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Abstract

The main purpose of this paper is to evaluate surface areas of crystals
generated from quadrilaterals in tetrahedrons. Explicit summation
formulas for finding the surface areas of crystals are derived and some
applications of these formulas are given.

1. Introduction

Calculating surface areas of some of the crystals generated by
tetrahedrons can take considerable time. However, surface areas can be easily
obtained if explicit formulas are available for the crystals. In 1999, Yetter [1]
studied the area of a medial parallelogram in a tetrahedron with sides of
length a, b, ¢, d, e and f (see Figure 1) and showed that the area was

%\/4e2f2 —(@% -b% +c% —d?)>%.
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Figure 1. The medial parallelogram.

This result stimulated us to undertake the present study. The outline of
the present paper is as follows. In Section 2, basic definitions and results
related to tetrahedrons are summarized. In Section 3, an explicit formula is
derived for calculating surface areas of some crystals generated from
guadrilaterals in tetrahedrons. In Section 4, the results are applied to a
practical problem and conclusions are made.

2. Preliminaries and Notation

In this section, we summarize some general mathematical background
required in this work. Throughout this paper, we let N, denote the set

{1, 2, 3, 4} and as shown in Figure 2, we assume that 7~ denotes a tetrahedron
with four non-coplanar vertices labeled by B, P,, P; and P;. Any set of
indices i, je Ny or i, j,ke Ny or i, j, k| € Ny specifies a set of
distinct vertices of the tetrahedron 7.

Definition 2.1. Let 7 be a tetrahedron with vertices P, P,, P; and Py
as shown in Figure 2.

(1) Forany i, j € Ny, let x; =|PRPj| = xj; be the length of side RP;

(or P;R) which joins vertices B and P;.
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(2) For any i, j € Ny, let B; be a point on side FP; with distances
from P to B specified by the ratio |RR;|: [RPj| = r;j, where 0 < r; <1.

(3) Forany i, J, k, I € N4, we say that sides BP; and BR are non-

incident sides of 7 if sides FjP; and P A have no common vertices in 7.

Figure 2. The tetrahedron 7.

Remarks 2.2. (1) We assume that FP; and P;F denote the same side.

—_—

If the direction of a side is required, we use the usual vector notation B P;.

(2) We assume that Bj; is a point on the side FP; and that B; and Pj;
are the same point. Then, from part (2) of Definition 2.1, the ratio |PJ- Pji| =

I’J||P|PJ| impliesthat rji =1- rij, since |P|P|J|+|PJPJ|| = |P‘|PJ|

(3) In vector notation, we can write

Xij = Xji =|RPjl =[RRj|+[P;iPj[ = (rj + r}i)|RP;,

and

RRj = jRP;,  RjPj =rjiRPj = (1-1j)RP;.
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(4) Clearly, sides BP; and B¢R are non-incident sides if and only if all

integers i, j, k and | are different. From Figure 2, 7 has only three pairs of
non-incident sides as follows:

(@) PP, is non-incident with P3Py,

(b) RP; is non-incident with P,P,, and

(c) PP4 is non-incident with P,P;.

Definition 2.3. Let 7 be a tetrahedron with vertices P, P,, P; and Py.
(1) For any pairs of sides BP; and PR which are non-incident and

i<, k<l i<k, let REl be a quadrilateral with four vertices given by

points Py on four sides other than sides BP; and RBR. For example, the

quadrilateral R%ﬁ shown in Figure 3 has vertices P3, Py3, P4 and Py, but

not PlZ or P34.

(2) For any quadrilateral RE, with i < j, k <1, i <k, leta crystal QE,
be the octahedron generated from RE, by joining two points R and Ry to

the four vertices of RE, For example, a crystal Q%ﬁ is shown in Figure 3.

Remarks 2.4. There are exactly three distinct choices for the indices i, j,
k, | that specify a quadrilateral and an associated crystal given by

(1) R%ﬁ and g%,,ﬁ generated from non-incident sides PP, and P3P, as

shown in Figure 3,

(2) 7?,12?21 and glzi generated from non-incident sides P,P; and P,Py,

(3 Rlz‘;; and Q1243 generated from non-incident sides PP, and P,Ps.
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Figure 3. A quadrilateral R%ﬁ and a crystal g%,j_

However, for each distinct choice of indices i, j, k, | there are an infinite
number of quadrilaterals REl and an infinite number of crystals gE, because
there are an infinite number of points B; on the line B P; defined by ratios

O<rij <1

The following mathematical background relates to areas of triangles. In
this paper, we use the notation Té“c for the area of a triangle with vertices A,
B and C because the triangles we consider usually have one vertex defined
differently from the other two. Of course, TBAC = TABC = TEB. Some
standard theorems on areas of triangles are as follows. A proof of Theorem
2.5is given in [2], and Theorem 2.6, Theorem 2.7 are given in [4] and [5].

Theorem 2.5. If a triangle AABC has sides of lengths a, b, ¢ opposite
the vertices A, B and C, respectively, then

a+b+c

(1) Tdt = +/s(s —a)(s —b)(s — c), where s = R

(2) Tge = %\/Z(azb2 +a%c? +b%c?) - (a* +b* +c*).

Proof. Formula (1) is the well-known Heron’s formula. A proof is given

in [2]. The proof of formula (2) follows immediately from Heron’s formula.
O
Theorem 2.6 (Magnitude of cross product). Let A, B and C be any points

in Euclidean space R3. If AB and AC are nonzero vectors in R3 with the
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angle between AB and AC isoand 0 <9 < rt, then
|AB x AC | =|AB||AC|sin 6.
Proof. See the proof in [4] and [5]. O

Theorem 2.7 (Areas of triangles). Let A, B and C be any points in
Euclidean space. Then the area of triangle AABC is equal to

Tde = —|AB x AC| = _|E||H:’|sin 0,

where 6 (0 < 6 < n) is the angle between AB and AC.

Proof. Use Theorem 2.6 and theorems on areas of triangles in [4] and
[5]. O

Remarks 2.8. Since Té“c = TEC = TEB are different expressions for the
area of triangle AABC, we also have from Theorem 2.7 that

| =

Tdt = 5/AB x AC| = 3 [BAx BC| = 7 [CAxCB|

N

2
Theorem 2.9. For the tetrahedron 7 and point B; defined by |RP;| =

rj|RP;j|, we have for any distinct set i, J, k € N, that TP = r,kT PR
1 I

Proof. For any distinct set of indices i, J, k € N4, we have from
Theorem 2.7 that

P iR
3. Main Results

In this section, we prove the main Theorem 3.6 for explicitly calculating
surface areas of the crystals generated by tetrahedrons. We begin with some
preliminary lemmas and theorems.



Surface Areas of Crystals Generated by Tetrahedrons 151

Lemma 3.1. For the tetrahedron 7 and a set of distinct vertices
specified by i, j, k € N4, we have

P —_—
T H< |P|Pj x RR|
1 2,2
\/z(xljxlk + XjjXjk + Xlkxjk) (Xu + Xlk + Xjk)
Proof. Using Theorem 2.7, we obtain TF',:?Pk =%|P— RP|. Then,
j
from the results of Theorem 2.5, we have
R 1 2,2
TF,'F,k \/Z(X”X,k + XXk + x,kxjk) (xIJ + x,k + xjk) O

Lemma 3.2. For the tetrahedron 7 and a set of distinct vertices
specified by i, j, k € N4, we have

Rj R
Tplkp]k = (L= Njhik = Tjiljk — ik )TP,-'H('

Proof. From the geometry of the triangle AR P;R, the definitions of the
points B; = Pji, Pjk = P and R = Py, and the result in Theorem 2.9, we

have

Ry R _thi o _1hR
PikPjk TP]Pk TF‘qu‘uk TPjink TF1<iH<j

P
= (1— rij ik — rjirjk — rkirkj )TPJIPk O

Theorem 3.3. The areas of the triangular surfaces of each crystal g{jl

generated in the tetrahedron 7 by the quadrilateral RE, have the following

properties:

P
1) T Ikp = (L= hjhic = Tifjk — Nl )Tp;pk'
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@ T =@ kiry -y — g T
RIPjl = ijlil jitjl li'lj PR
©)) TF’EIHi = L= nahg — Niria — rlirlk)TF?(le-

(4) TF%IH] = (- fafig — Mty — rjkrjl)ﬂ:kpj-

Proof. The proof of each of the 4 formulas follows from Lemma 3.2. O

We now introduce the following notation. For the tetrahedron 7 with
vertices P, P,, P; and P, and for a distinct set of vertices specified by

i, J, k € Ny, we let

Alye = Ay = (5% )% + (rexi )2,

i i 2 R 2
Blix = Byj = 2rijrik\/(xijxik) ~4Tpp )"

Lemma 3.4. For the tetrahedron 7 with vertices P, P,, P; and P, and

a distinct set of vertices specified by i, j, k € Ny, we obtain

PPk | = Ak - Bli-

Proof. We will prove this lemma using the results of Theorem 2.6,
Theorem 2.7 and Theorem 2.9. From the cosine law [4] applied to AR; R Py,
we obtain

BRI +|RPk [ - PRk
cos(R;RPy ) =
(RiRRK) 2|RPR;jIIRPK |

: (3.1)

Then, from Theorem 2.6, Theorem 2.7, equation (3.1) and a basic identity of
trigonometry, we have

2 2 2\2
IRR;j|” +[RP«[” —[RjP«|

R 1
T.'o ==|RPi||RPy |1~
7 AR AP 2RR; IR Rk

RiFk
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Then, it can easily be shown that

2 2 2\2 2
[RR;I” +[RPRk|” = |RjP| :1_( 2 A J
2|RR; [P Fi | |RP;[[RP | Fifik
and that
2 2 2 2 R 2
RiPw? = [RRy  + AP P ~ | @IRRyIRRW|)? - (4T 8, P 32)
Clearly, we have seen that
IRR; 2 +[RPx 2 = (rjxi) + (ikxik)* = Al (3.3)
Obviously, from Theorem 2.9, we obtain
2 R \2 2 R 122
(@IRRy AP — (4THg, 7 = (2t O )? = 4(TEHg %)
PRy
= (Bjk) . (3.4)

We substitute equations (3.3) and (3.4) in (3.2) and we obtain

PPk | = v Ak - Bl O
We now introduce the following notation. For the triangular surface of a

crystal QE, generated in the tetrahedron 7 by the quadrilateral RE, we

define
AR = 2 > (Aliq = B'ig) (Aq = By),
{(a,r):g=k, 1, r=j,k}={(l, j)}
Fll. . .
Dryey = 2 (Agr — Byr)”.

{(a,r):a=J. k, r=k, Ij—{(k, k)}
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P;kpjl =2 Z (Aijq - B}q)(“‘lgl -B}),
{(a,r):a=k, I, r=i,k}={(l,i)}
P!kP'I = Z (ch|r - B(JH )2'
K @ ra=i ko =k, =1k, K}
3. C%:pkj =2 _ Z _ _ (Al(q _Bl(q)(Allfj _Bléj)a
{(a,r).g=i, ,r=1Li}={(, j)}
Fa Z k 2k 2
DL (Agr = Bgr )
Wt L -0
{(a,r)a=i, j, r=k,ij={(k, j)}
DFHﬁ'H,- > (Al — By .

{(a, r)ya=k,i,r=i, j}={(i,)}
Theorem 3.5. The areas of the triangular surfaces of the crystal gE,

generated in tetrahedron 7 by the quadrilateral REl are given by the

following equations:

\/ RR_1 \/ R R

Pukpn ~a\VPR T |kP|I PikPji — 4\ PPt T PkPji
R TR _1 |-Ra _ pRd

TRiRy = ch.aq mon Tam = 24k ~ PRk

Proof. The results of this theorem follow directly from Heron’s formula,
Theorem 2.5 and Lemma 3.4. O

We now introduce the following notation. For a crystal gEl generated in
tetrahedron 7 by the quadrilateral Rkl, the areas of the triangular surfaces

Rj R R i i
of the crystal, TP Pic’ TF‘,|PJ-| TH<IFJII and THth are defined in Theorem
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Rj Rj R R ; ;
3.3 and on the other hand TP.kPn’ Tijle’ TPkiij’ and THiPij are defined in
Theorem 3.5, we define:
1. The sum Sj; of surface areas of triangles with vertex at Bj. The sum

Rij R Rij Ri
+ T + T + T
Fik Pik RiPii Fk R PikPii

isgivenby Sj; =T
2. The sum S of surface areas of triangles with vertex at B,. The sum

isgivenby Sy = TPTPH + TPF:;'H]_ + TPT;IPM + TF’:?%,"

3. The sum Sgij of surface area of a crystal gE,.
K

Theorem 3.6. Let 7 be a tetrahedron with vertices P, P, P; and Py.

For each crystal gEl which generated by tetrahedron 7~ from RE, then we

obtain its surface areas of the crystal gEl equals to SQEI = Sjj + Su-

Proof. The result of this theorem is followed immediately from Theorem
3.3 and Theorem 3.5. O

4. Conclusions and Applications

In general, the calculation of the crystal surface areas generated by
tetrahedron can be a tedious task. However, the calculation can be carried out
easily by using the closed form of the crystal surface areas. The important
conclusion of this study is that the crystal surface areas generated by
tetrahedrons can be carried out using the closed form as in Theorem 3.6.

Of course, the above results can be used to solve some practical problems
need to find the crystal surface areas generated by tetrahedron. We now give
an example of such a problem.

Example 4.1. Let 7 be a tetrahedron with vertices P, P,, P; and Py.
Suppose that for any distinct g, r € Ny, the length of all sides PyP, which
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joint between vertices Py and P, are equal to x units of length and setting

Pgr is any midpoint on side PyP;. Calculate the surface areas S gi of the
Gu

crystal g generated from the quadrilateral R in 7.

Solution. We can analyze and solve this problem as follows: From the
hypotheses for any d, r € Ny, in tetrahedron 7, let Xqr or X be the

length of side PyP; which joint between vertices B and Pj, then xgr = X

and since Py, is the midpoint of the side PP, all ratios ry, are equal to %

Obviously, by Theorem 2.5 we see that

«/_ 2

R 1
TP A = \/Z(xux,k + xﬁxfk + x,kxjk) (xIJ + x,k + xjk) = 4.1)
By Theorem 3.3 and equation (4.1), we obtain
R _LliR V3.2 R _1iR _ V3.
PPk 4TPjF1< =16 RiPiji 4TPjH =16
A _L17A _¥3 2 LR _loR _V3.2
Trifi 4 AR 16 X TRgR “2 AP T 16 X -

Next, on the other hand, we will calculate

Rij Pij P P
Rk’ PPy’ TPkIPkJ and TPI R’

For {(g, r):q=k, I, r=j, ki ={(, j)}, wehave

\2 N2 2 2
i Xjj Xiq X i 1 2 R 2 _X
Al :(TJ +(7 =5 Bjp =§\/(Xijxiq) ~4Tplp )" =7

= (%)2 +(X_2"j2 - % B =5 0ir )’ - 4T = X42
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For {(g, r):q=j, k, r =k, I} —{(k, k)}, we have

Then, it infers that
p.
Rk R ) )
{(a,r)xag=k, 1, r=j,k}={(1, ))}
and
Rj 2 ¥4
Ple= X Bt
{(a,r):q=j,k, r=k, 1}={(k, k)}

Then, by Theorem 3.5, we deduce

F‘ukPn 4\/ PkRi .kF‘n ZEX'

The same calculation as above, we obtain

-I-Plj 1\/CF’|j Dp'j _\/_ 2

PP~ 4V PP T PkP T 16
R ph ‘/_ X2,
TRiRg = JCH“RK, AiPj
TR 1 [oPa P f 2
RiRj — 4\ RiRj HHJ
Then we have
Ri Ri R _ N30
Sij _T IkP]k JrTF’nle +TP|kP|I +TijPjI =7 %

and

Ra Pa R Ra ﬁ 2
Sk =Toim T Taghy + TRoRg * TRiRy = 2 X

1 i i i i 3
Colp =2 > (Alq = Blg) (A - Bry) = g x*

157

- \2 2 2 2
i Xiq Xi X i 1 2 P 2 X
Aqr = (T + % = 7, qu = E\/(quxlr) _4(TPqIPr) = T

Therefore, by Theorem 3.6, we conclude that the crystal surface areas
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generated from the quadrilateral REl in 7 is SQE| = Sjj + Sk = %xz

square units.
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