F M JP Journal of Algebra, Number Theory and Applications
© 2015 Pushpa Publishing House, Allahabad, India
y q'p ) Published Online: April 2015
' 4 http://dx.doi.org/10.17654/JPANTAApr2015_157_176
ALLAIABAD « A . _
EIEEIREEY 1 ime 36, Number 2, 2015, Pages 157-176 ISSN: 0972-5555

ON THE REDUCTION OF SOME TILED ORDERS

Agustin Moreno Cafadas, Robinson-Julian Serna* and
Cesar-lvan Espinosa

Department of Mathematics

National University of Colombia

Colombia

e-mail: amorenoca@unal.edu.co
cesarivan.espinosa@uptc.edu.co

"Department of Mathematics
UPTC-Tunja

Colombia

e-mail: robinson.serna@uptc.edu.co

Abstract

In this paper, a Zavadskij’s differentiation algorithm is used to reduce
some tiled orders to (0, 1)-tiled orders.

1. Introduction

A tiled order over a discrete valuation ring is a Noetherian prime
semiperfect semidistributive ring A with nonzero Jacobson radical. One
of the main problems regarding this kind of rings (i.e., of the integral
representation theory) consists of determining the additive category latt A of
all right A-modules, its representation type and the corresponding Auslander-
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Reiten quiver T'(A). The tiled order is said to be of finite lattice type if latt A
has only finitely many isomorphism classes of indecomposable objects [1-3].

Classification problems of tiled orders can be tackled by using poset
representation theory introduced by Nazarova and Roiter in 1972. Given
an algebraically closed field k£ and a poset P, an object U of the additive
category rep P of k-linear representations of P is a system of k-vector spaces
of the form:

U=Uy Uylxe?),

where U, < U, provided x < y.

The main tools in poset representation theory are the algorithms of
differentiation, for instance the algorithm of differentiation with respect to a
maximal point introduced by Nazarova and Roiter in [5] allowed to Kleiner
to classify posets of finite type representation type in [4]. Furthermore, posets
of finite growth representation type were classified in [6] by using the
algorithm of differentiation with respect to a suitable pair of points DI/

introduced by Zavadskij in [11], defined in such a way that if a poset (P, <)
with:

P=a" + by +C,
where a¥ ={xePla<x}, by ={xeP|x<b}and C=c/<cy<--<c,
is a chain (eventually empty), then the derived poset iP('a b) with respect to

the pair of points (a, b) is a subposet of the modular lattice generated by P
such that:
' \% -
Rap=a +C +C" + by,
where C* ={c¢/ |¢; =a+¢;} and C” ={c; |c; = bc;} are chains with
ci <cf forall1<i<n

The derivation functor between the corresponding categories of

representations D(a, K repP — rep ?(’a b) is defined as follows [5, 8, 11, 14]:
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Ul = Uy,
Ul = Uy + U
U'_=U,NU,,

€
U, = U, for the remaining points x € P,
¢ = :Uy — ¥, for any linear map-morphism ¢ € Homy (U, V). (1)

According to Rump [7], the idea of this two point algorithm arose from
the Zavadskij’s matrix algorithm which forms the essential tool in the
characterization of representation-finite tiled orders. Further, Zavadskij and
Revitskaya generalized representations of tiled orders and finite posets over a
field 7 by introducing a mixed flat matrix problem over a pair of algebras
named algebras of transformation [13]. They proved a bounded module
criterion which generalizes criteria of finite representation type for posets
and tiled orders. Soon afterwards, Rump generalized in [7] those results
obtained by Kirichenko and Zavadskij to general orders to do that, instead of

a suitable pair of points (a, b), he considered a monomorphism u : [ = P

between A-lattices with kP = kI. For such u, Rump associated to each A-

+

lattice £ a pair of A-lattices 0,F = (E j such that E_ — E — E*, where

E_ is the largest A-sublattice with f(E_) < P for each homomorphism
f:E — I, E" is defined dually.

1
If u is such that 0,P =0,1 = (Pj’ then A" is an overorder of A and

u” : I" — P* induces an overorder A~ of A. Then it is possible to define
the derived order:

+ + A=
o, | MM,
A A

of Aand 0, : latt A — 0,A becomes a functor.
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In this paper, we use an algorithm of differentiation introduced by
Zavadskij and Kirichenko in [12] for tiled orders in order to prove which
(0, 1, 2)-tiled orders can be reduced to a (0, 1)-tiled order.

This paper is organized as follows: In Section 2, we describe main
definitions and notation to be used throughout the work. In Section 3, we

give main results describing which (0, 1, 2)-tiled orders can be reduced to

(0, 1)-tiled orders.

2. Preliminaries

In this section, we introduce notation and results to be used throughout
the paper [1-3, 12].

A field T is said to be of discrete norm or discrete valuation if it is

endowed with a surjective map:
v:T — Z U {w},
which satisfies the following conditions:
(@) v(x) = oo ifand only if x = 0,
(b) v(xp) = v(x) + v(»),
(©) v(x + y) < min{v(x), v(»)}.
We let O denote the normalization ring of T such that
O ={x e T|v(x) = 0}.

An element © € O such that v(n) =1 is a prime element of Q. Thus, for

each x € O, we have that:
x € O ifand only if x = en”, for some m > 0,
. . . %
where ¢ is an unit, i.e., € € O . Moreover,

x € T ifand only if x = en”, for some m € Z and & € O".
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Ring O is such that O > 10, where nO is the unique maximal ideal,

therefore, ideals of O generate a chain of the form:

051057205 ---57"0 > ---.

A tiled order is a subring of the matrix algebra 7" with the form:
[0) M2Q ... gMeQ
i , A Aon
Ao e,-jnx’f@=n_@ (O) . n‘@)'
i,j=1 . . . .
Q2o ... (o)

That is, A consists of all matrices whose entries ij belong to © YO, in this
case, e; € I'"" are unit matrices such that ejey =38 ey (8 =1, if

J =k, 8 =0 otherwise).
Numbers A;; are rational integers which satisfy the following conditions:
(1) A;; =0, for each i,
() Ljj + X j 2 hy forall i, j, k.
An order A is said to be Morita reduced or reduced if it satisfies the

additional condition:

(3) Aj +Aj; >0, for each i # j. In this case, projective modules are
pairwise non-isomorphic, that is, in the decomposition of A=H @ P,
®---® P, via projective modules (i.e., the rows of A) all summands
indecomposable projectives are pairwise not isomorphic, ie., F % FP;
provided i # j.

Henceforth, we will assume that tiled orders satisfy conditions (1), (2)

and (3). According to Kirichenko et al., it means that the matrix A is an

exponent reduced matrix [2].
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We denote A = (A , furthermore, note that A < 7" = Q =

U)i,jzl,...,n
A ®q T, where Q is the rational hull of A, RadQ = 0 and A has a unique

simple right module (up to isomorphism) denoted Sp = (7, T, .., T)=
n

Y. ¢T, where {e;|1 <i<nj is the standard basis such that e;e = 3¢y
i=l1

We assume the notation S; = (7, T, ..., T)" for left modules.

The main problem in this situation consists of describing all finitely
generated A-modules without QO -torsion which are called admissible

modules.

A A-admissible right module (not null) is said to be irreducible if it
is a submodule of the unique simple module (up to isomorphism), Sz =
(T, T, .., T). For instance, any module P indecomposable projective is a

tiled order A. Thus,
P = (nx“@, Ttxiz@, oy nx"”@)

is a finitely generated irreducible module without O -torsion. Actually, any

irreducible right module 4 has the form:
A = ("0, n*20, ..., n%r0),

where o; +A; 2 a;,0; € Z,1<i<n.

ij J?

If 4 is a 4 left module, then we have that 7‘1‘] +o; 2 Henceforth,
we write 4 = (0, Gy, ..., o,,) for a right (left) module ((ay, oy, ..., o, ),

respectively).

Note that 4= A" if and only if a; = o + k, for some k € Z and any

1<i<n

Irreducible right modules which are contained in a Q-simple module
of a A-order constitute a lattice £(A)(c, U, N) = £(A) = £xr(A). The
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corresponding lattice of irreducible left modules £; (A) is antiisomorphic to

L£r(A), by the correspondence 6 : £(A) — £;(A) given by the formula:

ooy, oy 0y) = (—0q, ooy —at, )

Let P(A)=Pr(A) be the subposet of £(A) of irreducible projective
modules, if P(A) = Pr(A), then projective modules P, are called principals

where:
0 0
Pi = (7“1'1’ 7\‘1'27 o0y 7“m) = Pl > Pl € CPR(A)'

In this poset, there are so many projective modules as infinite chains. In such
a case, modules of the form:

Pr=(0y+k sk, +k), kel
are projective modules isomorphic to Eo. Therefore,
PA)={P[1<i<n keZ,

where

k—12>2M\
k—12=2M\

FL(A),
Fr(A).

P¥ < P! ifand only if{ v
Ji>
Thus, the poset P(A) is infinite, periodic and the sum of n chains with the

form {PX |1 <i < n, k € Z}, with width w(P(A)) < n.

The map o : Pr(A) > P (A), given by G(P,-k ) = Pi_k is a natural poset
antiisomorphism, thus the pair {O, P(A)} defines the tiled order A up to
isomorphism, in the sense that

A = A’ if and only if pairs {O, P(A)} = {0, P(A")}.

That is, O =~ Q" and P(A)=P(A’) which means that there exists a poset
isomorphism ¢ : P(A) — P(A’) such that
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A= B if and only if ¢(4)= ¢(B),
@ preserves isomorphisms, thus A and A’ are Morita-equivalents.
In particular, we have the following result proved by Zavadskij in [10]:

Theorem 1. Two orders A and A' are isomorphic if the corresponding

exponent matrices (A;;) and (Aj;) can be turned into each other with the
help of the following admissible t-transformations:

(1) To add an integer n to each entry of a given row i and simultaneously

subtract n to each entry of the column i.
(2) To transpose simultaneously rows i and j and columns i and j.

The following is the finite type representation type for tiled orders
introduced by Zavadskij and Kirichenko in [12].

Theorem 2. A4 tiled order A is of finite representation type if and only if
P(A) » Ky, ..., K5, where

o—O0—0—0—=0
c\:

-~ O
o—O0—0

o |

Ky Ka K3 Ky

0

O

[

o

o—0
o—0
o—0

o}

o—0
o—o0—0

Figure 1
Often, posets K|, ..., K5 are called the Kleiner’s critical.
For m>1, a (0,1, 2, ..., m)-tiled order is a tiled order A = (kij),
1<, j <n, where A;; € {0, 1, 2, ..., m}. In particular,
If A=(A;) is a (0, m)-tiled order, then A has associated a finite poset
(R, <)=RA) =({L, 2, ..., n}, <), where

i < j ifand only if A;; = 0.
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We let A(m, Q) denote the unique (0, m)-tiled order A = (A;) such

that R(A(m, Q)) = Q, where Q is a finite poset, that is, if Q = {1, 2, ..., n},
then

0, ifi<y,

m, if j<i.

In [12], it is proved that there is a bijective correspondence between
isomorphism classes of representations of a finite poset Q over a quotient
ring m =O/n™O (where O is a ring of discrete valuation, 7 is a prime
element) and isomorphism classes of admissible modules over a tiled order
A = A(m, QU {*}), where * is an additional maximal point with x < * for

all x € 0. Moreover, we have the following result.
Theorem 3. For a finite poset Q, the following identities hold:
(a) Q is of finite representation type over the ring m, m>1.

(b) The corresponding tiled order A(m, QU *) is of finite representation

type.
(¢) The infinite periodic poset P(A) does not contain the critical
K, ..., Ks.

(d) O has not as a subposet one of the following lists.

Figure 2
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Theorem 2 was proved by Zavadskij and Kirichenko in [12] by using an
algorithm of differentiation (for tiled orders) with respect to a suitable pair of
points introduced by Zavadskij. The following lemma allows to define such
an algorithm.

Lemma 4. If A is a (0,1, 2, ..., n)-tiled order, and P(A) does not
contain as a subposet the critical posets (1, 1,1, 1) and (2, 2, 2), then there
is a pair of indices (k, 1) which satisfies either condition (a) or condition
(b):

(@) Mgz + A =Ny foralli.

(b) There exists an index m such that Ay + Ay =Ay and Ap, +
At = Ajg +1 forall m #i.

Note that, if B = (b;)e M,(Z) is such that b; = 0 for any i and for

values i, iy, ..., i, € {1, 2, ..., n}, we have that

by 20, )

biyiy + biiy +- Inf)

hia
Matrix A = (;;) generated by B is a tiled order such that:

A = min

ij +bi

wiy ¥ b )

i, i3y, iy

If A is a reduced tiled order and k =/ with k, /21, then we let A )
denote the ring generated by B = (b;) with by =Ly —1 and b; = };; for
(i, j) # (k, 1) entries of this generation matrix satisfies formula (2).

A pair of points (k, [), k # [ is said to be suitable for differentiation, if
it satisfies one of the conditions (a) or (b) in Lemma 4. The derived ring

A{k, 1) is defined in such a way that:
(1) Ak, 1) = ANk, 1) if the pair (k, /) satisfies condition (a) in Lemma 4.

(2) If the pair (k, /) satisfies condition (b) in Lemma 4, then A{y ;) is

generated by matrix B = (b)), j<n With m' =n+1 and
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by =g =1 by = Mt =15 bpgy = Mgy — 1,

byj = Apj; for j #m, m’; by = L, for i # k, n',
by =y if i, j = m's and (i, /) # (k, 1), (m, ). 3)

The following result describes the derivative of some reduced tiled
orders.
Theorem 5. The generation matrix is the derivative of a reduced tiled

order A = (A; j)<; <3 With Mg + Ly = hyy for all i.

Proof. It suffices to prove that the matrix obtained by subtract 1 to the
entry (k, I) of A is a tiled order.

It is clear that A; = 0, inequality (2) must to be verified if the entry

Ay —1 is included in the generation matrix. Thus, we have three cases:

(i) Since the pair (k, /) is a suitable pair of points, Ay + A = Ay,
therefore, Ay; + A;; =2 Ay — 1.

(i) Since A is reduced Aj +A; 21, Ay +A; +Ay; =21+A, and
7\‘](] + 7Lll- + 7\‘](] — 7\‘ki >1+ 7“kl= thus 7Lll- + 7Lkl e 7\‘]”-.

(iii) Inequality A; + Aj; —1 2> A;; is obtained by using arguments from
(ii). O

For (0, 1)-tiled orders, we have the following result:

Theorem 6. A (0, 1)-tiled order is of finite (tame, finite growth, one

parameter, etc.) representation type if the poset R(A) is.

Remark 7. Up to for the finite representation type case, Theorem 6 is not

true for arbitrary (0, n)-tiled orders, therefore one of the main problems

regarding (0, n)-tiled orders consists of establishing for n > 1 which orders
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satisfy conditions described in such theorem. To give some advances to this
problem, we prove that some (0, n)-tiled orders can be reduced to (0, 1) -tiled
orders via differentiation.
2.1. The matrix problem

If A is a A-not null right admissible module, then the submodule
A; = Aej; is said to be a O -net. Therefore, it is possible to associate to the
module 4 a system of the form 8, = (V; 4, ..., 4,), where V is a finite
dimensional T-vector space (dimg V =d), further 4; — V' is a complete
O-net for each i, i.e., the rank of 4; as a O-free module equals d.
Furthermore,

Aji ..
4V < A; forall i, j.

Thus, two admissible A-modules 4 —>8,=(V; 4,..., 4,) and A" —> 8
=(V'"; 4, ..., 4;) are isomorphic if and only if there exists a T-isomorphism,
@ :V — V' such that ¢(4;) = A4; for all i. Thus, the problem of classifying

right admissible A-modules is equivalent to the problem of classifying

system of the type (V; 4, ..., 4,). The corresponding matrix problem is

defined in such a way that if an admissible right A-module 4 which has
associated a system of the form S, = (V; 4, ..., 4,), where 4; isa O-net,

then a matrix M 4 is assigned to S :

where column of each stripe M; consists of coordinates of (O -generators of

the net 4; with respect to fixed basis of /' modulo the subnet 4; =

ZA jnxﬂ. The following are the admissible transformations which define
J#i

equivalent matrices:

(1) T-elementary transformations of rows of the whole matrix M 4.
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(2) O -elementary transformations of columns within each stripe M.

(3) Additions of columns of type M ; + M ,-n}b"j 0->M;.
3. Main Results

In this section, we use the algorithm of differentiation with respect to a

suitable pair of points for tiled orders in order to reduce some (0, 2)-tiled

orders to (0, 1)-orders.

For a given exponent matrix A, we let i(A) denote the index of A in such

a way that:

i(N= D

1<i, j<n

Note that if A is a (0, 1)-tiled order, then —n(n2— D)

<i(A) < n(n-1).
Furthermore, A =~ A’ implies i(A) = i(A") as a consequence of Theorem 1.
The following result concerns (0, 1)-tiled orders.

Theorem 8. The following is a complete list of representatives of
isomorphic classes of (0, 1)-reduced tiled orders A = (A;;),; <3

0 1 1 0 1 1
Ay=1 0 1], Ay=[1 0 1]
1 1 0 1 0 0
1 0 1 1
Ay=|0 0 1| Ag=|1 0 1/
0 0 0 0 0

Proof. The associated poset P(A) of the (0, 1)-tiled order A is an
infinite ordinal sum of copies of R(A), conversely the corresponding (0, 1)-

tiled order A = (A;),; <3 associated to R is such that
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0, ifi<y,
hyj = o
1 if j<i.

2

Up to isomorphism and antiisomorphism, the only possibilities for poset
R(A) are

N, Ny Ny Ny
Figure 3

which have associated orders Ay, ..., Ay. O

Theorem 9. The following is a complete list of representatives of

isomorphic classes of (0, 1, 2)-reduced tiled orders A = (L;),<; <3 with

0 1 0 2
Al = 0 0 5 A2 = 0 0 5
0O 0 O 0O 0 o
0o 1 2 0
Ay=l0 0 2| Az=|0
0 0 O 0 0 O
0 Az M3
Proof.Let A={0 0 A, | bea (0,1, 2)-reduced tiled order. Then
0 o0 0

A # 0 forall i < j, thus:
(1) If 7\,13 = 1, then 7\,12 = 7\.23 =1.
(2) If Ay3 = 2, then pair of numbers

(?‘125 ?‘23) € {(15 1): (1: 2): (25 1): (25 2)}a
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thus the corresponding reduced exponent matrices are:

0 1 1 0 1 2 0 1 2
Ay=]0 0 1|, Ay=[0 0 1|, A3=|0 0 2|,
0 0 O 0 0 O 0 0 O
0 2 2 0 2
A4 = 0 0 1 5 AS = 0 0
0 0 O 0
Since A3 ~ A4, we are done. O

Theorem 10. Any (0, 1, 2)-reduced tiled order A = (A;)<; <3 with

i(A) < 5 is isomorphic to a (0, 1)-tiled order.

Proof. Let A be an order which satisfies hypothesis of the theorem and
r=]{L; € A|L; = 2}| therefore if r =0, then A is a (0, 1)-tiled order.

Actually, if i(A) =3, then » = 0 and A is a (0, 1)-tiled order.

If i(A)=4, then re{0,1}. If i, j, ke {l,2,3} and r =1, thus if
Ly = 2, then the remaining entries belong to {0, 1}. Since A;; + A = Ay,
L;i = Ajr =1 the other entries are null, a (0, 1)-tiled order can be received if
we subtract 1 to the row / and simultaneously add 1 to the column / of the
matrix A.

If i(A) =5, then r < 2, therefore, if » = 1, then it is possible to assume
r=1and Ay =2, thus A; =A; =1. Since Ay =0, either Ay; =1 or
iy =1, if &y =1, then A can be transformed to a (0, 1)-tiled order by
subtracting 1 to the row / and adding 1 to the column /. If A; =1, then a
(0, 1)-tiled order can be obtained from A by subtracting 1 to the column &
and adding 1 to row £.

Finally, if » = 2, then different options arise, for instance, a (0, 1)-tiled

order isomorphic to A can be obtained if all entries with value 2 belong to the

same row or column. On the other hand, if entries with value 2 belong to
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different rows or columns, then a (0, 1)-tiled order can be received from A
via t-admissible transformations. For instance, if A; = Ay; = 2, then either
A =1 or Ay =1. Note that, if A;; =1, then A is not a tiled order, on the
other hand, if A;, =1, then A is isomorphic to a triangular tiled order which
is a (0, 1)-tiled order as a consequence of Theorem 9. Since same arguments

can be used to all the other cases, we are done. ]
The following theorem concerns tiled orders with i(A) = 6.

Theorem 11. Every (0, 1, 2)-tiled order A = (hjj)\<; ;<3 with i(A) =6
has a suitable pair of points (k, 1) such that AZk,l) is isomorphic to a
(0, 1)-tiled order.

Proof. Let A = (h;); <3 be an order which satisfies the proposed
hypothesis and r =[ {A; € A[A; =0,i# j}|. Itis easy to see that r <3,

so we must to prove that in any case it is possible to find a suitable pair of
points with the property (a) mentioned in Lemma 4.

Let us suppose that A,,; # X, + A, forany m, n, [ € {1, 2, 3}.

If » =1, then we receive a contradiction. If » = 2, then two entries of A

are 2’s and the other two are 1’s. If Aj,, =0, then A,,, #0. If &,,,, =1, then

0 1 1
A~|1 0 1| If A,, =2, then X, € {0,1} which is a contradiction.
1 1 0

The case r =3 defines a tiled order with three entries equal to 2 which

contradicts the definition of A. U
The following results concern (0, 1, 2)-tiled orders with i(A) > 6.
Theorem 12. Any (0, 1, 2)-tiled order A = (L;)<; <3 with 8 < i(A)

<11 has a suitable pair of points (k, I) such that Ay ) is not a (0, 1)-tiled

order.
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Proof. If Ais a (0, 1, 2)-tiled order with i(A) < 12 and width w(A) =3,

then the properties of the corresponding poset of projective modules ensure

the existence of a suitable pair of points (k, /) for differentiation.
If (k, 1) satisfies condition (a) of Lemma 4, then i(A{; ;)27 by
Theorem 5, therefore A{y ;) cannot be a (0, 1)-order.

Now let us suppose that A has a pair of points (k, /) which satisfies
condition (b) of Lemma 4 but does not satisfy condition (a). Therefore, the
following arguments prove that the matrix B defined as in (3) is a tiled order
such that B = Ay ).

Note that Ay, + A,y =Agy +1 with (k, m, 1) e {1, 2,3}, [ #k#m =1
since (k, /) is a suitable pair of points. Furthermore, Mip + Ay > Ay forall

i, j, p €11, 2, 3} provided that there is not a suitable pair of points which

satisfies condition (a) of Lemma 4.

Formulas (3) allow to define B = (b;) in such a way that:

bii=0f0r3111£i£4,

bkm = }“km’
bry = kg — 1,
bra = Mgy — 1,

bk = bax = A

bml = 7“ml -1,
b4 =0,
bk = Mg

bim = big = M

by = At 4)
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thus by, + b,y > by, for all r, n, q € {k, m, 1, 4}. Therefore, B is a tiled

order and B = A(; ;). In particular, we have that
i(Afk, 1)) = 2i(A) = (2 + Rgg + Ay ).

If i(A) = 8, then A is isomorphic to the tiled order

0 2 2
1 0 1
1 0 O

and the derived tiled order is isomorphic to

0 1 2

—_ =
O O =

0 1
0 0
1 1
whose associated poset of projective modules P(A’) is not a cardinal sum of

a finite poset, thus it is not a (0, 1)-tiled order.
If i(A) =9, then we take into account that Ay +1 =124y, +L,,; to see

that Az # 0, otherwise we have that 1 = Ay, + A,,; and A, + Ay + Ay,

= 8 which cannot be possible.

If Ajy =1 then 2 =%y, +A,; and A, + Ay + A, =6, thus &, =
Mg = hpm = 2, therefore i(Afy ;) =2(9) - (2 +1+2)=13.

If Ay =2, then 3 =%, +A,; and A, + Ay +2A,, =4 Since
Ak < Appy + A Mg <4 =Ny, thatis, Ay < 2. Note that Ay = 0 implies
Ak = Ay =2 and Ay + Ap,, > g, implies Ay, > 2, a contradiction.
Therefore, Ly =1 and again i(A{y ;))=2(9)—(2+2+1)=13. We conclude
that i(A{x 7)) =13 and that A{y ;) is nota (0,1)-order.

Finally, if i(A) > 10, then we have Ay + Ay <4, thus i(A{g ) >
2(10) = (6) = 14 therefore A(y ;) isnota (0, 1)-tiled order. O
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As an example, the following are (0, 1, 2)-tiled orders with i(A) € {7, 8}

whose derivative is not a (0, 1)-tiled order:

0o 0 1
A=l1 0o 1|,
2 2 0
0O 0 O
Agsy=|1 0 1,
2 2 0
0O 0 0
A=[2 0 2|
2 2 0
0O 0 0
AE2,3): 2 0 .
2 2 0
0O 0 O
AGo) = (823 =12 0 1} )
2 1 0

In this case, (1, 3) is a suitable pair of points of the tiled order A with
i(A) =7, and A{y 3) is not a (0, )-tiled order. On the other hand, (2, 3)

and (3, 2) are suitable pairs of points of the tiled order A with i(A) = 8, note

0 1 1
that, A(y 3) is not a (0, 1)-tiled order but A{3 5y =|1 0 1| whichisa
1 1 0

(0, 1)-tiled order.
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