring 

( )lk ,Λ′  is defined in such a way that: 

(1) ( ) ( )
−Λ=Λ′ lklk ,,  if the pair ( )lk,  satisfies condition (a) in Lemma 4. 

(2) If the pair ( )lk,  satisfies condition (b) in Lemma 4, then ( )lk ,Λ′  is 

generated by matrix ( ) njiijbB ≤≤= ,1  with 1+=′ nm  and 
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,1;1;1 −λ=−λ=−λ= ′ kmmkmlmlklkl bbb  

,0;1 == ′′′ mmmm bb  

;mjjmb λ=′  for immibmmj λ=′≠ ′;,  for ,, mki ′≠  

ijijb λ=  if ;, mji ′≠  and ( ) ( ) ( ).,,,, lmlkji ≠  (3) 

The following result describes the derivative of some reduced tiled 
orders. 

Theorem 5. The generation matrix is the derivative of a reduced tiled 
order ( ) 3,1, ≤≤λ=Λ jiji  with klilki λ=λ+λ  for all i. 

Proof. It suffices to prove that the matrix obtained by subtract 1 to the 
entry ( )lk,  of Λ is a tiled order. 

It is clear that ,0=λii  inequality (2) must to be verified if the entry 

1−λkl  is included in the generation matrix. Thus, we have three cases: 

  (i) Since the pair ( )lk,  is a suitable pair of points, ,klilki λ=λ+λ  

therefore, .1−λ≥λ+λ klilki  

 (ii) Since Λ is reduced ,1≥λ+λ illi  klillikl λ+≥λ+λ+λ 1  and 

,1 klkikllikl λ+≥λ−λ+λ+λ  thus .1 kiklli λ≥−λ+λ  

(iii) Inequality ilklik λ≥−λ+λ 1  is obtained by using arguments from 

(ii).  

For ( )1,0 -tiled orders, we have the following result: 

Theorem 6. A ( )1,0 -tiled order is of finite (tame, finite growth, one 

parameter, etc.) representation type if the poset ( )Λℜ  is. 

Remark 7. Up to for the finite representation type case, Theorem 6 is not 
true for arbitrary ( )n,0 -tiled orders, therefore one of the main problems 

regarding ( )n,0 -tiled orders consists of establishing for 1>n  which orders 
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satisfy conditions described in such theorem. To give some advances to this 
problem, we prove that some ( )n,0 -tiled orders can be reduced to ( )1,0 -tiled 

orders via differentiation. 

2.1. The matrix problem 

If A is a Λ-not null right admissible module, then the submodule 

iii AeA =  is said to be a O -net. Therefore, it is possible to associate to the 

module A a system of the form ( ),...,,; 1 nA AAV=S  where V is a finite 

dimensional T-vector space ( ),dim dVT =  further VAi ⊂  is a complete 

O -net for each i, i.e., the rank of iA  as a O -free module equals d. 

Furthermore, 

ji AA ij ⊂π
λ  for all i, j. 

Thus, two admissible Λ-modules ( )nA AAVA ...,,; 1=→ S  and AA S′→′  

( )nAAV ′′′= ...,,; 1  are isomorphic if and only if there exists a T-isomorphism, 

VV ′→ϕ :  such that ( ) ii AA ′=ϕ  for all i. Thus, the problem of classifying 

right admissible Λ-modules is equivalent to the problem of classifying 
system of the type ( )....,,; 1 nAAV  The corresponding matrix problem is 

defined in such a way that if an admissible right Λ-module A which has 
associated a system of the form ( ),...,,; 1 nA AAV=S  where iA  is a O -net, 

then a matrix AM  is assigned to :AS  

i
MM iA =  

where column of each stripe iM  consists of coordinates of O -generators  of 

the net iA  with respect to fixed basis of V modulo the subnet =iA  

∑
≠

λ
π

ij
j

jiA .  The following are the admissible transformations which define 

equivalent matrices: 

(1) T-elementary transformations of rows of the whole matrix .AM  
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(2) O -elementary transformations of columns within each stripe .iM  

(3) Additions of columns of type .jij MMM ij →π+
λ O  

3. Main Results 

In this section, we use the algorithm of differentiation with respect to a 
suitable pair of points for tiled orders in order to reduce some ( )2,0 -tiled 

orders to ( )1,0 -orders. 

For a given exponent matrix Λ, we let ( )Λi  denote the index of Λ in such 

a way that: 

( ) .
,1
∑

≤≤

λ=Λ
nji

iji  

Note that if Λ is a ( )1,0 -tiled order, then ( ) ( ) ( ).12
1 −≤Λ≤− nninn  

Furthermore, Λ′Λ  implies ( ) ( )Λ′=Λ ii  as a consequence of Theorem 1. 

The following result concerns ( )1,0 -tiled orders. 

Theorem 8. The following is a complete list of representatives of 
isomorphic classes of ( )1,0 -reduced tiled orders ( ) :3,1 ≤≤λ=Λ jiij  

,
001
101
110

,
011
101
110

21















=Λ
















=Λ  

.
000
101
110

,
000
100
110

43















=Λ
















=Λ  

Proof. The associated poset ( )ΛP  of the ( )1,0 -tiled order Λ is an 

infinite ordinal sum of copies of ( ),Λℜ  conversely the corresponding ( )1,0 -

tiled order ( ) 3,1 ≤≤λ=Λ jiij  associated to ℜ  is such that 
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<
≤

=λ
.if,1
,if,0

ij
ji

ij  

Up to isomorphism and antiisomorphism, the only possibilities for poset 
( )Λℜ  are 

 

Figure 3 

which have associated orders ....,, 41 ΛΛ   

Theorem 9. The following is a complete list of representatives of 
isomorphic classes of ( )2,1,0 -reduced tiled orders ( ) 3,1 ≤≤λ=Λ jiij  with 

0=λij  if :ij ≤  

,
000
100
210

,
000
100
110

21















=Λ
















=Λ  

.
000
200
220

,
000
200
210

43















=Λ
















=Λ  

Proof. Let 















λ
λλ

=Λ
000

00
0

23

1312
 be a ( )2,1,0 -reduced tiled order. Then 

0≠λij  for all ,ji <  thus: 

(1) If ,113 =λ  then .12312 =λ=λ  

(2) If ,213 =λ  then pair of numbers 

( ) ( ) ( ) ( ) ( ){ },2,2,1,2,2,1,1,1, 2312 ∈λλ  
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thus the corresponding reduced exponent matrices are: 

,
000
200
210

,
000
100
210

,
000
100
110

321















=Λ
















=Λ
















=Λ  

.
000
200
220

,
000
100
220

54















=Λ
















=Λ  

Since ,43 ΛΛ  we are done.  

Theorem 10. Any ( )2,1,0 -reduced tiled order ( ) 3,1 ≤≤λ=Λ jiij  with 

( ) 5≤λi  is isomorphic to a ( )1,0 -tiled order. 

Proof. Let Λ be an order which satisfies hypothesis of the theorem and 
{ }2=λ|Λ∈λ= ijijr  therefore if ,0=r  then Λ is a ( )1,0 -tiled order. 

Actually, if ( ) ,3=Λi  then 0=r  and Λ is a ( )1,0 -tiled order. 

If ( ) ,4=Λi  then { }.1,0∈r  If { }3,2,1,, ∈kji  and ,1=r  thus if 

,2=λkl  then the remaining entries belong to { }.1,0  Since ,lkikli λ≥λ+λ  

1=λ=λ ikli  the other entries are null, a ( )1,0 -tiled order can be received if 

we subtract 1 to the row l and simultaneously add 1 to the column l of the 
matrix Λ. 

If ( ) ,5=Λi  then ,2≤r  therefore, if ,1=r  then it is possible to assume 

1=r  and ,2=λlk  thus .1=λ=λ ikli  Since ,0=λkl  either 1=λki  or 

,1=λil  if ,1=λki  then Λ can be transformed to a ( )1,0 -tiled order by 

subtracting 1 to the row l and adding 1 to the column l. If ,1=λil  then a 

( )1,0 -tiled order can be obtained from Λ by subtracting 1 to the column k 

and adding 1 to row k. 

Finally, if ,2=r  then different options arise, for instance, a ( )1,0 -tiled 

order isomorphic to Λ can be obtained if all entries with value 2 belong to the 
same row or column. On the other hand, if entries with value 2 belong to 
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different rows or columns, then a ( )1,0 -tiled order can be received from Λ 

via t-admissible transformations. For instance, if ,2=λ=λ kiil  then either 

1=λkl  or .1=λlk  Note that, if ,1=λkl  then Λ is not a tiled order, on the 

other hand, if ,1=λlk  then Λ is isomorphic to a triangular tiled order which 

is a ( )1,0 -tiled order as a consequence of Theorem 9. Since same arguments 

can be used to all the other cases, we are done.  

The following theorem concerns tiled orders with ( ) .6=Λi  

Theorem 11. Every ( )2,1,0 -tiled order ( ) 3,1 ≤≤λ=Λ jiij  with ( ) 6=Λi  

has a suitable pair of points ( )lk,  such that ( )lk ,Λ′  is isomorphic to a 

( )1,0 -tiled order. 

Proof. Let ( ) 3,1 ≤≤λ=Λ jiij  be an order which satisfies the proposed 

hypothesis and { } .,0 jir ijij ≠=λ|Λ∈λ=  It is easy to see that ,3≤r  

so we must to prove that in any case it is possible to find a suitable pair of 
points with the property (a) mentioned in Lemma 4. 

Let us suppose that nlmnml λ+λ≠λ  for any m, n, { }.3,2,1∈l  

If ,1=r  then we receive a contradiction. If ,2=r  then two entries of Λ 

are 2’s and the other two are 1’s. If ,0=λlm  then .0≠λmn  If ,1=λmn  then 

.
011
101
110
















Λ  If ,2=λmn  then { }1,0∈λln  which is a contradiction. 

The case 3=r  defines a tiled order with three entries equal to 2 which 

contradicts the definition of Λ.  

The following results concern ( )2,1,0 -tiled orders with ( ) .6≥Λi  

Theorem 12. Any ( )2,1,0 -tiled order ( ) 3,1 ≤≤λ=Λ jiij  with ( )Λ≤ i8  

11≤  has a suitable pair of points ( )lk,  such that ( )lk ,Λ′  is not a ( )1,0 -tiled 

order. 
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Proof. If Λ is a ( )2,1,0 -tiled order with ( ) 12<Λi  and width ( ) ,3=Λw  

then the properties of the corresponding poset of projective modules ensure 
the existence of a suitable pair of points ( )lk,  for differentiation. 

If ( )lk,  satisfies condition (a) of Lemma 4, then ( ( ) ) 7, ≥Λ′ lki  by 

Theorem 5, therefore ( )lk ,Λ′  cannot be a ( )1,0 -order. 

Now let us suppose that Λ has a pair of points ( )lk,  which satisfies 

condition (b) of Lemma 4 but does not satisfy condition (a). Therefore, the 
following arguments prove that the matrix B defined as in (3) is a tiled order 
such that ( )., lkB Λ′=  

Note that 1+λ=λ+λ klmlkm  with ( ) { },3,2,1,, ∈lmk  lmkl ≠≠≠  

since ( )lk,  is a suitable pair of points. Furthermore, ijpjip λ>λ+λ  for all 

{ }3,2,1,, ∈pji  provided that there is not a suitable pair of points which 

satisfies condition (a) of Lemma 4. 

Formulas (3) allow to define ( )ijbB =  in such a way that: 

0=iib  for all ,41 ≤≤ i  

,kmkmb λ=  

,1−λ= klklb  

,14 −λ= kmkb  

,4 mkkmk bb λ==  

,1−λ= mlmlb  

,04 =mb  

,lklkb λ=  

,4 lmllm bb λ==  

,14 =mb  

,4 mllb λ=  (4) 
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thus rqnqrn bbb ≥+  for all { }.4,,,,, lmkqnr ∈  Therefore, B is a tiled 

order and ( )., lkB Λ′=  In particular, we have that 

( ( ) ) ( ) ( ).22, lkkllk ii λ+λ+−Λ=Λ′  

If ( ) ,8=Λi  then Λ is isomorphic to the tiled order 

















001
101
220

 

and the derived tiled order is isomorphic to 



















0111
0001
1101
1210

 

whose associated poset of projective modules ( )Λ′P  is not a cardinal sum of 

a finite poset, thus it is not a ( )1,0 -tiled order. 

If ( ) ,9=Λi  then we take into account that mlkmkl λ+λ=+λ 1  to see 

that ,0≠λkl  otherwise we have that mlkm λ+λ=1  and lmlkmk λ+λ+λ  

8=  which cannot be possible. 

If ,1=λkl  then mlkm λ+λ=2  and ,6=λ+λ+λ lmlkmk  thus =λmk  

,2=λ=λ lmlk  therefore ( ( ) ) ( ) ( ) .1321292, =++−=Λ′ lki  

If ,2=λkl  then mlkm λ+λ=3  and .4=λ+λ+λ lmlkmk  Since 

,mklmlk λ+λ<λ  ,4 lklk λ−<λ  that is, .2<λlk  Note that 0=λlk  implies 

2=λ=λ lmmk  and lmkmlk λ>λ+λ  implies ,2>λkm  a contradiction. 

Therefore, 1=λlk  and again ( ( ) ) ( ) ( ) .1312292, =++−=Λ′ lki  We conclude 

that ( ( ) ) 13, =Λ′ lki  and that ( )lk ,Λ′  is not a ( )1,0 -order. 

Finally, if ( ) ,10≥Λi  then we have ,4≤λ+λ lkkl  thus ( ( ) ) ≥Λ′ lki ,  

( ) ( ) 146102 =−  therefore ( )lk ,Λ′  is not a ( )1,0 -tiled order.  
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As an example, the following are ( )2,1,0 -tiled orders with ( ) { }8,7∈Λi  

whose derivative is not a ( )1,0 -tiled order: 

,
022
101
100
















=Λ  

( ) ,
022
101
000

3,1















=Λ′  

,
022
202
000
















=∆  

( ) ,
022
102
000

3,2















=∆′  

 ( ) ( ( ) )( ) .
012
102
000

2,33,22,3















=∆′=∆ ′′  (5) 

In this case, ( )3,1  is a suitable pair of points of the tiled order Λ with 

( ) ,7=Λi  and ( )3,1Λ′  is not a ( )1,0 -tiled order. On the other hand, ( )3,2  

and ( )2,3  are suitable pairs of points of the tiled order ∆ with ( ) ,8=∆i  note 

that, ( )3,2∆′  is not a ( )1,0 -tiled order but ( )















−∆ ′′

011
101
110

~2,3  which is a 

( )1,0 -tiled order. 
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