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Abstract 

We consider in this paper a fully parametric approach that directly 
models the conditional distribution of a response variable as a function 
of the explanatory variables using a class of probability distributions 
recently proposed in Mak and Nebebe [4]. A fully parametric 
approach, unlike traditional quantile regression which fits a quantile 
regression function for each quantile, yields automatically an estimate 
of the quantile regression function for any quantile once the 
parameters in the model have been estimated. Furthermore, statistical 
inferences on how the conditional distribution varies with the values of 
the explanatory variables are considerably easier with the proposed 
parametric modeling than quantile regression. We also studied the 
relationship between quantile regression and the present approach 
under linear modeling. A real example using a real estate data set is 
used to illustrate the proposed methodology. 
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1. Introduction 

There is little doubt that multiple regression is one of the most widely 
used statistical tools in analyzing data from a wide variety of areas, such as 
social sciences, business intelligence, engineering environmental and health 
sciences. It is very effective in assisting researcher understand the 
relationship between the response variable and the explanatory variables. 
This relationship is described in terms of the mean as the central location 
measure. Such modeling has been extended to the case of scale measure 
changes, and there has been now a broad literature in heteroscedastic 
regression models, which has attracted in particular great attention in off-line 
quality control that aims at choosing settings of the explanatory variables to 
minimize variability around a targeted value of the quality characteristic. 

Despite its popularity, multiple regression models (and its ramification) 
fail to address many emerging issues in recent research in many areas. The 
assumption of normality in regression is in many applications unrealistic and 
the conditional distribution of the response variable for given levels of the 
explanatory variables may be a skewed one. While multiple regression is 
effective in studying central location measure such as the mean, it cannot be 
used to draw inference about non-central location measures, and more 
generally to describe how the shape of the conditional distribution varies 
with the explanatory variables. Hao and Naiman [2] discussed the importance 
in some interesting applications of studying non-central location measures 
and the shape of the distribution. 

To study non-central location measure, Koenker and Bassett [3] 
introduced quantile regression, modeling a given quantile of interest directly 
as a function of the explanatory variables. While the computation of the 
regression parameters, typically involving linear programming for the 
minimization of a certain distance measure, is more complex than those in 
multiple regression, it poses little challenge to today’s computing 
technology. Since the introduction of quantile regression, there has been a 
rapid growth of its applications in many empirical researches. 
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The approach of quantile regression fits a regression model for each 
quantile. It does not model directly the conditional distribution of the 
response given the values of the explanatory variables. The latter approach 
was considered briefly in Yu et al. [7] (see also Yu and Zhang [8]) who 
modeled the error of the regression model using the asymmetric Laplace 
distribution. Recently, Noufaily and Jones [5] also adopted a fully parametric 
approach, modeling directly the conditional distribution of the response 
variable as a generalized gamma distribution with the parameters in the log 
generalized gamma distribution modeled parametrically as either linear or 
log linear function of a single explanatory variable. These fully parametric 
approaches can be useful as pointed out by Noufaily and Jones [5] as, unlike 
individual quantile regression, it is not necessary to conduct a separate 
regression analysis for each quantile as any pth level quantile regression 
function can be easily determined once the parameters in the conditional 
distribution have been estimated. More importantly, statistical inferences 
concerning various hypotheses about the conditional distributions can be 
conducted using the familiar maximum likelihood theory and are 
asymptotically efficient under the assumed model. With the “one regression 
for each quantile” approach, statistical inferences are considerably less 
straightforward. While their classes of conditional distributions used in their 
fully parametric approaches provide some flexibility, there is no theoretical 
justification and assurance of their validities in any given application. In fact, 
the asymmetric Laplace distributions have a cusp at its mode and both the 
Laplace and generalized gamma for modeling positive response variable do 
not include the normal distribution as a special case (and therefore cannot be 
used straightforwardly to test normality). Mak and Nebebe [4] proposed a 
very flexible class of probability distributions and demonstrated its 
usefulness in a range of statistical problems. Since the class is shown to 
provide approximation to the distribution of any continuous variable with a 
continuously differentiable density function, it therefore provides some 
theoretical justification for its application in the modeling of the conditional 
distribution of the response variable. This is illustrated with an example in 
Section 4. In Section 2, we discussed the modeling of the conditional 
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distribution of the response variable with this new class of distributions. We 
then established the relationship between quantile regression and the 
proposed conditional distribution model under linear parametric modeling. In 
Section 3, we suggested two methods of estimating the parameters in the 
conditional distribution model. 

2. Quantile Regression and Conditional Distribution Modeling 

2.1. Quantile regression and conditional distribution modeling 

Let Y be the response variable and X be a vector of q explanatory 
variables. In quantile regression, it is assumed that the conditional pth level 
quantile xpy |  of Y given ,xX =  is a function ( )pp xy α,  of x involving a 

vector of unknown parameter pα  that depends on p. If the purpose is just to 

estimate the quantile regression function ( )pp xy α,  for one or several 

values of p, it is neither necessary to specify the distributional form of the 
conditional distribution of Y given X, nor to model pα  since a separate 

quantile regression can be conducted for each p to estimate the .pα  

Specifically, suppose that a sample of n independent observations ( ),, ii YX  

,...,,1 ni =  is obtained. Then for any given p, a distribution free estimate of 

pα  can be obtained by minimizing with respect to a, 

 ( ( )),, aXyY ipi −ρ∑  (1) 

where ( ) ( )( )0<−=ρ zIpzz  and I denotes the indicator function. This 

procedure thus yields an estimator of the quantile regression function via the 
minimization of (1) for each p. It, however, provides only estimates for 
selected p but not explicitly the conditional distribution of Y given X, and 
does not take into consideration the possible form of the functional 
dependence of pα  on p. Provided that the conditional distribution of Y given 

X can be approximately specified parametrically, a potentially better 
approach is to model the parameters of the conditional distribution as a 
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function of x and use asymptotically optimal method of estimation such as 
the maximum likelihood to estimate the entire conditional distribution. 
Suppose that the conditional distribution of Y given X is a parametric 
distribution involving a vector parameter .β  Denote by ( )β| ;pQ xY  the 

conditional quantile function (and therefore a function of p) of the 
conditional distribution of Y given .xX =  Here β varies with x and is 
therefore a function ( )γβ ,x  of x involving an unknown vector parameter γ. 

Under the present parametric modeling, ( )( )γβ= || ,; xpQy xYxp  so that 

xpy |  can be estimated for any x and p once γ has been estimated. In contrast, 

with the quantile regression approach, it is necessary to fit and estimate the 
regression function ( )pp xy α,  for each p. 

Mak and Nebebe [4] introduced a class of probability distributions 
defined through their quantile functions. They showed that for the case of a 
continuous distribution with support ( ),, ∞∞−  its quantile function can 

always be approximated by ( )( ),pNpk  where ( ) k
kk uuup β++β+β= 10  

is a polynomial of degree k, and ( ) ( )ppN 1−Φ=  is the quantile function of 

the standard normal distribution. We consider in this paper the model 

 ( ) ( )( )pNppQ kxY =β| ;  (2) 

so that ( )′βββ=β k...,,, 10  which is a function ( )γβ ,x  of x with an 

unknown parameter γ. We consider in the next section the special case of 
linear modeling. 

2.2. Linear models 

Theorem 1 below asserts that, under model (2), β is linear in x if and 
only if the quantile regression function is also linear in x. 

Theorem 1. If the conditional distribution of Y given X is specified by 
the conditional quantile function (2), then ( ) xx γ=γβ ,  if and only if xpy |  

px α′=  for any given p. 
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Proof. We first prove the sufficient condition. For any integer ,1+≥ kr  

consider any r values ....,,1,10 rjp j =<<  Let ( ) ....,,
1

′= || xpxpp r
yyY  

We then have 

,GxYp =  

where the ith row of the matrix G is the transpose of .ipα  Since the 

conditional quantile function is given by (2), we have also 

,β= MYp  

where 

( ) ( )

( ) ( )
.

1

1 11

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=

r
k

r

k

pNpN

pNpN
M  

Consequently, 

 β= MGx  (3) 

so that ( ) ,1 xGxMMM γ=′′=β −  where ( ) .1 GMMM ′′=γ −  

The necessary condition is also true since 

( )( ) ( )( ) ,,; pkxYxp xmxmpNpxpQy α′=γ′′=β′==γβ= ||  

where ( ( ) ( ))′= pNpNm k...,,,1  and .mp γ′=α  

3. Estimation of Conditional Distributions 

3.1. Estimation via quantile regression 

Theorem 1 establishes the connection between quantile regression and 
conditional distribution modeling. Furthermore, from (3), we have =Gx  

xMγ  for all x so that 

.GM =γ  
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Thus an estimate of γ can be obtained by first estimating G. Now each row of 
G is the transpose of pα  which can be estimated using quantile regression 

(Chen [1]). Consequently, an estimator Ĝ  of the entire matrix G can be 

obtained from quantile regression. Let ( ) ( ).ˆ GvecGvec −=ε  Then 

 ( ) ( ) ( ) ( ) .ˆ ε+γ⊗=ε+= vecMIGvecGvec  (4) 

Let V be the covariance matrix of ( )Gvec ˆ  or equivalently of ε. Note that (4) 

is of the form of a linear regression model with design matrix MI ⊗=Λ  
and a general covariance matrix V for the error term ε. Consequently, ( )γvec  

can be estimated by 

( ) ( ).ˆ111 GvecVV −−− Λ′ΛΛ′  

In computing the estimate, the matrix V can be replaced by an estimate 
obtained based on asymptotic results or the bootstrap. Such estimates are 
generally available in statistical software. 

3.2. Maximum likelihood estimation 

It can be easily shown (Mak and Nebebe [4]) that the p.d.f. of the 
conditional distribution of Y given xX =  is given by 

 ( ) ( )( )( )
( )( )( ) ,,

,,
β|′
β|ψ=γ| xyFNp

xyFNxyf
k

 (5) 

where ψ is the p.d.f. of the standard normal distribution and ( )γ| ,xyF  is the 

conditional cumulative distribution function which is an inverse function of 
(2) with of course .xγ=β  Thus the asymptotically optimal maximum 

likelihood estimator can be obtained from maximizing the log likelihood 

 ( )( )( )( ) ( )( )( )( ){ }.,ln,ln β|′−β|ψ∑ iikii XYFNpXYFN  (6) 

Note that the function ( )β| ,xyF  can only be obtained numerically by 

inverting the function in (2). The conditional quantile function as defined by 
(2) provides a close approximation to the true conditional quantile function 



T. K. Mak and F. Nebebe 140 

for p inside an interval ( )ε−ε 1,  for a small ε (which can be made arbitrary 

small by increasing the order of the polynomial). This is reflected in the fact 
that the conditional density in (5) may be negative for some extreme values 
of Y for certain polynomials. Thus it is necessary to modify the likelihood 
function for those values using a certain kind of penalized function (Mak and 
Nebebe [4]). 

4. Example 

Shmulei et al. [6] considered data on 506 housing tracts in the Boston 
areas. The response variable is the median value of owner-occupied homes 
(in thousands). As an illustrative example, we consider the predictor LSTAT, 
the percentage of lower status of the population. Our preliminary analysis 
shows that median home values has a nonlinear relationship with LSTAT, 

but is approximately linear in .1 LSTATx =  Furthermore, the median 

home values seem to have been truncated at 50, and we used only 
observations with 50<y  in our analysis (the sample size reduces to 491). 

For ,3=k  we have: 

( ) ( ) ( ){ } ( ){ } ., 3
3

2
210 pNpNpNpQ xY β+β+β+β=β|  

Here we consider linear modeling so that xiii 10 γ+γ=β  for .3,2,1,0=i  

Note that for the case of the median, we have ( ) ,,5.0 01000 xQ xY γ+γ=β=β|  

which is therefore the median regression function. Some important special 
cases deserve some attentions. Consider the following hierarchical models: 

1. When 2β  and 3β  are identically zero (or equivalently, 3121 γ=γ  

)0=  the model reduces to the traditional regression model with normally 

distributed errors and a heterogeneous variance function. 

2. For location-scale models, we have ( ) 10 ββ−y  is identically 

distributed. Consequently, 2β  and 3β  are of the forms: 122 βγ=β  and 

.133 βγ=β  
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3. All the ijγ  are free parameters and the conditional distributions may 

have different shapes. 

Maximum likelihood estimates of the unknown parameters in Models 1 
to 3 above can be obtained by maximizing (6) with respect to the unknown 
parameters in each model. Furthermore, the standard likelihood ratio test can 
be applied to test a sub-model against a larger model. 

Table 1 gives the estimates of the unknown parameters for Models 1 to 3 
above, as well as the values of the likelihood test statistic for testing Model 1 
against Model 2, and Model 2 against Model 3. It is seen that Model 1 is 
rejected, and we conclude that the conditional distribution is non-normal. 
However, Model 2 cannot be rejected and there is no strong evidence against 
the location-scale distribution. In fact additional calculations show that 
Models 2 and 3 yield very similar conditional distributions. Based on Model 
2, the quantile regression functions ( ),, β| pQ XY  as a function of LSTAT is 

plotted in Figure 1 for 75.0,5.0,25.0,01.0=p  and 0.99. The p.d.f. of the 

location-scale distribution of Model 2 is drawn in Figure 2, which appears to 
be right-skewed. 

Table 1. Estimates and log likelihoods of Models 1 to 3 

Model parameter estimates ( )λ− log2 Change in ( )λ− log2  

Model 1 
( ) xx 171.70386.00 +−=β

( ) xx 218.7118.21 +=β  
540.853  

Model 2 

( ) xx 70.67119.00 +−=β  

( ) xx 07.6921.11 +=β  

12 09531.0 β=β  

13 03183.0 β=β  

526.691 14.162 

Model 3 

( ) xx 362.67055.00 +=β  

( ) xx 288.8609.11 +=β  

( ) xx 861.3641.02 +−=β  

( ) xx 673.0046.03 +−=β  

526.473 0.218 
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Figure 1. Quantile functions. 

 
Figure 2. Density of location-scale distribution. 

5. Conclusions 

In this paper, the conditional distribution of the response variable is 
modeled directly as a function of the explanatory variables. Unlike quantile 
regression, once the unknown parameters in the model have been estimated, 
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any quantile regression function can be obtained without the need for the 
estimation of additional regression models. Such properties are useful if the 
objective is to study the entire conditional distribution. However, this 
advantage is made possible at the expense of a somewhat larger collective 
model. For the case of linear modeling, the number of unknown parameters is 
( ) ( ),11 ++ kq  where q is the number of explanatory variables. For 

estimating a single quantile regression function using quantile regression, the 
number of unknown parameters is .1+q  Thus if the purpose is just to obtain 

a few quantile regression function estimates, quantile regression is a more 
direct and preferred approach. For the case where the number of data points 
is sufficiently large, the proposed modeling is capable of giving a more 
comprehensive analysis of the conditional distribution. Furthermore, 
statistical inferences are considerably simpler using a fully parametric 
approach discussed in the present paper, using standard asymptotic theory of 
general maximum likelihood estimation. 
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