JP Journal of Algebra, Number Theory and Applications
© 2015 Pushpa Publishing House, Allahabad, India
Published Online: April 2015
http://dx.doi.org/10.17654/JPANTAApr2015_157_176

ON THE REDUCTION OF SOME TILED ORDERS

Agustín Moreno Cañadas, Robinson-Julian Serna* and Cesar-Ivan Espinosa
Department of Mathematics
National University of Colombia
Colombia
e-mail: amorenoca@unal.edu.co
cesarivan.espinosa@uptc.edu.co
*Department of Mathematics
UPTC-Tunja
Colombia
e-mail: robinson.serna@uptc.edu.co

Abstract

In this paper, a Zavadskij's differentiation algorithm is used to reduce some tiled orders to (0,1)-tiled orders.

1. Introduction

A tiled order over a discrete valuation ring is a Noetherian prime semiperfect semidistributive ring Λ with nonzero Jacobson radical. One of the main problems regarding this kind of rings (i.e., of the integral representation theory) consists of determining the additive category latt Λ of all right Λ-modules, its representation type and the corresponding Auslander-
Received: November 23, 2014; Accepted: January 5, 2015
2010 Mathematics Subject Classification: 16G20, 16G60, 16G30.
Keywords and phrases: algorithm of differentiation, exponent matrix, finite representation type, lattice, poset, tiled order, ($0,1,2, \ldots, n$) -tiled order.

Reiten quiver $\Gamma(\Lambda)$. The tiled order is said to be of finite lattice type if latt Λ has only finitely many isomorphism classes of indecomposable objects [1-3].

Classification problems of tiled orders can be tackled by using poset representation theory introduced by Nazarova and Roiter in 1972. Given an algebraically closed field k and a poset \mathcal{P}, an object U of the additive category rep \mathcal{P} of k-linear representations of \mathcal{P} is a system of k-vector spaces of the form:

$$
U=\left(U_{0} ; U_{k} \mid x \in \mathcal{P}\right)
$$

where $U_{x} \subseteq U_{y}$ provided $x \leq y$.
The main tools in poset representation theory are the algorithms of differentiation, for instance the algorithm of differentiation with respect to a maximal point introduced by Nazarova and Roiter in [5] allowed to Kleiner to classify posets of finite type representation type in [4]. Furthermore, posets of finite growth representation type were classified in [6] by using the algorithm of differentiation with respect to a suitable pair of points $D I$ introduced by Zavadskij in [11], defined in such a way that if a poset (\mathcal{P}, \leq) with:

$$
\mathcal{P}=a^{\nabla}+b_{\Delta}+C,
$$

where $a^{\nabla}=\{x \in \mathcal{P} \mid a \leq x\}, b_{\Delta}=\{x \in \mathcal{P} \mid x \leq b\}$ and $C=c_{1}<c_{2}<\cdots<c_{n}$ is a chain (eventually empty), then the derived poset $\mathcal{P}_{(a, b)}^{\prime}$ with respect to the pair of points (a, b) is a subposet of the modular lattice generated by \mathcal{P} such that:

$$
\mathcal{P}_{(a, b)}^{\prime}=a^{\nabla}+C^{-}+C^{+}+b_{\Delta},
$$

where $C^{+}=\left\{c_{i}^{+} \mid c_{i}^{+}=a+c_{i}\right\}$ and $C^{-}=\left\{c_{i}^{-} \mid c_{i}^{-}=b c_{i}\right\}$ are chains with $c_{i}^{-}<c_{i}^{+}$for all $1 \leq i \leq n$.

The derivation functor between the corresponding categories of representations $D_{(a, b)}: \operatorname{rep} \mathcal{P} \rightarrow \operatorname{rep} \mathcal{P}_{(a, b)}^{\prime}$ is defined as follows [5, 8, 11, 14]:
$U_{0}^{\prime}=U_{0}$,
$U_{c_{i}^{+}}^{\prime}=U_{a}+U_{c_{i}}$,
$U_{c_{i}^{-}}^{\prime}=U_{b} \cap U_{c_{i}}$,
$U_{x}^{\prime}=U_{x}$ for the remaining points $x \in \mathcal{P}$,
$\varphi^{\prime}=\varphi: U_{0} \rightarrow V_{0}$ for any linear map-morphism $\varphi \in \operatorname{Hom}_{k}(U, V)$.
According to Rump [7], the idea of this two point algorithm arose from the Zavadskij's matrix algorithm which forms the essential tool in the characterization of representation-finite tiled orders. Further, Zavadskij and Revitskaya generalized representations of tiled orders and finite posets over a field T by introducing a mixed flat matrix problem over a pair of algebras named algebras of transformation [13]. They proved a bounded module criterion which generalizes criteria of finite representation type for posets and tiled orders. Soon afterwards, Rump generalized in [7] those results obtained by Kirichenko and Zavadskij to general orders to do that, instead of a suitable pair of points (a, b), he considered a monomorphism $u: I \hookrightarrow P$ between Λ-lattices with $k P=k I$. For such u, Rump associated to each Λ lattice E a pair of Λ-lattices $\partial_{u} E=\binom{E^{+}}{E^{-}}$such that $E_{-} \subset E \subset E^{+}$, where E_{-}is the largest Λ-sublattice with $f\left(E_{-}\right) \subset P$ for each homomorphism $f: E \rightarrow I, E^{+}$is defined dually.

If u is such that $\partial_{u} P=\partial_{u} I=\binom{I}{P}$, then Λ^{+}is an overorder of Λ and $u^{*}: I^{*} \hookrightarrow P^{*}$ induces an overorder Λ^{-}of Λ. Then it is possible to define the derived order:

$$
\partial_{u}=\left(\begin{array}{cc}
\Lambda^{+} & \Lambda^{+} \Lambda^{-} \\
\Lambda_{-} & \Lambda^{-}
\end{array}\right) \subset M_{2}(A)
$$

of Λ and $\partial_{u}: \operatorname{latt} \Lambda \rightarrow \partial_{u} \Lambda$ becomes a functor.

In this paper, we use an algorithm of differentiation introduced by Zavadskij and Kirichenko in [12] for tiled orders in order to prove which $(0,1,2)$-tiled orders can be reduced to a $(0,1)$-tiled order.

This paper is organized as follows: In Section 2, we describe main definitions and notation to be used throughout the work. In Section 3, we give main results describing which $(0,1,2)$-tiled orders can be reduced to $(0,1)$-tiled orders.

2. Preliminaries

In this section, we introduce notation and results to be used throughout the paper [1-3, 12].

A field T is said to be of discrete norm or discrete valuation if it is endowed with a surjective map:

$$
v: T \rightarrow \mathbb{Z} \cup\{\infty\}
$$

which satisfies the following conditions:
(a) $v(x)=\infty$ if and only if $x=0$,
(b) $v(x y)=v(x)+v(y)$,
(c) $v(x+y) \leq \min \{v(x), v(y)\}$.

We let \mathbb{O} denote the normalization ring of T such that

$$
\mathbb{O}=\{x \in T \mid v(x) \geq 0\} .
$$

An element $\pi \in \mathbb{O}$ such that $v(\pi)=1$ is a prime element of \mathbb{O}. Thus, for each $x \in \mathbb{O}$, we have that:

$$
x \in \mathbb{O} \text { if and only if } x=\varepsilon \pi^{m}, \text { for some } m \geq 0,
$$

where ε is an unit, i.e., $\varepsilon \in \mathbb{O}^{*}$. Moreover,

$$
x \in T \text { if and only if } x=\varepsilon \pi^{m} \text {, for some } m \in \mathbb{Z} \text { and } \varepsilon \in \mathbb{O}^{*} \text {. }
$$

Ring \mathbb{O} is such that $\mathbb{O} \supset \pi \mathbb{O}$, where $\pi \mathbb{O}$ is the unique maximal ideal, therefore, ideals of \mathbb{O} generate a chain of the form:

$$
\mathbb{O} \supset \pi \mathbb{O} \supset \pi^{2} \mathbb{O} \supset \cdots \supset \pi^{m} \mathbb{O} \supset \cdots .
$$

A tiled order is a subring of the matrix algebra $T^{n \times n}$ with the form:

$$
\Lambda=\sum_{i, j=1}^{n} e_{i j} \pi^{\lambda_{i j}} \mathbb{O}=\left[\begin{array}{cccc}
\mathbb{O} & \pi^{\lambda_{12}} \mathbb{O} & \cdots & \pi^{\lambda_{1 n}} \mathbb{O} \\
\pi^{\lambda_{21}} \mathbb{O} & \mathbb{O} & \cdots & \pi^{\lambda_{2 n}} \mathbb{O} \\
\vdots & \vdots & \vdots & \vdots \\
\pi^{\lambda_{n 1} \mathbb{O}} & \pi^{\lambda_{n 2}} \mathbb{O} & \cdots & \mathbb{O}
\end{array}\right]
$$

That is, Λ consists of all matrices whose entries $i j$ belong to $\pi^{\lambda_{i j}} \mathbb{O}$, in this case, $e_{i j} \in T^{n \times n}$ are unit matrices such that $e_{i j} e_{k l}=\delta_{j k} e_{i l} \quad\left(\delta_{j k}=1\right.$, if $j=k, \delta_{j k}=0$ otherwise).

Numbers $\lambda_{i j}$ are rational integers which satisfy the following conditions:
(1) $\lambda_{i i}=0$, for each i,
(2) $\lambda_{i j}+\lambda_{j k} \geq \lambda_{i k}$ for all i, j, k.

An order Λ is said to be Morita reduced or reduced if it satisfies the additional condition:
(3) $\lambda_{i j}+\lambda_{j i}>0$, for each $i \neq j$. In this case, projective modules are pairwise non-isomorphic, that is, in the decomposition of $\Lambda=P_{1} \oplus P_{2}$ $\oplus \cdots \oplus P_{n}$ via projective modules (i.e., the rows of Λ) all summands indecomposable projectives are pairwise not isomorphic, i.e., $P_{i} \nsucceq P_{j}$ provided $i \neq j$.

Henceforth, we will assume that tiled orders satisfy conditions (1), (2) and (3). According to Kirichenko et al., it means that the matrix Λ is an exponent reduced matrix [2].

We denote $\Lambda=\left(\lambda_{i j}\right)_{i, j=1, \ldots, n}$, furthermore, note that $\Lambda \subset T^{n \times n}=Q=$ $\Lambda \otimes_{\mathbb{O}} T$, where Q is the rational hull of $\Lambda, \operatorname{Rad} Q=0$ and Λ has a unique simple right module (up to isomorphism) denoted $S_{R}=(T, T, \ldots, T)=$ $\sum_{i=1}^{n} e_{i} T$, where $\left\{e_{i} \mid 1 \leq i \leq n\right\}$ is the standard basis such that $e_{i} e_{j k}=\delta_{i j} e_{k}$.

We assume the notation $S_{L}=(T, T, \ldots, T)^{t}$ for left modules.
The main problem in this situation consists of describing all finitely generated Λ-modules without \mathbb{O}-torsion which are called admissible modules.

A Λ-admissible right module (not null) is said to be irreducible if it is a submodule of the unique simple module (up to isomorphism), $S_{R}=$ (T, T, \ldots, T). For instance, any module P_{i} indecomposable projective is a tiled order Λ. Thus,

$$
P_{i}=\left(\pi^{\lambda_{i 1}} \mathbb{O}, \pi^{\lambda_{i 2}} \mathbb{O}, \ldots, \pi^{\lambda_{i n}} \mathbb{O}\right)
$$

is a finitely generated irreducible module without \mathbb{O}-torsión. Actually, any irreducible right module A has the form:

$$
A=\left(\pi^{\alpha_{1}} \mathbb{O}, \pi^{\alpha_{2}} \mathbb{O}, \ldots, \pi^{\alpha_{n}} \mathbb{O}\right)
$$

where $\alpha_{i}+\lambda_{i j} \geq \alpha_{j}, \alpha_{i} \in \mathbb{Z}, 1 \leq i \leq n$.
If A is a A left module, then we have that $\lambda_{i j}+\alpha_{j} \geq \alpha_{i}$. Henceforth, we write $A=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ for a right (left) module $\left(\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)^{t}\right.$, respectively).

Note that $A \simeq A^{\prime}$ if and only if $\alpha_{i}=\alpha_{i}^{\prime}+k$, for some $k \in \mathbb{Z}$ and any $1 \leq i \leq n$.

Irreducible right modules which are contained in a Q-simple module of a Λ-order constitute a lattice $\mathfrak{L}(\Lambda)(\subseteq, \cup, \cap)=\mathfrak{L}(\Lambda)=\mathfrak{L}_{R}(\Lambda)$. The
corresponding lattice of irreducible left modules $\mathfrak{L}_{L}(\Lambda)$ is antiisomorphic to $\mathfrak{L}_{R}(\Lambda)$, by the correspondence $\sigma: \mathfrak{L}_{R}(\Lambda) \rightarrow \mathfrak{L}_{L}(\Lambda)$ given by the formula:

$$
\sigma\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\left(-\alpha_{1}, \ldots,-\alpha_{n}\right)^{t} .
$$

Let $\mathcal{P}(\Lambda)=\mathcal{P}_{R}(\Lambda)$ be the subposet of $\mathfrak{L}(\Lambda)$ of irreducible projective modules, if $\mathcal{P}(\Lambda)=\mathcal{P}_{R}(\Lambda)$, then projective modules P_{i} are called principals where:

$$
P_{i}=\left(\lambda_{i 1}, \lambda_{i 2}, \ldots, \lambda_{\text {in }}\right)=P_{i}^{0}, \quad P_{i}^{0} \in \mathcal{P}_{R}(\Lambda) .
$$

In this poset, there are so many projective modules as infinite chains. In such a case, modules of the form:

$$
P_{i}^{k}=\left(\lambda_{i 1}+k, \ldots, \lambda_{\text {in }}+k\right), \quad k \in \mathbb{Z}
$$

are projective modules isomorphic to P_{i}^{0}. Therefore,

$$
\mathcal{P}(\Lambda)=\left\{P_{i}^{k} \mid 1 \leq i \leq n, k \in \mathbb{Z}\right\}
$$

where

$$
P_{i}^{k} \leq P_{j}^{l} \text { if and only if } \begin{cases}k-l \geq \lambda_{i j}, & \mathcal{P}_{L}(\Lambda), \\ k-l \geq \lambda_{j i}, & \mathcal{P}_{R}(\Lambda)\end{cases}
$$

Thus, the poset $\mathcal{P}(\Lambda)$ is infinite, periodic and the sum of n chains with the form $\left\{P_{i}^{k} \mid 1 \leq i \leq n, k \in \mathbb{Z}\right\}$, with width $w(\mathcal{P}(\Lambda)) \leq n$.

The map $\sigma: \mathcal{P}_{R}(\Lambda) \rightarrow \mathcal{P}_{L}(\Lambda)$, given by $\sigma\left(P_{i}^{k}\right)=P_{i}^{-k}$ is a natural poset antiisomorphism, thus the pair $\{\mathbb{O}, \mathcal{P}(\Lambda)\}$ defines the tiled order Λ up to isomorphism, in the sense that

$$
\Lambda \simeq \Lambda^{\prime} \text { if and only if pairs }\{\mathbb{O}, \mathcal{P}(\Lambda)\} \simeq\left\{\mathbb{O}^{\prime}, \mathcal{P}\left(\Lambda^{\prime}\right)\right\}
$$

That is, $\mathbb{O} \simeq \mathbb{O}^{\prime}$ and $\mathcal{P}(\Lambda) \simeq \mathcal{P}\left(\Lambda^{\prime}\right)$ which means that there exists a poset isomorphism $\varphi: \mathcal{P}(\Lambda) \rightarrow \mathcal{P}\left(\Lambda^{\prime}\right)$ such that

$$
A \simeq B \text { if and only if } \varphi(A) \simeq \varphi(B),
$$

φ preserves isomorphisms, thus Λ and Λ^{\prime} are Morita-equivalents.
In particular, we have the following result proved by Zavadskij in [10]:
Theorem 1. Two orders Λ and Λ^{\prime} are isomorphic if the corresponding exponent matrices $\left(\lambda_{i j}\right)$ and $\left(\lambda_{i j}^{\prime}\right)$ can be turned into each other with the help of the following admissible t-transformations:
(1) To add an integer n to each entry of a given row i and simultaneously subtract n to each entry of the column i.
(2) To transpose simultaneously rows i and j and columns i and j.

The following is the finite type representation type for tiled orders introduced by Zavadskij and Kirichenko in [12].

Theorem 2. A tiled order Λ is of finite representation type if and only if $\mathcal{P}(\Lambda) \not \supset K_{1}, \ldots, K_{5}$, where

Figure 1
Often, posets K_{1}, \ldots, K_{5} are called the Kleiner's critical.
For $m \geq 1$, a $(0,1,2, \ldots, m)$-tiled order is a tiled order $\Lambda=\left(\lambda_{i j}\right)$, $1 \leq i, j \leq n$, where $\lambda_{i j} \in\{0,1,2, \ldots, m\}$. In particular,

If $\Lambda=\left(\lambda_{i j}\right)$ is a $(0, m)$-tiled order, then Λ has associated a finite poset $(\Re, \leq)=\mathfrak{R}(\Lambda)=(\{1,2, \ldots, n\}, \leq)$, where

$$
i \leq j \text { if and only if } \lambda_{i j}=0 .
$$

We let $\Lambda(m, Q)$ denote the unique $(0, m)$-tiled order $\Lambda=\left(\lambda_{i j}\right)$ such that $\mathfrak{R}(\Lambda(m, Q))=Q$, where Q is a finite poset, that is, if $Q=\{1,2, \ldots, n\}$, then

$$
\lambda_{i j}= \begin{cases}0, & \text { if } i \leq j \\ m, & \text { if } j<i\end{cases}
$$

In [12], it is proved that there is a bijective correspondence between isomorphism classes of representations of a finite poset Q over a quotient ring $\overline{\mathcal{O}_{m}}=\mathcal{O} / \pi^{m} \mathcal{O}$ (where \mathcal{O} is a ring of discrete valuation, π is a prime element) and isomorphism classes of admissible modules over a tiled order $\Lambda=\Lambda(m, Q \cup\{*\})$, where $*$ is an additional maximal point with $x<*$ for all $x \in Q$. Moreover, we have the following result.

Theorem 3. For a finite poset Q, the following identities hold:
(a) Q is of finite representation type over the ring $\overline{\mathcal{O}_{m}}, m \geq 1$.
(b) The corresponding tiled order $\Lambda(m, Q \bigcup *)$ is of finite representation type.
(c) The infinite periodic poset $\mathcal{P}(\Lambda)$ does not contain the critical K_{1}, \ldots, K_{5}.
(d) Q has not as a subposet one of the following lists.

Figure 2

Theorem 2 was proved by Zavadskij and Kirichenko in [12] by using an algorithm of differentiation (for tiled orders) with respect to a suitable pair of points introduced by Zavadskij. The following lemma allows to define such an algorithm.

Lemma 4. If Λ is a $(0,1,2, \ldots, n)$-tiled order, and $\mathcal{P}(\Lambda)$ does not contain as a subposet the critical posets $(1,1,1,1)$ and $(2,2,2)$, then there is a pair of indices (k, l) which satisfies either condition (a) or condition (b):
(a) $\lambda_{k i}+\lambda_{i l}=\lambda_{k l}$ for all i.
(b) There exists an index m such that $\lambda_{k i}+\lambda_{i l}=\lambda_{k l}$ and $\lambda_{k m}+$ $\lambda_{m l}=\lambda_{k l}+1$ for all $m \neq i$.

Note that, if $B=\left(b_{i j}\right) \in M_{n}(\mathbb{Z})$ is such that $b_{i i}=0$ for any i and for values $i_{1}, i_{2}, \ldots, i_{n} \in\{1,2, \ldots, n\}$, we have that

$$
\begin{equation*}
b_{i_{1} i_{2}}+b_{i_{2} i_{3}}+\cdots+b_{i_{n} i_{1}} \geq 0 \tag{2}
\end{equation*}
$$

Matrix $\Lambda=\left(\lambda_{i j}\right)$ generated by B is a tiled order such that:

$$
\lambda_{i j}=\min _{i_{2}, i_{3}, \ldots, i_{n}}\left\{b_{i_{1} i_{2}}+b_{i_{2} i_{3}}+\cdots+b_{i_{n} j}\right\}
$$

If Λ is a reduced tiled order and $k \neq l$ with $k, l \geq 1$, then we let $\Lambda_{(k, l)}$ denote the ring generated by $B=\left(b_{i j}\right)$ with $b_{k l}=\lambda_{k l}-1$ and $b_{i j}=\lambda_{i j}$ for $(i, j) \neq(k, l)$ entries of this generation matrix satisfies formula (2).

A pair of points $(k, l), k \neq l$ is said to be suitable for differentiation, if it satisfies one of the conditions (a) or (b) in Lemma 4. The derived ring $\Lambda_{(k, l)}^{\prime}$ is defined in such a way that:
(1) $\Lambda_{(k, l)}^{\prime}=\overline{\Lambda_{(k, l)}}$ if the pair (k, l) satisfies condition (a) in Lemma 4.
(2) If the pair (k, l) satisfies condition (b) in Lemma 4, then $\Lambda_{(k, l)}^{\prime}$ is generated by matrix $B=\left(b_{i j}\right)_{1 \leq i, j \leq n}$ with $m^{\prime}=n+1$ and

$$
\begin{align*}
& b_{k l}=\lambda_{k l}-1 ; \quad b_{m l}=\lambda_{m l}-1 ; \quad b_{k m^{\prime}}=\lambda_{k m}-1, \\
& b_{m^{\prime} m}=1 ; \quad b_{m^{\prime} m^{\prime}}=0, \\
& b_{m^{\prime} j}=\lambda_{m j} ; \text { for } j \neq m, m^{\prime} ; b_{i m^{\prime}}=\lambda_{i m} \text { for } i \neq k, m^{\prime}, \\
& b_{i j}=\lambda_{i j} \text { if } i, j \neq m^{\prime} ; \text { and }(i, j) \neq(k, l),(m, l) \tag{3}
\end{align*}
$$

The following result describes the derivative of some reduced tiled orders.

Theorem 5. The generation matrix is the derivative of a reduced tiled order $\Lambda=\left(\lambda_{i, j}\right)_{1 \leq i, j \leq 3}$ with $\lambda_{k i}+\lambda_{i l}=\lambda_{k l}$ for all i.

Proof. It suffices to prove that the matrix obtained by subtract 1 to the entry (k, l) of Λ is a tiled order.

It is clear that $\lambda_{i i}=0$, inequality (2) must to be verified if the entry $\lambda_{k l}-1$ is included in the generation matrix. Thus, we have three cases:
(i) Since the pair (k, l) is a suitable pair of points, $\lambda_{k i}+\lambda_{i l}=\lambda_{k l}$, therefore, $\lambda_{k i}+\lambda_{i l} \geq \lambda_{k l}-1$.
(ii) Since Λ is reduced $\lambda_{l i}+\lambda_{i l} \geq 1, \quad \lambda_{k l}+\lambda_{l i}+\lambda_{i l} \geq 1+\lambda_{k l}$ and $\lambda_{k l}+\lambda_{l i}+\lambda_{k l}-\lambda_{k i} \geq 1+\lambda_{k l}$, thus $\lambda_{l i}+\lambda_{k l}-1 \geq \lambda_{k i}$.
(iii) Inequality $\lambda_{i k}+\lambda_{k l}-1 \geq \lambda_{i l}$ is obtained by using arguments from (ii).

For $(0,1)$-tiled orders, we have the following result:
Theorem 6. $A(0,1)$-tiled order is of finite (tame, finite growth, one parameter, etc.) representation type if the poset $\mathfrak{R}(\Lambda)$ is.

Remark 7. Up to for the finite representation type case, Theorem 6 is not true for arbitrary $(0, n)$-tiled orders, therefore one of the main problems regarding $(0, n)$-tiled orders consists of establishing for $n>1$ which orders
satisfy conditions described in such theorem. To give some advances to this problem, we prove that some $(0, n)$-tiled orders can be reduced to $(0,1)$-tiled orders via differentiation.

2.1. The matrix problem

If A is a Λ-not null right admissible module, then the submodule $A_{i}=A e_{i i}$ is said to be a \mathbb{O}-net. Therefore, it is possible to associate to the module A a system of the form $\mathcal{S}_{A}=\left(V ; A_{1}, \ldots, A_{n}\right)$, where V is a finite dimensional T-vector space $\left(\operatorname{dim}_{T} V=d\right)$, further $A_{i} \subset V$ is a complete $\left(\mathbb{O}\right.$-net for each i, i.e., the rank of A_{i} as a \mathcal{O}-free module equals d. Furthermore,

$$
A_{i} \pi^{\lambda_{i j}} \subset A_{j} \text { for all } i, j
$$

Thus, two admissible Λ-modules $A \rightarrow S_{A}=\left(V ; A_{1}, \ldots, A_{n}\right)$ and $A^{\prime} \rightarrow S_{A}^{\prime}$ $=\left(V^{\prime} ; A_{1}^{\prime}, \ldots, A_{n}^{\prime}\right)$ are isomorphic if and only if there exists a T-isomorphism, $\varphi: V \rightarrow V^{\prime}$ such that $\varphi\left(A_{i}\right)=A_{i}^{\prime}$ for all i. Thus, the problem of classifying right admissible Λ-modules is equivalent to the problem of classifying system of the type $\left(V, A_{1}, \ldots, A_{n}\right)$. The corresponding matrix problem is defined in such a way that if an admissible right Λ-module A which has associated a system of the form $\mathcal{S}_{A}=\left(V ; A_{1}, \ldots, A_{n}\right)$, where A_{i} is a \mathbb{O}-net, then a matrix M_{A} is assigned to \mathcal{S}_{A} :

$$
M_{A}=
$$

where column of each stripe M_{i} consists of coordinates of \mathbb{O}-generators of the net A_{i} with respect to fixed basis of V modulo the subnet $\underline{A_{i}}=$ $\sum_{j \neq i} A_{j} \pi^{\lambda_{j i}}$. The following are the admissible transformations which define equivalent matrices:
(1) T-elementary transformations of rows of the whole matrix M_{A}.
(2) \mathbb{O}-elementary transformations of columns within each stripe M_{i}.
(3) Additions of columns of type $M_{j}+M_{i} \pi^{\lambda_{i j}} \mathbb{O} \rightarrow M_{j}$.

3. Main Results

In this section, we use the algorithm of differentiation with respect to a suitable pair of points for tiled orders in order to reduce some (0,2)-tiled orders to $(0,1)$-orders.

For a given exponent matrix Λ, we let $i(\Lambda)$ denote the index of Λ in such a way that:

$$
i(\Lambda)=\sum_{1 \leq i, j \leq n} \lambda_{i j} .
$$

Note that if Λ is a $(0,1)$-tiled order, then $\frac{n(n-1)}{2} \leq i(\Lambda) \leq n(n-1)$. Furthermore, $\Lambda \simeq \Lambda^{\prime}$ implies $i(\Lambda)=i\left(\Lambda^{\prime}\right)$ as a consequence of Theorem 1 .

The following result concerns $(0,1)$-tiled orders.
Theorem 8. The following is a complete list of representatives of isomorphic classes of $(0,1)$-reduced tiled orders $\Lambda=\left(\lambda_{i j}\right)_{1 \leq i, j \leq 3}$:

$$
\begin{array}{ll}
\Lambda_{1}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right), & \Lambda_{2}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), \\
\Lambda_{3}=\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), & \Lambda_{4}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) .
\end{array}
$$

Proof. The associated poset $\mathcal{P}(\Lambda)$ of the $(0,1)$-tiled order Λ is an infinite ordinal sum of copies of $\mathfrak{R}(\Lambda)$, conversely the corresponding $(0,1)$ tiled order $\Lambda=\left(\lambda_{i j}\right)_{1 \leq i, j \leq 3}$ associated to \Re is such that

$$
\lambda_{i j}= \begin{cases}0, & \text { if } i \leq j \\ 1, & \text { if } j<i\end{cases}
$$

Up to isomorphism and antiisomorphism, the only possibilities for poset $\mathfrak{R}(\Lambda)$ are

Figure 3
which have associated orders $\Lambda_{1}, \ldots, \Lambda_{4}$.

Theorem 9. The following is a complete list of representatives of isomorphic classes of $(0,1,2)$-reduced tiled orders $\Lambda=\left(\lambda_{i j}\right)_{1 \leq i, j \leq 3}$ with $\lambda_{i j}=0$ if $j \leq i:$

$$
\begin{array}{ll}
\Lambda_{1}=\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), & \Lambda_{2}=\left(\begin{array}{lll}
0 & 1 & 2 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \\
\Lambda_{3}=\left(\begin{array}{lll}
0 & 1 & 2 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right), & \Lambda_{4}=\left(\begin{array}{lll}
0 & 2 & 2 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)
\end{array}
$$

Proof. Let $\Lambda=\left(\begin{array}{ccc}0 & \lambda_{12} & \lambda_{13} \\ 0 & 0 & \lambda_{23} \\ 0 & 0 & 0\end{array}\right)$ be a $(0,1,2)$-reduced tiled order. Then $\lambda_{i j} \neq 0$ for all $i<j$, thus:
(1) If $\lambda_{13}=1$, then $\lambda_{12}=\lambda_{23}=1$.
(2) If $\lambda_{13}=2$, then pair of numbers

$$
\left(\lambda_{12}, \lambda_{23}\right) \in\{(1,1),(1,2),(2,1),(2,2)\}
$$

thus the corresponding reduced exponent matrices are:

$$
\begin{array}{lll}
\Lambda_{1}=\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), & \Lambda_{2}=\left(\begin{array}{lll}
0 & 1 & 2 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), & \Lambda_{3}=\left(\begin{array}{lll}
0 & 1 & 2 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right), \\
\Lambda_{4}=\left(\begin{array}{lll}
0 & 2 & 2 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), & \Lambda_{5}=\left(\begin{array}{lll}
0 & 2 & 2 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right) .
\end{array}
$$

Since $\Lambda_{3} \simeq \Lambda_{4}$, we are done.
Theorem 10. Any $(0,1,2)$-reduced tiled order $\Lambda=\left(\lambda_{i j}\right)_{1 \leq i, j \leq 3}$ with $i(\lambda) \leq 5$ is isomorphic to a $(0,1)$-tiled order .

Proof. Let Λ be an order which satisfies hypothesis of the theorem and $r=\left|\left\{\lambda_{i j} \in \Lambda \mid \lambda_{i j}=2\right\}\right|$ therefore if $r=0$, then Λ is a $(0,1)$-tiled order. Actually, if $i(\Lambda)=3$, then $r=0$ and Λ is a $(0,1)$-tiled order.

If $i(\Lambda)=4$, then $r \in\{0,1\}$. If $i, j, k \in\{1,2,3\}$ and $r=1$, thus if $\lambda_{k l}=2$, then the remaining entries belong to $\{0,1\}$. Since $\lambda_{l i}+\lambda_{i k} \geq \lambda_{l k}$, $\lambda_{l i}=\lambda_{i k}=1$ the other entries are null, a $(0,1)$-tiled order can be received if we subtract 1 to the row l and simultaneously add 1 to the column l of the matrix Λ.

If $i(\Lambda)=5$, then $r \leq 2$, therefore, if $r=1$, then it is possible to assume $r=1$ and $\lambda_{l k}=2$, thus $\lambda_{l i}=\lambda_{i k}=1$. Since $\lambda_{k l}=0$, either $\lambda_{k i}=1$ or $\lambda_{i l}=1$, if $\lambda_{k i}=1$, then Λ can be transformed to a $(0,1)$-tiled order by subtracting 1 to the row l and adding 1 to the column l. If $\lambda_{i l}=1$, then a $(0,1)$-tiled order can be obtained from Λ by subtracting 1 to the column k and adding 1 to row k.

Finally, if $r=2$, then different options arise, for instance, a $(0,1)$-tiled order isomorphic to Λ can be obtained if all entries with value 2 belong to the same row or column. On the other hand, if entries with value 2 belong to
different rows or columns, then a $(0,1)$-tiled order can be received from Λ via t-admissible transformations. For instance, if $\lambda_{i l}=\lambda_{k i}=2$, then either $\lambda_{k l}=1$ or $\lambda_{l k}=1$. Note that, if $\lambda_{k l}=1$, then Λ is not a tiled order, on the other hand, if $\lambda_{l k}=1$, then Λ is isomorphic to a triangular tiled order which is a (0,1) -tiled order as a consequence of Theorem 9 . Since same arguments can be used to all the other cases, we are done.

The following theorem concerns tiled orders with $i(\Lambda)=6$.
Theorem 11. Every $(0,1,2)$-tiled order $\Lambda=\left(\lambda_{i j}\right)_{1 \leq i, j \leq 3}$ with $i(\Lambda)=6$ has a suitable pair of points (k, l) such that $\Lambda_{(k, l)}^{\prime}$ is isomorphic to a $(0,1)$-tiled order.

Proof. Let $\Lambda=\left(\lambda_{i j}\right)_{1 \leq i, j \leq 3}$ be an order which satisfies the proposed hypothesis and $r=\left|\left\{\lambda_{i j} \in \Lambda \mid \lambda_{i j}=0, i \neq j\right\}\right|$. It is easy to see that $r \leq 3$, so we must to prove that in any case it is possible to find a suitable pair of points with the property (a) mentioned in Lemma 4.

Let us suppose that $\lambda_{m l} \neq \lambda_{m n}+\lambda_{n l}$ for any $m, n, l \in\{1,2,3\}$.
If $r=1$, then we receive a contradiction. If $r=2$, then two entries of Λ are 2 's and the other two are 1 's. If $\lambda_{l m}=0$, then $\lambda_{m n} \neq 0$. If $\lambda_{m n}=1$, then $\Lambda \simeq\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$. If $\lambda_{m n}=2$, then $\lambda_{\text {ln }} \in\{0,1\}$ which is a contradiction. The case $r=3$ defines a tiled order with three entries equal to 2 which contradicts the definition of Λ.

The following results concern $(0,1,2)$-tiled orders with $i(\Lambda) \geq 6$.
Theorem 12. Any $(0,1,2)$-tiled order $\Lambda=\left(\lambda_{i j}\right)_{1 \leq i, j \leq 3}$ with $8 \leq i(\Lambda)$ ≤ 11 has a suitable pair of points (k, l) such that $\Lambda_{(k, l)}^{\prime}$ is not a $(0,1)$-tiled order.

Proof. If Λ is a $(0,1,2)$-tiled order with $i(\Lambda)<12$ and width $w(\Lambda)=3$, then the properties of the corresponding poset of projective modules ensure the existence of a suitable pair of points (k, l) for differentiation.

If (k, l) satisfies condition (a) of Lemma 4, then $i\left(\Lambda_{(k, l)}^{\prime}\right) \geq 7$ by Theorem 5, therefore $\Lambda_{(k, l)}^{\prime}$ cannot be a $(0,1)$-order.

Now let us suppose that Λ has a pair of points (k, l) which satisfies condition (b) of Lemma 4 but does not satisfy condition (a). Therefore, the following arguments prove that the matrix B defined as in (3) is a tiled order such that $B=\Lambda_{(k, l)}^{\prime}$.

Note that $\lambda_{k m}+\lambda_{m l}=\lambda_{k l}+1$ with $(k, m, l) \in\{1,2,3\}, l \neq k \neq m \neq l$ since (k, l) is a suitable pair of points. Furthermore, $\lambda_{i p}+\lambda_{p j}>\lambda_{i j}$ for all $i, j, p \in\{1,2,3\}$ provided that there is not a suitable pair of points which satisfies condition (a) of Lemma 4.

Formulas (3) allow to define $B=\left(b_{i j}\right)$ in such a way that:

$$
\begin{align*}
& b_{i i}=0 \text { for all } 1 \leq i \leq 4, \\
& b_{k m}=\lambda_{k m}, \\
& b_{k l}=\lambda_{k l}-1, \\
& b_{k 4}=\lambda_{k m}-1, \\
& b_{m k}=b_{4 k}=\lambda_{m k}, \\
& b_{m l}=\lambda_{m l}-1, \\
& b_{m 4}=0, \\
& b_{l k}=\lambda_{l k}, \\
& b_{l m}=b_{l 4}=\lambda_{l m}, \\
& b_{4 m}=1, \\
& b_{4 l}=\lambda_{m l}, \tag{4}
\end{align*}
$$

thus $b_{r n}+b_{n q} \geq b_{r q}$ for all $r, n, q \in\{k, m, l, 4\}$. Therefore, B is a tiled order and $B=\Lambda_{(k, l)}^{\prime}$. In particular, we have that

$$
i\left(\Lambda_{(k, l)}^{\prime}\right)=2 i(\Lambda)-\left(2+\lambda_{k l}+\lambda_{l k}\right)
$$

If $i(\Lambda)=8$, then Λ is isomorphic to the tiled order

$$
\left(\begin{array}{lll}
0 & 2 & 2 \\
1 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

and the derived tiled order is isomorphic to

$$
\left(\begin{array}{llll}
0 & 1 & 2 & 1 \\
1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0
\end{array}\right)
$$

whose associated poset of projective modules $\mathcal{P}\left(\Lambda^{\prime}\right)$ is not a cardinal sum of a finite poset, thus it is not a $(0,1)$-tiled order.

If $i(\Lambda)=9$, then we take into account that $\lambda_{k l}+1=\lambda_{k m}+\lambda_{m l}$ to see that $\lambda_{k l} \neq 0$, otherwise we have that $1=\lambda_{k m}+\lambda_{m l}$ and $\lambda_{m k}+\lambda_{l k}+\lambda_{l m}$ $=8$ which cannot be possible.

If $\lambda_{k l}=1$, then $2=\lambda_{k m}+\lambda_{m l}$ and $\lambda_{m k}+\lambda_{l k}+\lambda_{l m}=6$, thus $\lambda_{m k}=$ $\lambda_{l k}=\lambda_{l m}=2$, therefore $i\left(\Lambda_{(k, l)}^{\prime}\right)=2(9)-(2+1+2)=13$.

If $\lambda_{k l}=2$, then $3=\lambda_{k m}+\lambda_{m l}$ and $\lambda_{m k}+\lambda_{l k}+\lambda_{l m}=4$. Since $\lambda_{l k}<\lambda_{l m}+\lambda_{m k}, \lambda_{l k}<4-\lambda_{l k}$, that is, $\lambda_{l k}<2$. Note that $\lambda_{l k}=0$ implies $\lambda_{m k}=\lambda_{l m}=2$ and $\lambda_{l k}+\lambda_{k m}>\lambda_{l m}$ implies $\lambda_{k m}>2$, a contradiction. Therefore, $\lambda_{l k}=1$ and again $i\left(\Lambda_{(k, l)}^{\prime}\right)=2(9)-(2+2+1)=13$. We conclude that $i\left(\Lambda_{(k, l)}^{\prime}\right)=13$ and that $\Lambda_{(k, l)}^{\prime}$ is not a $(0,1)$-order.

Finally, if $i(\Lambda) \geq 10$, then we have $\lambda_{k l}+\lambda_{l k} \leq 4$, thus $i\left(\Lambda_{(k, l)}^{\prime}\right) \geq$ $2(10)-(6)=14$ therefore $\Lambda_{(k, l)}^{\prime}$ is not a $(0,1)$-tiled order.

As an example, the following are $(0,1,2)$-tiled orders with $i(\Lambda) \in\{7,8\}$ whose derivative is not a $(0,1)$-tiled order:

$$
\begin{align*}
& \Lambda=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 1 \\
2 & 2 & 0
\end{array}\right), \\
& \Lambda_{(1,3)}^{\prime}=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 1 \\
2 & 2 & 0
\end{array}\right), \\
& \Delta=\left(\begin{array}{lll}
0 & 0 & 0 \\
2 & 0 & 2 \\
2 & 2 & 0
\end{array}\right), \\
& \Delta_{(2,3)}^{\prime}=\left(\begin{array}{lll}
0 & 0 & 0 \\
2 & 0 & 1 \\
2 & 2 & 0
\end{array}\right), \\
& \Delta_{(3,2)}^{\prime \prime}=\left(\Delta_{(2,3)}^{\prime}\right)_{(3,2)}=\left(\begin{array}{lll}
0 & 0 & 0 \\
2 & 0 & 1 \\
2 & 1 & 0
\end{array}\right) . \tag{5}
\end{align*}
$$

In this case, $(1,3)$ is a suitable pair of points of the tiled order Λ with $i(\Lambda)=7$, and $\Lambda_{(1,3)}^{\prime}$ is not a $(0,1)$-tiled order. On the other hand, $(2,3)$ and $(3,2)$ are suitable pairs of points of the tiled order Δ with $i(\Delta)=8$, note that, $\Delta_{(2,3)}^{\prime}$ is not a $(0,1)$-tiled order but $\Delta_{(3,2)}^{\prime \prime} \simeq\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$ which is a (0,1)-tiled order.

References

[1] M. Hazewinkel, N. Gubareni and V. V. Kirichenko, Algebras, Rings and Modules, 1st ed., Vol. 2, Springer, 2007.
[2] V. V. Kirichenko, A. V. Zelensky and V. N. Zhuravlev, Exponent matrices and their quivers, Buletinul Academiei de Şințe a Republicii Moldova Matematica 44(1) (2004), 57-66.
[3] V. V. Kirichenko, A. V. Zelensky and V. N. Zhuravlev, Exponent matrices and tiled orders over discrete valuation rings, Internat. J. Algebra Comput. 5(5-6) (2005), 997-1012.
[4] M. M. Kleiner, Partially ordered sets of finite type, Zap. Nauchn. Semin. LOMI 28 (1972), 32-41 (in Russian); English transl., J. Sov. Math. 3(5) (1975), 607-615.
[5] L. A. Nazarova and A. V. Roiter, Representations of partially ordered sets, Zap. Nauchn. Semin. LOMI 28 (1972), 5-31 (in Russian); English transl., J. Sov. Math. 3 (1975), 585-606.
[6] L. A. Nazarova and A. G. Zavadskij, Partially ordered sets of finite growth, Function. Anal. i Prilozhen. 19(2) (1982), 72-73 (in Russian); English transl., Functional. Anal. Appl. 16 (1982), 135-137.
[7] W. Rump, Two point differentiation for general orders, J. Pure Appl. Algebra 153 (2000), 171-190.
[8] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Gordon and Breach, London, 1992.
[9] R. B. Tarsy, Global dimension of orders, Trans. Amer. Math. Soc. 1 (1970), 335-340.
[10] A. G. Zavadskij, The structure of orders all of whose representations are completely decomposable, Math. Notes 13(2) (1973), 325-335.
[11] A. G. Zavadskij, Differentiation with respect to a pair of points, Matrix Problems, Collect. Sci. Works. Kiev, 1977, pp. 115-121 (in Russian)
[12] A. G. Zavadskij and V. V. Kirichenko, Semimaximal rings of finite type, Mat. Sb. 103 (1977), 323-345 (in Russian).
[13] A. G. Zavadskij and U. S. Revitskaya, A matrix problem over a discrete valuation ring, Mat. Sb. 190(6) (1999), 59-82 (in Russian); English transl., Sb. Math. 6 (1999), 835-858.
[14] A. G. Zavadskij, On two point differentiation and its generalization, Algebraic Structures and their Representations, AMS, Contemporary Math. Ser. 376, 2005.

