ON THE REDUCTION OF SOME TILED ORDERS

ISSN: 0972-5555

Agustín Moreno Cañadas, Robinson-Julian Serna* and Cesar-Ivan Espinosa

Department of Mathematics National University of Colombia Colombia

e-mail: amorenoca@unal.edu.co

cesarivan.espinosa@uptc.edu.co

*Department of Mathematics UPTC-Tunja Colombia

e-mail: robinson.serna@uptc.edu.co

Abstract

In this paper, a Zavadskij's differentiation algorithm is used to reduce some tiled orders to (0, 1)-tiled orders.

1. Introduction

A tiled order over a discrete valuation ring is a Noetherian prime semiperfect semidistributive ring Λ with nonzero Jacobson radical. One of the main problems regarding this kind of rings (i.e., of the integral representation theory) consists of determining the additive category latt Λ of all right Λ -modules, its representation type and the corresponding Auslander-

Received: November 23, 2014; Accepted: January 5, 2015

2010 Mathematics Subject Classification: 16G20, 16G60, 16G30.

Keywords and phrases: algorithm of differentiation, exponent matrix, finite representation

type, lattice, poset, tiled order, (0, 1, 2, ..., n)-tiled order.

Communicated by K. K. Azad

Reiten quiver $\Gamma(\Lambda)$. The tiled order is said to be of *finite lattice type* if latt Λ has only finitely many isomorphism classes of indecomposable objects [1-3].

Classification problems of tiled orders can be tackled by using poset representation theory introduced by Nazarova and Roiter in 1972. Given an algebraically closed field k and a poset \mathcal{P} , an object U of the additive category rep \mathcal{P} of k-linear representations of \mathcal{P} is a system of k-vector spaces of the form:

$$U = (U_0; U_k | x \in \mathcal{P}),$$

where $U_x \subseteq U_y$ provided $x \le y$.

The main tools in poset representation theory are the algorithms of differentiation, for instance the algorithm of differentiation with respect to a maximal point introduced by Nazarova and Roiter in [5] allowed to Kleiner to classify posets of finite type representation type in [4]. Furthermore, posets of finite growth representation type were classified in [6] by using the algorithm of differentiation with respect to a suitable pair of points DI introduced by Zavadskij in [11], defined in such a way that if a poset (\mathcal{P}, \leq) with:

$$\mathcal{P} = a^{\nabla} + b_{\Lambda} + C,$$

where $a^{\nabla} = \{x \in \mathcal{P} | a \leq x\}$, $b_{\Delta} = \{x \in \mathcal{P} | x \leq b\}$ and $C = c_1 < c_2 < \cdots < c_n$ is a chain (eventually empty), then the derived poset $\mathcal{P}'_{(a,b)}$ with respect to the pair of points (a,b) is a subposet of the modular lattice generated by \mathcal{P} such that:

$$\mathcal{P}'_{(a,b)} = a^{\nabla} + C^{-} + C^{+} + b_{\Delta},$$

where $C^+ = \{c_i^+ | c_i^+ = a + c_i\}$ and $C^- = \{c_i^- | c_i^- = bc_i\}$ are chains with $c_i^- < c_i^+$ for all $1 \le i \le n$.

The derivation functor between the corresponding categories of representations $D_{(a,b)}$: rep $\mathcal{P} \to \operatorname{rep} \mathcal{P}'_{(a,b)}$ is defined as follows [5, 8, 11, 14]:

$$U_0' = U_0,$$

$$U'_{c_i^+} = U_a + U_{c_i},$$

$$U'_{c_i^-} = U_b \cap U_{c_i},$$

 $U'_x = U_x$ for the remaining points $x \in \mathcal{P}$,

$$\varphi' = \varphi : U_0 \to V_0$$
 for any linear map-morphism $\varphi \in \operatorname{Hom}_k(U, V)$. (1)

According to Rump [7], the idea of this two point algorithm arose from the Zavadskij's matrix algorithm which forms the essential tool in the characterization of representation-finite tiled orders. Further, Zavadskij and Revitskaya generalized representations of tiled orders and finite posets over a field T by introducing a mixed flat matrix problem over a pair of algebras named algebras of transformation [13]. They proved a bounded module criterion which generalizes criteria of finite representation type for posets and tiled orders. Soon afterwards, Rump generalized in [7] those results obtained by Kirichenko and Zavadskij to general orders to do that, instead of a suitable pair of points (a, b), he considered a monomorphism $u: I \hookrightarrow P$ between Λ -lattices with kP = kI. For such u, Rump associated to each Λ lattice E a pair of Λ -lattices $\partial_u E = \begin{pmatrix} E^+ \\ E^- \end{pmatrix}$ such that $E_- \subset E \subset E^+$, where

 E_{-} is the largest Λ -sublattice with $f(E_{-}) \subset P$ for each homomorphism

 $f: E \to I$, E^+ is defined dually.

If u is such that $\partial_u P = \partial_u I = \begin{pmatrix} I \\ P \end{pmatrix}$, then Λ^+ is an overorder of Λ and

 $u^*: I^* \hookrightarrow P^*$ induces an overorder Λ^- of Λ . Then it is possible to define the derived order:

$$\partial_u = \begin{pmatrix} \Lambda^+ & \Lambda^+ \Lambda^- \\ \Lambda_- & \Lambda^- \end{pmatrix} \subset M_2(A)$$

of Λ and ∂_u : latt $\Lambda \to \partial_u \Lambda$ becomes a functor.

In this paper, we use an algorithm of differentiation introduced by Zavadskij and Kirichenko in [12] for tiled orders in order to prove which (0, 1, 2)-tiled orders can be reduced to a (0, 1)-tiled order.

This paper is organized as follows: In Section 2, we describe main definitions and notation to be used throughout the work. In Section 3, we give main results describing which (0, 1, 2)-tiled orders can be reduced to (0, 1)-tiled orders.

2. Preliminaries

In this section, we introduce notation and results to be used throughout the paper [1-3, 12].

A field *T* is said to be of *discrete norm or discrete valuation* if it is endowed with a surjective map:

$$v: T \to \mathbb{Z} \cup \{\infty\},\$$

which satisfies the following conditions:

- (a) $v(x) = \infty$ if and only if x = 0,
- (b) v(xy) = v(x) + v(y),
- (c) $v(x + y) \le \min\{v(x), v(y)\}.$

We let \mathbb{O} denote the *normalization ring* of T such that

$$\mathbb{O} = \{ x \in T | v(x) \ge 0 \}.$$

An element $\pi \in \mathbb{O}$ such that $\nu(\pi) = 1$ is a *prime element* of \mathbb{O} . Thus, for each $x \in \mathbb{O}$, we have that:

$$x \in \mathbb{O}$$
 if and only if $x = \varepsilon \pi^m$, for some $m \ge 0$,

where ε is an unit, i.e., $\varepsilon \in \mathbb{O}^*$. Moreover,

 $x \in T$ if and only if $x = \varepsilon \pi^m$, for some $m \in \mathbb{Z}$ and $\varepsilon \in \mathbb{O}^*$.

Ring \mathbb{O} is such that $\mathbb{O} \supset \pi \mathbb{O}$, where $\pi \mathbb{O}$ is the unique maximal ideal, therefore, ideals of \mathbb{O} generate a chain of the form:

$$\mathbb{O}\supset\pi\mathbb{O}\supset\pi^2\mathbb{O}\supset\cdots\supset\pi^m\mathbb{O}\supset\cdots.$$

A tiled order is a subring of the matrix algebra $T^{n \times n}$ with the form:

$$\Lambda = \sum_{i, j=1}^{n} e_{ij} \pi^{\lambda_{ij}} \bigcirc = \begin{bmatrix} \bigcirc & \pi^{\lambda_{12}} \bigcirc & \cdots & \pi^{\lambda_{1n}} \bigcirc \\ \pi^{\lambda_{21}} \bigcirc & \bigcirc & \cdots & \pi^{\lambda_{2n}} \bigcirc \\ \vdots & \vdots & \vdots & \vdots \\ \pi^{\lambda_{n1}} \bigcirc & \pi^{\lambda_{n2}} \bigcirc & \cdots & \bigcirc \end{bmatrix}.$$

That is, Λ consists of all matrices whose entries ij belong to $\pi^{\lambda_{ij}}\mathbb{O}$, in this case, $e_{ij} \in T^{n \times n}$ are unit matrices such that $e_{ij}e_{kl} = \delta_{jk}e_{il}$ ($\delta_{jk} = 1$, if j = k, $\delta_{jk} = 0$ otherwise).

Numbers λ_{ij} are rational integers which satisfy the following conditions:

- (1) $\lambda_{ii} = 0$, for each i,
- (2) $\lambda_{ij} + \lambda_{jk} \ge \lambda_{ik}$ for all i, j, k.

An order Λ is said to be *Morita reduced* or *reduced* if it satisfies the additional condition:

(3) $\lambda_{ij} + \lambda_{ji} > 0$, for each $i \neq j$. In this case, projective modules are pairwise non-isomorphic, that is, in the decomposition of $\Lambda = P_1 \oplus P_2 \oplus \cdots \oplus P_n$ via projective modules (i.e., the rows of Λ) all summands indecomposable projectives are pairwise not isomorphic, i.e., $P_i \not\simeq P_j$ provided $i \neq j$.

Henceforth, we will assume that tiled orders satisfy conditions (1), (2) and (3). According to Kirichenko et al., it means that the matrix Λ is an exponent reduced matrix [2].

We denote $\Lambda = (\lambda_{ij})_{i, j=1,...,n}$, furthermore, note that $\Lambda \subset T^{n \times n} = Q = \Lambda \otimes_{\mathbb{O}} T$, where Q is the rational hull of Λ , $\operatorname{Rad} Q = 0$ and Λ has a unique simple right module (up to isomorphism) denoted $S_R = (T, T, ..., T) = \sum_{i=1}^n e_i T$, where $\{e_i \mid 1 \leq i \leq n\}$ is the standard basis such that $e_i e_{jk} = \delta_{ij} e_k$.

We assume the notation $S_L = (T, T, ..., T)^t$ for left modules.

The *main problem* in this situation consists of describing all finitely generated Λ -modules without \mathbb{O} -torsion which are called *admissible modules*.

A Λ -admissible right module (not null) is said to be *irreducible* if it is a submodule of the unique simple module (up to isomorphism), $S_R = (T, T, ..., T)$. For instance, any module P_i indecomposable projective is a tiled order Λ . Thus,

$$P_i = (\pi^{\lambda_{i1}} \mathbb{O}, \, \pi^{\lambda_{i2}} \mathbb{O}, \, ..., \, \pi^{\lambda_{in}} \mathbb{O})$$

is a finitely generated irreducible module without \mathbb{O} -torsión. Actually, any irreducible right module A has the form:

$$A = (\pi^{\alpha_1} \mathbb{O}, \, \pi^{\alpha_2} \mathbb{O}, \, ..., \, \pi^{\alpha_n} \mathbb{O}),$$

where $\alpha_i + \lambda_{ij} \ge \alpha_j$, $\alpha_i \in \mathbb{Z}$, $1 \le i \le n$.

If A is a A left module, then we have that $\lambda_{ij} + \alpha_j \ge \alpha_i$. Henceforth, we write $A = (\alpha_1, \alpha_2, ..., \alpha_n)$ for a right (left) module $((\alpha_1, \alpha_2, ..., \alpha_n)^t$, respectively).

Note that $A \cong A'$ if and only if $\alpha_i = \alpha_i' + k$, for some $k \in \mathbb{Z}$ and any $1 \le i \le n$.

Irreducible right modules which are contained in a Q-simple module of a Λ -order constitute a lattice $\mathfrak{L}(\Lambda)(\subseteq, \bigcup, \bigcap) = \mathfrak{L}(\Lambda) = \mathfrak{L}_R(\Lambda)$. The

corresponding lattice of irreducible left modules $\mathfrak{L}_L(\Lambda)$ is antiisomorphic to $\mathfrak{L}_R(\Lambda)$, by the correspondence $\sigma:\mathfrak{L}_R(\Lambda)\to\mathfrak{L}_L(\Lambda)$ given by the formula:

$$\sigma(\alpha_1, ..., \alpha_n) = (-\alpha_1, ..., -\alpha_n)^t$$
.

Let $\mathcal{P}(\Lambda) = \mathcal{P}_R(\Lambda)$ be the subposet of $\mathfrak{L}(\Lambda)$ of irreducible projective modules, if $\mathcal{P}(\Lambda) = \mathcal{P}_R(\Lambda)$, then projective modules P_i are called *principals* where:

$$P_i = (\lambda_{i1}, \lambda_{i2}, ..., \lambda_{in}) = P_i^0, \quad P_i^0 \in \mathcal{P}_R(\Lambda).$$

In this poset, there are so many projective modules as infinite chains. In such a case, modules of the form:

$$P_i^k = (\lambda_{i1} + k, ..., \lambda_{in} + k), \quad k \in \mathbb{Z}$$

are projective modules isomorphic to P_i^0 . Therefore,

$$\mathcal{P}(\Lambda) = \{ P_i^k \mid 1 \le i \le n, \ k \in \mathbb{Z} \},\$$

where

$$P_i^k \le P_j^l$$
 if and only if $\begin{cases} k - l \ge \lambda_{ij}, & \mathcal{P}_L(\Lambda), \\ k - l \ge \lambda_{ji}, & \mathcal{P}_R(\Lambda). \end{cases}$

Thus, the poset $\mathcal{P}(\Lambda)$ is infinite, periodic and the sum of n chains with the form $\{P_i^k | 1 \le i \le n, k \in \mathbb{Z}\}$, with width $w(\mathcal{P}(\Lambda)) \le n$.

The map $\sigma: \mathcal{P}_R(\Lambda) \to \mathcal{P}_L(\Lambda)$, given by $\sigma(P_i^k) = P_i^{-k}$ is a natural poset antiisomorphism, thus the pair $\{\mathbb{O}, \mathcal{P}(\Lambda)\}$ defines the tiled order Λ up to isomorphism, in the sense that

$$\Lambda \cong \Lambda'$$
 if and only if pairs $\{\mathbb{O}, \mathbb{P}(\Lambda)\} \cong \{\mathbb{O}', \mathbb{P}(\Lambda')\}$.

That is, $\mathbb{O} \simeq \mathbb{O}'$ and $\mathcal{P}(\Lambda) \simeq \mathcal{P}(\Lambda')$ which means that there exists a poset isomorphism $\phi: \mathcal{P}(\Lambda) \to \mathcal{P}(\Lambda')$ such that

$$A \simeq B$$
 if and only if $\varphi(A) \simeq \varphi(B)$,

 φ preserves isomorphisms, thus Λ and Λ' are Morita-equivalents.

In particular, we have the following result proved by Zavadskij in [10]:

Theorem 1. Two orders Λ and Λ' are isomorphic if the corresponding exponent matrices (λ_{ij}) and (λ'_{ij}) can be turned into each other with the help of the following admissible t-transformations:

- (1) To add an integer n to each entry of a given row i and simultaneously subtract n to each entry of the column i.
 - (2) To transpose simultaneously rows i and j and columns i and j.

The following is the finite type representation type for tiled orders introduced by Zavadskij and Kirichenko in [12].

Theorem 2. A tiled order Λ is of finite representation type if and only if $\mathfrak{P}(\Lambda) \not\supset K_1, ..., K_5$, where

Figure 1

Often, posets K_1 , ..., K_5 are called the *Kleiner's critical*.

For $m \ge 1$, a (0, 1, 2, ..., m)-tiled order is a tiled order $\Lambda = (\lambda_{ij})$, $1 \le i, j \le n$, where $\lambda_{ij} \in \{0, 1, 2, ..., m\}$. In particular,

If $\Lambda = (\lambda_{ij})$ is a (0, m)-tiled order, then Λ has associated a finite poset $(\mathfrak{R}, \leq) = \mathfrak{R}(\Lambda) = (\{1, 2, ..., n\}, \leq)$, where

$$i \le j$$
 if and only if $\lambda_{ij} = 0$.

We let $\Lambda(m, Q)$ denote the unique (0, m)-tiled order $\Lambda = (\lambda_{ij})$ such that $\Re(\Lambda(m, Q)) = Q$, where Q is a finite poset, that is, if $Q = \{1, 2, ..., n\}$, then

$$\lambda_{ij} = \begin{cases} 0, & \text{if } i \leq j, \\ m, & \text{if } j < i. \end{cases}$$

In [12], it is proved that there is a bijective correspondence between isomorphism classes of representations of a finite poset Q over a quotient ring $\overline{\mathcal{O}_m} = \mathcal{O}/\pi^m\mathcal{O}$ (where \mathcal{O} is a ring of discrete valuation, π is a prime element) and isomorphism classes of admissible modules over a tiled order $\Lambda = \Lambda(m, Q \cup \{*\})$, where * is an additional maximal point with x < * for all $x \in Q$. Moreover, we have the following result.

Theorem 3. For a finite poset Q, the following identities hold:

- (a) Q is of finite representation type over the ring $\overline{\mathcal{O}_m}$, $m \ge 1$.
- (b) The corresponding tiled order $\Lambda(m,Q \cup *)$ is of finite representation type.
- (c) The infinite periodic poset $\mathcal{P}(\Lambda)$ does not contain the critical $K_1, ..., K_5$.
 - (d) Q has not as a subposet one of the following lists.

Figure 2

Theorem 2 was proved by Zavadskij and Kirichenko in [12] by using an algorithm of differentiation (for tiled orders) with respect to a suitable pair of points introduced by Zavadskij. The following lemma allows to define such an algorithm.

Lemma 4. If Λ is a (0, 1, 2, ..., n)-tiled order, and $\mathfrak{P}(\Lambda)$ does not contain as a subposet the critical posets (1, 1, 1, 1) and (2, 2, 2), then there is a pair of indices (k, l) which satisfies either condition (a) or condition (b):

- (a) $\lambda_{ki} + \lambda_{il} = \lambda_{kl}$ for all i.
- (b) There exists an index m such that $\lambda_{ki} + \lambda_{il} = \lambda_{kl}$ and $\lambda_{km} + \lambda_{ml} = \lambda_{kl} + 1$ for all $m \neq i$.

Note that, if $B = (b_{ij}) \in M_n(\mathbb{Z})$ is such that $b_{ii} = 0$ for any i and for values $i_1, i_2, ..., i_n \in \{1, 2, ..., n\}$, we have that

$$b_{i_1 i_2} + b_{i_2 i_3} + \dots + b_{i_n i_1} \ge 0.$$
(2)

Matrix $\Lambda = (\lambda_{ij})$ generated by B is a tiled order such that:

$$\lambda_{ij} = \min_{i_2, i_3, \dots, i_n} \{ b_{i_1 i_2} + b_{i_2 i_3} + \dots + b_{i_n j} \}.$$

If Λ is a reduced tiled order and $k \neq l$ with $k, l \geq 1$, then we let $\Lambda^-_{(k,l)}$ denote the ring generated by $B = (b_{ij})$ with $b_{kl} = \lambda_{kl} - 1$ and $b_{ij} = \lambda_{ij}$ for $(i, j) \neq (k, l)$ entries of this *generation matrix* satisfies formula (2).

A pair of points (k, l), $k \neq l$ is said to be *suitable* for differentiation, if it satisfies one of the conditions (a) or (b) in Lemma 4. The *derived ring* $\Lambda'_{(k,l)}$ is defined in such a way that:

- (1) $\Lambda'_{(k,l)} = \Lambda_{(k,l)}^{-}$ if the pair (k, l) satisfies condition (a) in Lemma 4.
- (2) If the pair (k, l) satisfies condition (b) in Lemma 4, then $\Lambda'_{(k, l)}$ is generated by matrix $B = (b_{ij})_{1 \le i, j \le n}$ with m' = n + 1 and

$$b_{kl} = \lambda_{kl} - 1;$$
 $b_{ml} = \lambda_{ml} - 1;$ $b_{km'} = \lambda_{km} - 1,$
 $b_{m'm} = 1;$ $b_{m'm'} = 0,$
 $b_{m'j} = \lambda_{mj};$ for $j \neq m, m';$ $b_{im'} = \lambda_{im}$ for $i \neq k, m',$
 $b_{ij} = \lambda_{ij}$ if $i, j \neq m';$ and $(i, j) \neq (k, l), (m, l).$ (3)

The following result describes the derivative of some reduced tiled orders.

Theorem 5. The generation matrix is the derivative of a reduced tiled order $\Lambda = (\lambda_{i,j})_{1 \leq i,j \leq 3}$ with $\lambda_{ki} + \lambda_{il} = \lambda_{kl}$ for all i.

Proof. It suffices to prove that the matrix obtained by subtract 1 to the entry (k, l) of Λ is a tiled order.

It is clear that $\lambda_{ii} = 0$, inequality (2) must to be verified if the entry $\lambda_{kl} - 1$ is included in the generation matrix. Thus, we have three cases:

- (i) Since the pair (k, l) is a suitable pair of points, $\lambda_{ki} + \lambda_{il} = \lambda_{kl}$, therefore, $\lambda_{ki} + \lambda_{il} \ge \lambda_{kl} 1$.
- (ii) Since Λ is reduced $\lambda_{li} + \lambda_{il} \ge 1$, $\lambda_{kl} + \lambda_{li} + \lambda_{il} \ge 1 + \lambda_{kl}$ and $\lambda_{kl} + \lambda_{li} + \lambda_{kl} \lambda_{ki} \ge 1 + \lambda_{kl}$, thus $\lambda_{li} + \lambda_{kl} 1 \ge \lambda_{ki}$.
- (iii) Inequality $\lambda_{ik} + \lambda_{kl} 1 \ge \lambda_{il}$ is obtained by using arguments from (ii).

For (0, 1)-tiled orders, we have the following result:

Theorem 6. A (0, 1)-tiled order is of finite (tame, finite growth, one parameter, etc.) representation type if the poset $\Re(\Lambda)$ is.

Remark 7. Up to for the finite representation type case, Theorem 6 is not true for arbitrary (0, n)-tiled orders, therefore one of the main problems regarding (0, n)-tiled orders consists of establishing for n > 1 which orders

satisfy conditions described in such theorem. To give some advances to this problem, we prove that some (0, n)-tiled orders can be reduced to (0, 1)-tiled orders via differentiation.

2.1. The matrix problem

If A is a Λ -not null right admissible module, then the submodule $A_i = Ae_{ii}$ is said to be a \mathbb{O} -net. Therefore, it is possible to associate to the module A a system of the form $\mathbb{S}_A = (V; A_1, ..., A_n)$, where V is a finite dimensional T-vector space $(\dim_T V = d)$, further $A_i \subset V$ is a complete \mathbb{O} -net for each i, i.e., the rank of A_i as a \mathbb{O} -free module equals d. Furthermore,

$$A_i \pi^{\lambda_{ij}} \subset A_j$$
 for all i, j .

Thus, two admissible Λ -modules $A \to \mathbb{S}_A = (V; A_1, ..., A_n)$ and $A' \to \mathbb{S}'_A = (V'; A'_1, ..., A'_n)$ are isomorphic if and only if there exists a T-isomorphism, $\varphi: V \to V'$ such that $\varphi(A_i) = A'_i$ for all i. Thus, the problem of classifying right admissible Λ -modules is equivalent to the problem of classifying system of the type $(V; A_1, ..., A_n)$. The corresponding matrix problem is defined in such a way that if an admissible right Λ -module A which has associated a system of the form $\mathbb{S}_A = (V; A_1, ..., A_n)$, where A_i is a \mathbb{O} -net, then a matrix M_A is assigned to \mathbb{S}_A :

where column of each stripe M_i consists of coordinates of $\mathbb O$ -generators of the net A_i with respect to fixed basis of V modulo the subnet $\underline{A_i} = \sum_{j \neq i} A_j \pi^{\lambda_{ji}}$. The following are the admissible transformations which define equivalent matrices:

(1) T-elementary transformations of rows of the whole matrix M_A .

- (2) \mathbb{O} -elementary transformations of columns within each stripe M_i .
- (3) Additions of columns of type $M_j + M_i \pi^{\lambda_{ij}} \mathbb{O} \to M_j$.

3. Main Results

In this section, we use the algorithm of differentiation with respect to a suitable pair of points for tiled orders in order to reduce some (0, 2)-tiled orders to (0, 1)-orders.

For a given exponent matrix Λ , we let $i(\Lambda)$ denote the index of Λ in such a way that:

$$i(\Lambda) = \sum_{1 \le i, j \le n} \lambda_{ij}.$$

Note that if Λ is a (0, 1)-tiled order, then $\frac{n(n-1)}{2} \le i(\Lambda) \le n(n-1)$. Furthermore, $\Lambda \simeq \Lambda'$ implies $i(\Lambda) = i(\Lambda')$ as a consequence of Theorem 1.

The following result concerns (0, 1)-tiled orders.

Theorem 8. The following is a complete list of representatives of isomorphic classes of (0, 1)-reduced tiled orders $\Lambda = (\lambda_{ij})_{1 \le i, j \le 3}$:

$$\Lambda_{1} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \quad \Lambda_{2} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \\
\Lambda_{3} = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad \Lambda_{4} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Proof. The associated poset $\mathcal{P}(\Lambda)$ of the (0,1)-tiled order Λ is an infinite ordinal sum of copies of $\mathfrak{R}(\Lambda)$, conversely the corresponding (0,1)-tiled order $\Lambda = (\lambda_{ij})_{1 \leq i, j \leq 3}$ associated to \mathfrak{R} is such that

$$\lambda_{ij} = \begin{cases} 0, & \text{if } i \leq j, \\ 1, & \text{if } j < i. \end{cases}$$

Up to isomorphism and antiisomorphism, the only possibilities for poset $\mathfrak{R}(\Lambda)$ are

Figure 3

which have associated orders Λ_1 , ..., Λ_4 .

Theorem 9. The following is a complete list of representatives of isomorphic classes of (0, 1, 2)-reduced tiled orders $\Lambda = (\lambda_{ij})_{1 \le i, j \le 3}$ with $\lambda_{ij} = 0$ if $j \le i$:

$$\Lambda_1 = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad \Lambda_2 = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix},$$

$$\Lambda_3 = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}, \quad \Lambda_4 = \begin{pmatrix} 0 & 2 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}.$$

Proof. Let $\Lambda = \begin{pmatrix} 0 & \lambda_{12} & \lambda_{13} \\ 0 & 0 & \lambda_{23} \\ 0 & 0 & 0 \end{pmatrix}$ be a (0, 1, 2)-reduced tiled order. Then

 $\lambda_{ij} \neq 0$ for all i < j, thus:

- (1) If $\lambda_{13} = 1$, then $\lambda_{12} = \lambda_{23} = 1$.
- (2) If $\lambda_{13} = 2$, then pair of numbers

$$(\lambda_{12}, \lambda_{23}) \in \{(1, 1), (1, 2), (2, 1), (2, 2)\},\$$

thus the corresponding reduced exponent matrices are:

$$\begin{split} &\Lambda_1 = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad \Lambda_2 = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad \Lambda_3 = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}, \\ &\Lambda_4 = \begin{pmatrix} 0 & 2 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad \Lambda_5 = \begin{pmatrix} 0 & 2 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}. \end{split}$$

Since $\Lambda_3 \simeq \Lambda_4$, we are done.

Theorem 10. Any (0, 1, 2)-reduced tiled order $\Lambda = (\lambda_{ij})_{1 \le i, j \le 3}$ with $i(\lambda) \le 5$ is isomorphic to a (0, 1)-tiled order.

Proof. Let Λ be an order which satisfies hypothesis of the theorem and $r = |\{\lambda_{ij} \in \Lambda | \lambda_{ij} = 2\}|$ therefore if r = 0, then Λ is a (0, 1)-tiled order. Actually, if $i(\Lambda) = 3$, then r = 0 and Λ is a (0, 1)-tiled order.

If $i(\Lambda) = 4$, then $r \in \{0, 1\}$. If $i, j, k \in \{1, 2, 3\}$ and r = 1, thus if $\lambda_{kl} = 2$, then the remaining entries belong to $\{0, 1\}$. Since $\lambda_{li} + \lambda_{ik} \ge \lambda_{lk}$, $\lambda_{li} = \lambda_{ik} = 1$ the other entries are null, a $\{0, 1\}$ -tiled order can be received if we subtract 1 to the row l and simultaneously add 1 to the column l of the matrix Λ .

If $i(\Lambda) = 5$, then $r \le 2$, therefore, if r = 1, then it is possible to assume r = 1 and $\lambda_{lk} = 2$, thus $\lambda_{li} = \lambda_{ik} = 1$. Since $\lambda_{kl} = 0$, either $\lambda_{ki} = 1$ or $\lambda_{il} = 1$, if $\lambda_{ki} = 1$, then Λ can be transformed to a (0, 1)-tiled order by subtracting 1 to the row l and adding 1 to the column l. If $\lambda_{il} = 1$, then a (0, 1)-tiled order can be obtained from Λ by subtracting 1 to the column k and adding 1 to row k.

Finally, if r = 2, then different options arise, for instance, a (0, 1)-tiled order isomorphic to Λ can be obtained if all entries with value 2 belong to the same row or column. On the other hand, if entries with value 2 belong to

different rows or columns, then a (0, 1)-tiled order can be received from Λ via t-admissible transformations. For instance, if $\lambda_{il} = \lambda_{ki} = 2$, then either $\lambda_{kl} = 1$ or $\lambda_{lk} = 1$. Note that, if $\lambda_{kl} = 1$, then Λ is not a tiled order, on the other hand, if $\lambda_{lk} = 1$, then Λ is isomorphic to a triangular tiled order which is a (0, 1)-tiled order as a consequence of Theorem 9. Since same arguments can be used to all the other cases, we are done.

The following theorem concerns tiled orders with $i(\Lambda) = 6$.

Theorem 11. Every (0, 1, 2)-tiled order $\Lambda = (\lambda_{ij})_{1 \le i, j \le 3}$ with $i(\Lambda) = 6$ has a suitable pair of points (k, l) such that $\Lambda'_{(k, l)}$ is isomorphic to a (0, 1)-tiled order.

Proof. Let $\Lambda = (\lambda_{ij})_{1 \le i, j \le 3}$ be an order which satisfies the proposed hypothesis and $r = |\{\lambda_{ij} \in \Lambda | \lambda_{ij} = 0, i \ne j\}|$. It is easy to see that $r \le 3$, so we must to prove that in any case it is possible to find a suitable pair of points with the property (a) mentioned in Lemma 4.

Let us suppose that $\lambda_{ml} \neq \lambda_{mn} + \lambda_{nl}$ for any $m, n, l \in \{1, 2, 3\}$.

If r=1, then we receive a contradiction. If r=2, then two entries of Λ are 2's and the other two are 1's. If $\lambda_{lm}=0$, then $\lambda_{mn}\neq 0$. If $\lambda_{mn}=1$, then

$$\Lambda \simeq \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}. \text{ If } \lambda_{mn} = 2, \text{ then } \lambda_{ln} \in \{0, 1\} \text{ which is a contradiction.}$$

The case r=3 defines a tiled order with three entries equal to 2 which contradicts the definition of Λ .

The following results concern (0, 1, 2)-tiled orders with $i(\Lambda) \ge 6$.

Theorem 12. Any (0, 1, 2)-tiled order $\Lambda = (\lambda_{ij})_{1 \le i, j \le 3}$ with $8 \le i(\Lambda)$ ≤ 11 has a suitable pair of points (k, l) such that $\Lambda'_{(k, l)}$ is not a (0, 1)-tiled order.

Proof. If Λ is a (0, 1, 2)-tiled order with $i(\Lambda) < 12$ and width $w(\Lambda) = 3$, then the properties of the corresponding poset of projective modules ensure the existence of a suitable pair of points (k, l) for differentiation.

If (k, l) satisfies condition (a) of Lemma 4, then $i(\Lambda'_{(k, l)}) \ge 7$ by Theorem 5, therefore $\Lambda'_{(k, l)}$ cannot be a (0, 1)-order.

Now let us suppose that Λ has a pair of points (k, l) which satisfies condition (b) of Lemma 4 but does not satisfy condition (a). Therefore, the following arguments prove that the matrix B defined as in (3) is a tiled order such that $B = \Lambda'_{(k, l)}$.

Note that $\lambda_{km} + \lambda_{ml} = \lambda_{kl} + 1$ with $(k, m, l) \in \{1, 2, 3\}$, $l \neq k \neq m \neq l$ since (k, l) is a suitable pair of points. Furthermore, $\lambda_{ip} + \lambda_{pj} > \lambda_{ij}$ for all $i, j, p \in \{1, 2, 3\}$ provided that there is not a suitable pair of points which satisfies condition (a) of Lemma 4.

Formulas (3) allow to define $B = (b_{ij})$ in such a way that:

$$b_{ii} = 0$$
 for all $1 \le i \le 4$,
 $b_{km} = \lambda_{km}$,
 $b_{kl} = \lambda_{kl} - 1$,
 $b_{k4} = \lambda_{km} - 1$,
 $b_{mk} = b_{4k} = \lambda_{mk}$,
 $b_{ml} = \lambda_{ml} - 1$,
 $b_{m4} = 0$,
 $b_{lk} = \lambda_{lk}$,
 $b_{lm} = b_{l4} = \lambda_{lm}$,
 $b_{4m} = 1$,
 $b_{4l} = \lambda_{ml}$, (4)

thus $b_{rn} + b_{nq} \ge b_{rq}$ for all $r, n, q \in \{k, m, l, 4\}$. Therefore, B is a tiled order and $B = \Lambda'_{(k,l)}$. In particular, we have that

$$i(\Lambda'_{(k,l)}) = 2i(\Lambda) - (2 + \lambda_{kl} + \lambda_{lk}).$$

If $i(\Lambda) = 8$, then Λ is isomorphic to the tiled order

$$\begin{pmatrix} 0 & 2 & 2 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

and the derived tiled order is isomorphic to

$$\begin{pmatrix} 0 & 1 & 2 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

whose associated poset of projective modules $\mathcal{P}(\Lambda')$ is not a cardinal sum of a finite poset, thus it is not a (0, 1)-tiled order.

If $i(\Lambda) = 9$, then we take into account that $\lambda_{kl} + 1 = \lambda_{km} + \lambda_{ml}$ to see that $\lambda_{kl} \neq 0$, otherwise we have that $1 = \lambda_{km} + \lambda_{ml}$ and $\lambda_{mk} + \lambda_{lk} + \lambda_{lm} = 8$ which cannot be possible.

If $\lambda_{kl} = 1$, then $2 = \lambda_{km} + \lambda_{ml}$ and $\lambda_{mk} + \lambda_{lk} + \lambda_{lm} = 6$, thus $\lambda_{mk} = \lambda_{lk} = \lambda_{lm} = 2$, therefore $i(\Lambda'_{(k,l)}) = 2(9) - (2+1+2) = 13$.

If $\lambda_{kl}=2$, then $3=\lambda_{km}+\lambda_{ml}$ and $\lambda_{mk}+\lambda_{lk}+\lambda_{lm}=4$. Since $\lambda_{lk}<\lambda_{lm}+\lambda_{mk},\ \lambda_{lk}<4-\lambda_{lk}$, that is, $\lambda_{lk}<2$. Note that $\lambda_{lk}=0$ implies $\lambda_{mk}=\lambda_{lm}=2$ and $\lambda_{lk}+\lambda_{km}>\lambda_{lm}$ implies $\lambda_{km}>2$, a contradiction. Therefore, $\lambda_{lk}=1$ and again $i(\Lambda'_{(k,l)})=2(9)-(2+2+1)=13$. We conclude that $i(\Lambda'_{(k,l)})=13$ and that $\Lambda'_{(k,l)}$ is not a (0,1)-order.

Finally, if $i(\Lambda) \ge 10$, then we have $\lambda_{kl} + \lambda_{lk} \le 4$, thus $i(\Lambda'_{(k,l)}) \ge 2(10) - (6) = 14$ therefore $\Lambda'_{(k,l)}$ is not a (0,1)-tiled order.

As an example, the following are (0, 1, 2)-tiled orders with $i(\Lambda) \in \{7, 8\}$ whose derivative is not a (0, 1)-tiled order:

$$\Lambda = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 2 & 2 & 0 \end{pmatrix},$$

$$\Lambda'_{(1,3)} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 2 & 2 & 0 \end{pmatrix},$$

$$\Delta = \begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix},$$

$$\Delta'_{(2,3)} = \begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 1 \\ 2 & 2 & 0 \end{pmatrix},$$

$$\Delta''_{(3,2)} = (\Delta'_{(2,3)})_{(3,2)} = \begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix}.$$
 (5)

In this case, (1, 3) is a suitable pair of points of the tiled order Λ with $i(\Lambda) = 7$, and $\Lambda'_{(1,3)}$ is not a (0, 1)-tiled order. On the other hand, (2, 3) and (3, 2) are suitable pairs of points of the tiled order Δ with $i(\Delta) = 8$, note

that,
$$\Delta'_{(2,3)}$$
 is not a $(0,1)$ -tiled order but $\Delta''_{(3,2)} \simeq \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ which is a $(0,1)$ -tiled order.

References

- [1] M. Hazewinkel, N. Gubareni and V. V. Kirichenko, Algebras, Rings and Modules, 1st ed., Vol. 2, Springer, 2007.
- [2] V. V. Kirichenko, A. V. Zelensky and V. N. Zhuravlev, Exponent matrices and their quivers, Buletinul Academiei de Şinţe a Republicii Moldova Matematica 44(1) (2004), 57-66.
- [3] V. V. Kirichenko, A. V. Zelensky and V. N. Zhuravlev, Exponent matrices and tiled orders over discrete valuation rings, Internat. J. Algebra Comput. 5(5-6) (2005), 997-1012.
- [4] M. M. Kleiner, Partially ordered sets of finite type, Zap. Nauchn. Semin. LOMI 28 (1972), 32-41 (in Russian); English transl., J. Sov. Math. 3(5) (1975), 607-615.
- [5] L. A. Nazarova and A. V. Roiter, Representations of partially ordered sets, Zap. Nauchn. Semin. LOMI 28 (1972), 5-31 (in Russian); English transl., J. Sov. Math. 3 (1975), 585-606.
- [6] L. A. Nazarova and A. G. Zavadskij, Partially ordered sets of finite growth, Function. Anal. i Prilozhen. 19(2) (1982), 72-73 (in Russian); English transl., Functional. Anal. Appl. 16 (1982), 135-137.
- [7] W. Rump, Two point differentiation for general orders, J. Pure Appl. Algebra 153 (2000), 171-190.
- [8] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Gordon and Breach, London, 1992.
- [9] R. B. Tarsy, Global dimension of orders, Trans. Amer. Math. Soc. 1 (1970), 335-340.
- [10] A. G. Zavadskij, The structure of orders all of whose representations are completely decomposable, Math. Notes 13(2) (1973), 325-335.
- [11] A. G. Zavadskij, Differentiation with respect to a pair of points, Matrix Problems, Collect. Sci. Works. Kiev, 1977, pp. 115-121 (in Russian)
- [12] A. G. Zavadskij and V. V. Kirichenko, Semimaximal rings of finite type, Mat. Sb. 103 (1977), 323-345 (in Russian).
- [13] A. G. Zavadskij and U. S. Revitskaya, A matrix problem over a discrete valuation ring, Mat. Sb. 190(6) (1999), 59-82 (in Russian); English transl., Sb. Math. 6 (1999), 835-858.
- [14] A. G. Zavadskij, On two point differentiation and its generalization, Algebraic Structures and their Representations, AMS, Contemporary Math. Ser. 376, 2005.