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Abstract 

Graphical modeling (GM) plays an important role in providing 
efficient probability calculations in high dimensional problems 
(computational efficiency). In this paper, we address one of such 
problems where we discuss the fragmenting environmental Puff 
models and some distributional assumptions concerning models for the 
instantaneous, emission readings and for the fragmenting process. A 
graphical representation in terms of a junction tree of the conditional 
probability breakdown of puffs and puff fragments is proposed. 

1. Introduction 

Graphical models, as statistical models, embodying a collection of 
marginal and conditional independencies which may be summarized by 
means of a graph, are quickly becoming an integral part of modern statistics. 
The graphical representation of a statistical model can help in many ways: 
the graph provides an effective means for elicitation and simplification of a 
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problem, it depicts the dependency structure posited in the model and it may 
be transformed into a structure that can be used for efficient calculations of 
various quantities of interest. Graphical methods have been used in the 1980s 
for the analysis of statistical problems where no decision variables or utilities 
are explicitly represented. In a series of papers by (Darroch et al. [1], 
Lauritzen et al. [6], Kliveri et al. [5], Lauritzen et al. [6] and Lauritzen and 
Wermuth [7]), the authors addressed the problem of how graphs such as 
influence diagrams can help in understanding the conditional independence 
properties that a given factorization of a probability density implies. Another 
issue of importance is how graphs can be used to perform efficient 
probability calculations in high dimensional problems (computational 
efficiency). This issue is discussed in a number of papers by (Kim and Pearl 
[4], Pearl [11], Lauritzen and Spiegelhalter [8], Spiegelhalter et al. [18]     
and Smith and Anderson [17]). In Section 2, we give some graph-theoretic 
results and a background material on graphs, which are necessary for         
the development of the paper. In Section 3, we show how to propagate 
information on junction trees. Section 4 describes an environmental 
application of a high dimensional process, namely, the atmospheric 
fragmenting Puff models. In this section, we propose a graphical 
representation of the conditional probability breakdown of puffs and puff 
fragments as a junction tree representation of a high dimensional problem. In 
Section 5, we give an example of clique representation for puff distributions. 
Section 6 concludes the paper. 

2. Background Material 

This section introduces some graph-theoretical terms, which will be used 
in the paper. A network or graph is a pair ( )EVG ,=  that consists of a 

finite set of vertices vV ...,,2,1=  and a set of edges (arcs) VVE ×⊆  of 

ordered pairs of distinct vertices. An edge from vertex i (parent) to vertex      
j (child) is a directed edge (arrow) denoted by ji →  if ( ) Eji ∈,  and 

( ) ., Eij ∉  If both ( )ji,  and ( )ij,  are ,E∈  then the edge between i and j is 

undirected (line). If the graph has only undirected edges, then it is undirected 
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graph and if all edges are directed, then the graph is said to be a directed 
graph. A path of length 0≥m  from i to j is an ordered sequence 
( )jiiii m == ...,,, 21  of distinct vertices miii ...,,, 21  such that ( )1, +ll ii  is 

in E for each ....,,2,1 ml =  If there is a path from i to j, then we say that      

i leads to j. A subset VC ⊆  is said to be an ( )ji,  separator if all paths 

from i to j intersect C. The subset C is said to separate A from B if it is an 
( )ji,  separator for every ., BjAi ∈∈  For ,VA ⊆  the set of parents of A 

denoted by ( )APa  is the set of all these vertices in V, but not in A that have a 

child in A. An m-cycle is a path of length m with the exception that the end 
points are equal; that is, .ji =  A graph is acyclic if it has no cycles. 

2.1. Influence diagrams 

An influence diagram (ID) is a schematic representation of conditional 
independence relationships. It is used for deducing new independencies from 
those used in the construction of the diagram. Influence diagrams were first 
developed in the mid 1970s by Miller et al. [10]. Howard and Matheson [3] 
extended the theory to decision analysis. Shachter [13] gave a procedure for 
evaluating a decision problem using an influence diagram. In this section, we 
present a brief introduction on how to use influence diagrams, as a modeling 
framework, that underpins a probability distribution in order to learn about 
and calculate various quantities of interest efficiently. We begin by defining 
a chance influence diagram. 

In graph-theoretic terms, a chance influence diagram or influence 
diagram (ID) is a directed graph ( ),, EVG =  where V is a set of nodes 

represented by circles and called chance nodes and E is the set of directed 
edges or arrows joining these nodes. Chance nodes label random variables 
(uncertain) quantities relevant to the problem being modeled and directed 
edges represent probabilistic dependencies. 

A chance node labels a random variable 1X  must be a parent of a chance 

node labels a random variable 2X  if and only if the distribution of the 

random variable 2X  is calculated conditional on the value of the random 
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variable 1X  and 21, XX  are not independent. The generalization to higher 

dimensions is given below. 

Let ( )mXX ...,,1=X  be an ordered set of m random variables with a 

joint probability function 

( ) ( ) ( )∏
=

−|=
m

r
rr xxxpxpp

2
111 ....,,x  (1) 

Suppose ( )11 ...,, −| rr xxxp  is a function of rx  and the parent set ( ) ⊆rP  

{ }11 ...,, −rxx  only. This will imply that given ( ),rP  rX  is independent of 

( ),rR  where 

( ) { } ( )rPXXrR r \...,, 11 −=  

is the set of random variables listed before ,rX  which do not appear 

explicitly in the conditional probability function ( )....,, 11 −| rr xxxp  This 

can be expressed as in Dawid’s [2] notation 

( ) ( ) ....,,2, mrrPrRX r =|⊥⊥  (2) 

Then the graph of an influence diagram over mXX ...,,1  is any directed 

graph with nodes representing random variables mXX ...,,1  satisfying 

property (2). Influence diagrams are clearly acyclic, because only nodes of 
lower index can be connected to nodes of higher index. As a simple 
illustration, suppose { }....,, 81 XX=X  Then from (1), 

( ) ( ) ( )∏
=

−|=
8

2
111 ....,,

r
rr xxxpxpp x  

Suppose the parents are: ( ) { },2 1XP =  ( ) { },,3 21 XXP =  ( ) { },4 3XP =  

( ) { },,5 43 XXP =  ( ) { }∅=6P  (the empty set), ( ) { },,7 65 XXP =  ( ) =8P  

{ }.7X  The influence diagram ( )G  of this example is given in Figure 1.  
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Figure 1. An influence diagram (ID) I. 

2.2. Clique marginal representation 

The clique marginal representation is one of many ways of specifying a 
joint probability distribution (see, for example, Lauritzen and Spiegelhalter 
[8] and Smith [14]). We start by identifying the cliques of an influence 
diagram G and ( )xp  by looking at the small sets of variables called 

precliques, see Smith [15] of the form 

( ) ( ){ } ( )( ) .1,1,~ mrPrPXrC r ≤≤∅==  

Then we delete from this collection any preclique ( )rC~  for which there 

exists a ( ) ( )rkkC >
~  such that 

( ) ( ).~~ kCrC ⊆  

The remaining sets of variables after such deletions are called the cliques of 
( )xp  and G. This set of cliques will be denoted by ( ) ( ){ },...,,1 nCC=C  

.11 −≤≤ mn  

After identifying the cliques, we can determine ( )xp  in terms of the 

joint probability functions ( ) ( )xx npp ...,,1  over the cliques ( ){ ( )}....,,1 nCC  

A sufficient condition for this is that ( )( ) 0>∈ rPp x  for each ( ) ≤∈ 2,rPx  

mr ≤  whenever ( ) .∅≠rP  Then (1) can be expressed as: 

( )
( ( ))

( ( ))
,

:

~:

2

1

∏
∏

=

=

∈

∈
= m

r

m
r

rPp

rCp
p

xx

xx
x  (3) 

where ( )( ) 1=∈ rPp x  if ( ) ,∅=rP  the empty set. 
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Since by definition ( ( ))rCp ~: ∈xx  and hence also ( ( ))rPp ∈xx :  

can be obtained from ( ( )),: kCp ∈xx  where ( )kC  is a clique of ( )xp  

such that ( ) ( ) .2,~ mrkCrC ≤≤⊆  Then (3) can be simplified to 

( )
( )

( )
,

2

1

∏
∏

=

== n
k k

n
k k

q

p
p

x

x
x  (4) 

where ( )xkp  as defined above and ( ) ( ( ))rPpqk ∈= xxx :  for a ( )rC~  

remaining in the clique set such that ( ) ( ) .1,~ nkkCrC ≤≤=  A set of 

parents ( )rP  associated with a clique ( )kC  is called a preseparator and 

denoted by ( ),~ kS  .2 nk ≤≤  The clique representation (4) of ( )xp  has 

many computational advantages as we shall see later on. 

2.3. Decomposable influence diagrams 

An ID G is called decomposable if the set ( )XP  of direct predecessors 

of X is completely connected (i.e., each node in ( )XP  is connected by an 

edge to another node), this being true for all X in G. Figure 2 illustrates two 
graphs, one is decomposable and the other is not, since the parent nodes a 
and b are not joined. 

Decomposable influence diagrams have several properties, which make 
them useful to study. One property is that their structure helps in propagating 
probabilities as the joint distribution of the system can be stored as margins 
of cliques. The cliques of a decomposable influence diagram can be ordered. 
Tarjan and Yannakakis [19] gave a simple technique for ordering nodes 
called the maximum cardinality search (MCS), so that in each of its 
disconnected subgraphs they satisfy the so called running intersection 
property (RIP) which states that there exists an ordering [ ] [ ]nCC ...,,1  of the 

cliques ( ) ( )nCC ...,,1  such that for all ni ≤≤2  

[ ] [ ] ( ) ( ),
1

1 i
i

j
pCiSjCiC ⊆=



 −

=∪∩  

for some ,ip  .11 −≤≤ ipi  
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This means that the intersection of the ith clique with all the preceding 
ones is a subset of one of the preceding cliques. 

 

Figure 2. Graphs of decomposable and non-decomposable IDs. 

3. Junction Trees and Probability Propagation 

The clique representation (4) of ( )xp  can be used efficiently to 

propagate information through the system, working indirectly with the 
margins ( )xkp  and ( )xkq  successively, updating them rather than updating 

the whole joint probability function ( )xp  directly. This can be done by 

passing “simple messages” along the edges of a new graph called a junction 
tree, constructed from the influence diagram of ( ).xp  However, in the 

application cited below, distributions will not always remain decomposable. 
Because of this, we need to define a new graph called junction graph, which 
is an influence diagram on vectors of variables in the original influence 
diagram of the process. We then show that the definition of a junction tree is 
just a special case of the undirected version of a junction graph. The use of 
junction graphs will become apparent later in the paper. A formal definition 
of a junction graph follows. 

A junction graph G  of any density satisfying (4) is a directed graph with 

n nodes labeling the n cliques ( ) ( )....,,1 nCC  There is an edge to node ( )iC  

from node ( ) jijC >,  if and only if: 

(i) ( ) ( ) ,∅≠jCiS ∩  



Ali S. Gargoum 152 

(ii) there exists no jj <′  such that 

( ) ( ) ( ) ( ).jCiSjCiS ∩∩ ⊇′  

A minimal junction graph G  is a junction graph which has no other 

junction graph G′  as a proper subgraph. 

In general, a joint probability function will have several junction graphs 
and minimal junction graphs over a chosen ordering of its cliques. An 
influence diagram and its junction graph are shown in Figure 3. The 
undirected versions of junction graphs are called junction trees when the 
separator of any clique is contained in exactly one previously listed clique or 
separator. Note that all junction graphs with no unmarried parents and the 
same undirected version (junction tree) embody an equivalent set of 
conditional independence statements. 

In the case when ( )xp  is decomposable, a collection of disconnected 

junction trees will be called a junction forest. 

 

Figure 3. An influence diagram (ID) and its junction graph. 

3.1. Propagation of information on junction trees 

Let ( ) ( ){ }nCC ...,,1=C  denote the set of cliques of the joint probability 

function ( ).xp  Suppose we learn the values of some or all of the variables 

lying in some arbitrary clique ( ) C∈1C  and we want to compute the 

conditional distribution of all variables in the system given a subset of 
variables in ( ).1C  To describe a propagation algorithm paralleling that   

given in Lauritzen and Spiegelhalter [8]. It is clear that we can obtain a new 
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probability function ( )x∗p  of the variables ( )1x  in ( )1C  from ( )( )1xp  its 

original probability function using Bayes rule. Smith [15] showed how to 
update probabilities over the variables in the other cliques given the values of 
some of the variables in ( ).1C  The updating is possible using the junction 

tree of the system. For detailed discussions, see the above references. 

4. Graphical Representation of Puff Models 

4.1. Puff models 

Most interest in the study of probabilistic networks has centered around 
problems where the junction trees (or variables in that tree) are fixed. 
However, there is a whole class of spatial temporal processes on which the 
efficient probability propagation algorithms developed for static networks 
can be used. For example, one of the methods of modeling atmospheric 
dispersion after an accidental release of radioactive pollutants is called       
the Puff model, Mikkelsen et al. [9]. According to this model, instead of 
assuming a continuous release from a source, it is assumed that the mass is 
released in a series of discrete puffs. These puffs can then be transported and 
dispersed around the local terrain based on the current wind field and local 
terrain. This method has been incorporated into the Risø-Meso-scale Puff 
model, RIMPUFF, Thykier-Nielsen and Mikkelsen [20]. To add to the 
accuracy of the RIMPUFF model, its designers added a further level of 
detail, puff splitting or pentafurcation. As puffs are released and transported 
over the local terrain, they grow in size. When their diameter reaches a 
chosen threshold, they can split into five smaller puffs. The mass associated 
with the parent puff is distributed amongst the children who are also smaller 
in size. In such examples, new variables (puffs) are being continually added 
so that, at any time in the process, the joint density of all variables up to that 
time satisfies equation (1). 

4.2. Dynamic fragmenting of Puff models 

The fragmenting Puff model described above can be reconstructed          
as a dynamic junction tree, Smith et al. [16]. In this section, we describe 
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briefly the reconstruction procedure starting with notation and distributional 
assumptions. 

Let ( ) ( )klltmtm ...,,,, 1=l  be the puff fragment which is the thkl  child 

of the th1−kl  child, ..., the th2l  of the th1l  child of the puff released at time 

t. In RIMPUFF, .1,51 kili ≤≤≤≤  The index k relates to the number of 

fragmentations that have taken place before fragment ( )l,tm  appears. Let: 

TI  denote the set of all puffs (puff fragments) appearing on or before 

time T, 

( )lQ  denote the true mass under ( ),, ltm  

( )lQ  denote the vector of true masses under the set of the children of 

( ),, ltm  

( ) ( ( ) ( )) .,, TtQ lll QQ =  

Here we consider the following process. 

The observation process. Let TQ  be the vector of masses of all puffs 

and puff fragments emitted on or before time T. Let ( )sY ,t  denote a vector 

of observations taken at time t at a selection of site(s) s. Assume that 
( ) ( )ssY ,, tt θ|  is independent of all other variables in the system. Here 

( )s,tθ  can be interpreted as a random vector relating to the actual mass at 

time t on site s. As a simple process, ( ) ( )ssY ,, tt θ|  is defined to have a 

Gaussian distribution with mean ( )s,tθ  and a fixed covariance matrix V. An 

important feature of Puff models is that at all points ( )s,t  of the observation 

grid, ( )s,tθ  can be written as 

( ) ( ) ( ).,,, sQss ttFt t εθ +=  

The matrix ( )s,tF  is a very complicated but known function of ( ),, st  

which defines the density of contamination contributed at sites s by each puff 
or puff fragment at time t. Each row of this matrix corresponds to the 
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weighings used in a dispersal model at a site which is a component of         
the vector of sites. Notice that ( )s,tF  has non-zero components only on 

fragments that still exist and have not fragmented further. In practice, it is 
found that only a few puff fragments will be observed at a site at a given 
time, which implies that for most ( )s,t  many components of each row of 

( )s,tF  will be zeros. The error process ( )s,tε  will be Gaussian with zero 

mean and fixed covariance matrix U. In the particular case of observations    
at source ,0=s  where ( )s,tθ  is a scalar, we set ( ) ( )tQt =s,θ  and hence 

( ) .0, =stε  To specify the joint distribution of tQ  at any time T, we need to 

specify the following processes. 

The fragmentation process. This process assumes that a vector of mass 
fragments (children) ( )lQ  of a parent ( )l,tm  is independent of all masses 

tQ  given the mass ( ).lQ  This can be written as 

( ) ( ){ } ( ).\ lll QQt |⊥⊥ QQ  

Thus, the masses inherited by fragments depend only on the mass of the 
parent unfragmented puff and no other puff. Thus, to specify the joint 
distribution of puff fragments, it is only necessary to specify the conditional 
distribution of ( ) ( )ll Q|Q  for each puff/puff fragment ( )., ltm  To model     

the dispersal of gas, these conditional distributions are usually chosen to 
conserve mass. For example, in RIMPUFF model, we set 

[ ( ) ( )] ( ),lαll QQE =|Q  

( ) ,...,, 51
Tαα=α  

∑
=

>α=α
5

1
0,1

i
ii  

and 

[ ( ) ( )] ,∗=| BQVar llQ  

where 0=∗ll BT  and l  denotes a vector of ones. 
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Obviously, if ( ) ( )ll Q|Q  is chosen to be conditionally Gaussian, then this 

uniquely defines the joint distribution of .tQ  

The emission process. The emission process is modeled as a dynamic 

linear model (DLM), West and Harrison [21], with state space ( )( ) ,, T
ttQ ψ  

where tψ  is a vector of dummy variables. Special cases of these models     

set ( )tψ  as null when the process becomes 1-dimensional; ( ) ( )1−| tQtQ  

( ) ( ) ( )[ ],,11~ WtttQN −µ−µ+−  where W is a fixed variance and ( )tµ      

is a trend term which is a function of time t. This is just a standard state  
space model on the univariate process ( ){ }....,2,1, =ttQ  Here, setting      

the conditional variance ( )0,tV  of ( ),0,tY  the source readings, given ( )tQ  

large relative to W gives a process, which after source readings are taken,   
still preserve strong relationship between masses ( )tQ  and ( ).1−tQ  On the 

other hand, if ( )0,tV  is set to be negligible relative to W, then this assumes 

source readings ( ) ,1,0, TttY ≤≤  are very accurate. As a consequence, it is 

not hard to prove that after observing ( ) ( ),0,...,,0,1 TYY  ( ) ( ){ }TQQ ...,,1  

are independent and future source emissions ( ) ...,2,1, =+ kkTQ  have 

expectation ( ) ( )[ ] ( )[ ]TTQEGkT k µ−−+µ  (say). When the shape of the 

emission profile is very vague, this can be modeled by setting ( ) ,0=µ t  

...,2,1=t  (a steady model). Here the forecast future emission ( )[ ]kTQE +  

( )[ ] ,...,2,1, == kTQE  i.e., constant. If ( )0,TY  is very accurate, i.e., 

( )0,TV  is very small relative to W, then ( )[ ] ( ),0,~ TYkTQE −+  the last 

observed emission. 

4.3. Clique representation of Puff distributions 

Let TX  denote a vector of state random variables of interest (vector of 

mass emissions and their fragments in our context) existing on or before time 
T. It is easy to check that because of the conditional independencies in the 
system, the joint density ( )xTp  of TX  can be written as 
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( ) ( ) ( )( )1,1 ψQppT =x  

( ) ( ) ( ) ( )( )∏
=

−−|⋅
T

t
ttQttQp

2
1,1, ψψ  

( ( ) ( ))∏ |⋅

TI
Qp ,llQ  (5) 

where ( ) ( ) ( ) ( )llψ QttQ ,,, Q  and TI  are as defined above. The density can 

be expressed in a suitable form, namely, the clique marginal representation 
form of equation (4). For an efficient propagation of probabilities, let 

( ) ( ) ( ) ( ) ( ){ },1,1,, ++=∗ ttQttQtC ψψ  

( ) ( ) ( ) ( ){ } ,,,...,,,, 51 TIlQlQC ∈= lllll Q  

where ( ) ( )lCtC ,∗  are cliques, .11 −≤≤ Tt  

Applying equation (4), ( )xTp  can be written as 

( )
( ( )) ( )( )

( ( )) ( )( )[ ] ( ) ,
12

11

∏ ∏
∏ ∏

−≤≤ ∈

−≤≤ ∈
∗

=

Tt I
r

Tt I
T

T
T

T

QptSp

CptCp
p

l
l

l

l

l
x  (6) 

where ( ( ))tCp ∗  and ( )( )lCp  denote, respectively, the joint densities of the 

variables in the cliques ( )tC∗  and ( ),lC  ( ) ( ) ( ){ }ttQtS ψ,=  and ( )lTr  is   

the number of offsprings of ( )lQ  produced before or at time T. Using this 

simplified representation, the joint density ( )xTp  can be stored as a 

moderate number of joint densities of low dimension instead of a single 
density of a high dimension. 

5. An Illustrative Example 

The structure of the joint density ( )xTp  can be represented by a 

dynamic influence diagram, see, for example, Queen [12] and Smith et al. 
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[16]. The nodes of the ID are the random variables (or vectors) defined on 
the cliques. For example, the ID given in Figure 4 represents the conditional 
probability breakdown of puff and puff fragments in the early stages of an 
accidental release. As an example, let us assume that a source has emitted     
4 puffs at time T, the first puff has pentificated, the 2nd and 5th fragments 
have then pentafurcated and further fragmentation has occurred on the 2nd 
offspring of the 2nd fragment. The second puff has also pentafurcated and its 
2nd puff also split into 5. The 3rd and 4th puffs are yet to fragment. 

 
Figure 4. An ID of early emissions. 

Here we note that it is easy to check that the ID of Figure 4 is 
decomposable (all parents of a given child are connected) with its cliques 
having the running intersection property (RIP), that is, at any time T, the 
cliques can be ordered as [ ] [ ]9...,,1 CC  such that 

[ ] [ ] [ ] [ ] 92,
1

1
≤≤⊆=



 −

=
ipCiSjCiC i

i

j∪∩  

for some .11, −≤≤ ipp ii  Also, we note the following: 
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 (i) If [ ] ( ),tCiC ∗=  then [ ] ( )1−= ∗ tCpC i  and [ ] ( ).tQiS =  

(ii) If [ ] ( ),lCiC =  if ,t=l  then [ ] ( )tCpC i
∗=  and [ ] ( ){ },tQiS =  if 

( ),,, 1 kllt=l  then [ ] ( )11,, −= ki lltCpC  and [ ] ( ){ }.lQiS =  

Since the ID is decomposable, we can form a junction tree whose     
nodes are the cliques of ( )xTp  and whose node [ ]iC  is attached to node 

[ ]ipC  by an edge which represents a separator [ ].iS  The junction tree which 

corresponds to the ID of Figure 4 is shown in Figure 5. A typical clique [ ]iC  

of this junction tree will have a probability defined conditionally in terms of 
a particular separator [ ]iS  of the junction tree. That separator will take one of 

the forms: 

(a) when ( ) ( ),tCiC ∗=  it will take the form ( )tS  of equation (4), 

(b) when [ ] ( ),lCiC =  it will take the form ( ).lQ  

Now, an exact algorithm for quick absorption of information on such 
junction trees which evolve dynamically can easily be adopted. 

 
Figure 5. A junction tree of an ID of early emissions. 
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6. Conclusion 

In this work, we showed how the continuous release of gas or radioactive 
material can be described as a series of puffs of contaminated mass emitted 
sequentially at discrete times and then dispersed and diffused (Puff models). 
We also described a stochastic version of these dispersal models. This 
version made it possible to incorporate and adjust to uncertain information 
about contamination readings at different sites. We then proceeded to show 
that all relevant uncertainties could be modeled by describing the evolution 
of puffs and puff fragments within the system by a high dimensional 
Gaussian process exhibiting many conditional independencies. Finally, a 
graphical representation (a clique representation) of these fragmentation 
processes was described. This representation is suitable for an efficient 
propagation of evidence as it arrives. 
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