
 

Far East Journal of Applied Mathematics 
© 2015 Pushpa Publishing House, Allahabad, India 
Published Online: March 2015 
http://dx.doi.org/10.17654/FJAMFeb2015_115_147 
Volume 90, Number 2, 2015, Pages 115-147 ISSN: 0972-0960  

Received: November 20, 2014;  Accepted: January 31, 2015 
2010 Mathematics Subject Classification: 76S05. 
Keywords and phrases: porous prolate spheroid, micropolar fluid, permeability constant, 
prolate angular and radial spheroidal wave functions, stream lines, drag. 

∗Corresponding author 
Communicated by K. K. Azad 

STOKES FLOW OF AN INCOMPRESSIBLE 
MICROPOLAR FLUID PAST A POROUS SPHEROID 

T. K. V. Iyengar and T. S. L. Radhika∗ 

Department of Mathematics 
BITS PILANI-Hyderabad Campus 
Hyderabad, India 
e-mail: iyengar_nitw@yahoo.co.in 

radhika.tsl@gmail.com 

Abstract 

In this paper, we study the Stokes flow of an incompressible 
micropolar fluid past and within an isolated porous spheroid directed 
along its axis of symmetry. We assume that the flow outside the 
spheroid is governed by the micropolar fluid flow equations under       
the Stokesian approximation and that within the porous spheroid by 
Darcy’s equation. We determine the velocity field ,q  microrotation 

field ν  and the pressure distribution p outside the porous spheroid and 
also the velocity components and the pressure distribution within the 
porous region. The expression for the drag on the spheroid is obtained 
and its variation is studied numerically with respect to the geometric 
parameter, micropolarity parameter and the permeability constant. It  
is observed that as the permeability is increasing, the drag on the 
spheroid is also increasing. For diverse values of the parameters under 
consideration, the variations in the drag and the stream line pattern are 
presented through graphs. 
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1. Introduction 

Payne and Pell in their classic paper [1] have discussed the Stokes flow 
of a viscous fluid past a class of axisymmetric bodies with a uniform velocity 
at infinity which is parallel to the axis of symmetry. Though Stokes flows  
are somewhat rare, their mathematical analysis has received considerable 
attention in view of their occurrence in the important field of small particle 
dynamics. Motivated by this study, the Stokes flow past a sphere has been 
extensively studied for a wide variety of fluids over years. Another geometry 
that has attracted the attention of researchers is that of a spheroid. However, 
all these researches are concerned with solid bodies which are impervious. In 
nature, as well as in diverse chemical processes, the particles that occur are 
porous in character. In view of this, in the past few decades, significant 
contributions have been made mainly dealing with viscous fluid flows past 
axisymmetric porous bodies. Many of the contributions deal with sphere 
geometry. Of course, a few of the works also deal with a porous spheroid or a 
porous approximate sphere. In this context, the works of Joseph and Tao [2], 
Sutherland and Tan [3], Ooms et al. [4], Neale et al. [5], Jones [6], Adler      
[7, 8], Vainshtein et al. [9] and Srinivasacharya [10] need special mention. 
Nanda Kumar and Masliyah [11] studied numerically the flow field inside 
and around an isolated porous sphere. In all these problems, the flow         
field variables outside the porous body are governed by the Stokesian 
approximation of the Navier-Stokes equations and the flow inside the porous 
body is assumed to follow either Darcian model or Brinkman model. 

To explain the behavior of real fluids in certain contexts, Eringen          
has proposed the theory of micropolar fluids [12] in 1966. In the words of 
Lukaszewicz, this is a well founded and significant generalization of the 
classical Navier-Stokes model covering both in theory and applications, 
many more phenomena than the classical one can [13]. Ever since this  
theory appeared, several Stokes flow past axisymmetric bodies dealing with 
micropolar fluid flows have been studied by Lakshmana Rao and Bhujanga 
Rao [14], Lakshmana Rao and Iyengar [15] and Iyengar and Srinivasacharya 
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[16]. Significant contributions are also made by Ramkissoon and Majumdar 
[17] and Ramkissoon [18]. 

All these problems deal with axisymmetric impervious solid objects like 
sphere, spheroid and approximate sphere. The problems dealing with flows 
of micropolar fluids past porous bodies, it seems, have not been given the 
attention which they richly deserve. This is possibly due to the reason that 
the micropolar fluid flow equations constitute a coupled system of partial 
differential equations and in the case of porous bodies determining the 
arbitrary constants in the solution using the appropriate boundary conditions 
more complicated than in the counterpart situations in viscous fluids. A 
micropolar fluid flow is characterized by a coupled system of vector 
differential equations involving the fluid velocity q  and the microrotation 

vector ν  (independent of )q  in addition to the usual equation of continuity. 

The equations are to be solved employing the usual no slip velocity on       
the boundary and the hyperstick boundary condition for the microrotation 
vector ν  which stipulates that the microrotation on an impervious boundary 
coincides with the angular velocity of the boundary. In the case of porous 
boundaries, however, these are to be suitably modified. In the present 
problem, we have employed the following boundary conditions: At the 
boundary of the porous body (i) the normal velocity component is 
continuous, (ii) the tangential velocity vanishes, (iii) the microrotation 
component vanishes and (iv) the pressure is continuous. The problems, of 
course, can also be investigated with other possible boundary conditions. 

In this paper, we study the flow of an incompressible micropolar fluid 
past a porous prolate spheroid kept in an infinite expanse of the fluid with 
uniform streaming at infinity along the direction of the axis of the spheroid. 
We assume that the flow outside the spheroid is governed by the micropolar 
fluid flow equations under the Stokesian approximation and that within      
the porous spheroid by Darcy’s equation. We determine the velocity field ,q  

microrotation field ν  and the pressure distribution p outside the porous 
spheroid and also the velocity components and the pressure distribution 
within the porous region. The expressions for the velocity and microrotation 
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components are obtained in terms of Legendre functions, associated 
Legendre functions, radial prolate spheroidal wave functions and angular 
prolate spheroidal wave functions [20]. The stresses acting on the outer 
surface are estimated and the drag experienced by the spheroid is obtained. 
The variation of the drag on the spheroid is studied numerically with respect 
to the geometric parameter, micropolarity parameter and the permeability 
constant. The results are displayed through graphs. The stream line pattern 
for various values of parameters under consideration is also plotted. 

The analysis for the case of the oblate spheroid can also be studied on 
similar lines and hence is not attempted here. 

2. Basic Equations 

The field equations governing an incompressible micropolar fluid flow 
are [12] 

( ) ,0=ρ+
∂
ρ∂ qdivt  (1) 

( ) qcurlcurlkcurlkpgradfdt
qd +µ−ν+−ρ=ρ  

( ) ,21 qdivgradk+µ+λ+  (2) 

( ) νγ+β+α+νγ−+ν−ρ=νρ divgradcurlcurlqcurlkkldt
dj 2  (3) 

in which ,q  ν  are velocity and microrotation vectors, ,f  l  are body force 

per unit mass, body couple per unit mass, respectively, and p is the fluid 
pressure at any point. ρ and j are density of the fluid and gyration parameters, 
respectively, and are assumed to be constants. The material constants 
( )k,,1 µλ  are viscosity coefficients and ( )γβα ,,  gyro viscosity coefficients. 

These conform to the inequalities 

;023;02;0 1 ≥+µ+λ≥+µ≥ kkk  

03;;0 ≥γ+β+αγ≤β≥γ  (4) 

and are assumed to be constants. 
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The stress tensor ijt  and the couple stress tensor ijm  are given by 

 ( ) ( ) ( ),21 mmljmijijij vwkekqdivpt −ε++µ+δ+λ+−=  (5) 

( ) ijjiijij vvdivm ,, γ+β+δνα=  (6) 

in which the symbols mijij we 2,,δ  and ,mv  respectively, denote Kronecker 

symbol, components of rate of strain, vorticity vector components and 
microrotation vector components. Comma denotes covariant differentiation. 

3. Mathematical Formulation of the Problem 

Consider a prolate spheroid S. Let O be the center of the spheroid and 1F  

its focus. Introduce the cylindrical polar coordinate system ( )zr ,, θ  with 

respect to O as origin and 1OF  extended on either side as z-axis. 

 

Let us consider the slow stationary flow of an incompressible micropolar 
fluid past the spheroid S with a uniform flow with velocity U in the direction 
of the z-axis far away from the body. Let the region inside S be porous. The 
fluid flow generated is assumed to be axially symmetric and is the same in 
any meridian plane, and thus the flow variables will be independent of the 
azimuth angle. 

We shall introduce the prolate spheroidal coordinates ( )ϕηξ ,,  with 

( )φηξ eee ,,  as base vectors and ( )321 ,, hhh  as the corresponding scale 

factors through the definition 

 ( ).cosh η+ξ=+ icirz  (7) 
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We assume that the flow is Stokesian as in the classical investigation of 
the problem by Payne and Pell [1] and Lakshmana Rao and Iyengar [15] and 
this enables us to drop the inertial terms in the momentum equation and 
bilinear terms in the balance of first stress moments. 

Let ( ( ) ( ) ( ) )111 ,, pq ν  denote the velocity, microrotation and pressure in 

the region 1S  and let ( ( ) ( ) )00 , pq  be the velocity and pressure in the porous 

region .0S  

In view of the symmetry of the flow, we take 

 ( ) ( )( ) ( )( ) ,,, 111
ηξ ηξ+ηξ= eveuq  (8) 

( ) ( )( ) ,,11
φηξ=ν eC  (9) 

( ) ( )( ).,11 ηξ= pp  (10) 

Ignoring the body force and body couple f  and ,l  respectively, in the 

field equations, the basic equations governing the Stokesian flow in region 

1S  can be written in the form 

( ( ) ) ,01 =qdiv  (11) 

( ) ( ) ( ) ( ) ,0111 =+µ−ν+− qcurlcurlkcurlkpgrad  (12) 

( ) ( ) ( ) ( ) ( ) .02 1111 =νγ+β+α+νγ−+ν− divgradcurlcurlqcurlkk  (13) 

In view of the continuity equation, we introduce the stream function ( )1ψ  

through 

 ( )
( )

( )
( )

.;
1

1
31

1
1

32 ξ∂
ψ∂=

η∂
ψ∂−= vhhuhh  (14) 

Using (8) and (14), 

 ( ) ( )
φ





 ψ= eEhqcurl 12

3
1 1  (15) 
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in which the Stokes stream function operator 2E  is given by 

 .
32

1
31

2
21

32 




 







η∂
∂

η∂
∂+







ξ∂
∂

ξ∂
∂= hh

h
hh

h
hh

hE  (16) 

Evaluating the expressions for ( ),1qcurlcurl  ( )1νdiv  (which is equal        

to zero), ( ) ,1νcurl  ( ),1νcurlcurl  the basic equations describing the flow in 

region 1S  are 

 
( )

( ( ) ) ( ( ) ) ,01 12
32

1
3

32

1

1
=ψ

η∂
∂+µ−

η∂
∂+

ξ∂
∂− Ehh

kChhh
kp

h  (17) 

( )
( ( ) ) ( ( ) ) ,01 12

31
1

3
31

1

2
=ψ

ξ∂
∂+µ+

ξ∂
∂−

η∂
∂− Ehh

kChhh
kp

h  (18) 

( ) ( ) ( ) ,012 1
2
3

212
3

1 =







−∇γ+ψ+− C

h
Eh

kkC  (19) 

where 2∇  is the Laplacian operator given by 

 .1
2

13
1

32
321

2















η∂
∂

η∂
∂+







ξ∂
∂

ξ∂
∂=∇ h

hh
h
hh

hhh  (20) 

Using the identity 

 ( ) ( ( ) ),1 1
3

21
2
3

2
3 ChEC

h
h =








−∇  (21) 

equation (19) can be recasted in the form 

 ( ) ( ) ( ( ) ).2 1
3

2121
3 ChEkECkh γ+ψ=  (22) 

Eliminating  ( )1p  from (17) and (18), we have 

 ( ) ( ) ( ( ) ) .01
3

214 =−ψ+µ ChkEEk  (23) 

From (22) and (23), we get 

 ( ) ( ) ( ) ( ).2 14
2

121
3 ψ+µγ+ψ= E

k
kECh  (24) 
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Operating 2E  on equation (24) and using equation (23), we obtain 

 ( ) 014
2

2
6 =ψ







 λ− E
c

E  (25) 

which can be written as 

 ( ) ,01
2

2
24 =ψ







 λ−
c

EE  (26) 

where 

 ( )
( ) .2

2

2

k
kk

c +µγ
+µ=λ  (27) 

Thus, the flow variables in the region 1S  are completely determinable 

from the system of partial differential equations (26) and (24) using the 
appropriate boundary and regularity conditions. 

As mentioned earlier, the flow in the porous region 0S  is assumed to be 

Darcian. In view of this, the equations governing the flow in the region 0S  

are given by 

( ( ) ) ,00 =qdiv  (28) 

 ( ) ( ) ( )010 pgradkq −=  (29) 

which implies that the pressure ( )0p  is a harmonic function given by the 

equation 

 ( ) .002 =∇ p  (30) 

Boundary conditions 

The determination of the relevant flow field variables ( ),iψ  ( )iC  and 
( )ip  is subjected to the following boundary and regularity conditions: 
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  (i) Continuity of the normal velocity component on the interface: 

 ( ) ( )01 uu =  on S. (31) 

 (ii) Vanishing of the tangential velocity components on the interface: 

 ( ) 01 =v  on S. (32) 

(iii) 

 ( )( ) 0,1 =tsC  on S. (33) 

(iv) Continuity of pressure on the interface: 

 ( ) ( )01 pp =  on S. (34) 

In addition to the above boundary conditions, it is natural to have 
regularity of the flow field variables on the axis of symmetry. Further, as the 
flow is a uniform stream at infinity, we have 

 2
2
1 Ur−=ψ  far away from the body. (35) 

4. Solution for the Flow in the Region 1S  

Since we are dealing with a prolate spheroidal coordinate system, we 
have 

( ) ( ) ( ) ,11, 22
3

22
21 tschtschh −−=−==  (36) 

( )
( ) ( ) ,111

2
2

2

2
2

222
2










∂
∂−+

∂
∂−

−
=

t
t

s
s

tsc
E  (37) 

( )
( ) ( ) ,22111

2
2

2

2
2

222
2









∂
∂−

∂
∂+

∂
∂−+

∂
∂−

−
=∇ ttss

t
t

s
s

tsc
 (38) 

where 

 .cos;cosh η=ξ= ts  (39) 
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We assume that the boundary of the spheroid is given by .1ss =  

The solution of equation (26) can be obtained by superposing the 
solutions of the equations 

 04 =ψE  (40) 

and 

 .02

2
2 =ψ







 λ−
c

E  (41) 

Solution of equation (40) 

The solution of (40) can be written in the form 

 ,10 ψ+ψ=ψ  (42) 

where 

 ( ) ( )222
0 112

1 tsUc −−−=ψ  (43) 

and 

 ( ) ( ) ( ) ( )∑
∞

=
++ ′−−=ψ

0
11

222
1 ,11

n
nn tPsGtsc  (44) 

where ( )tPn 1+′  is the derivative of ( )tPn 1+  with respect to t. The function 

0ψ  in (43) represents the stream function due to a uniform stream of 

magnitude U parallel to the axis of symmetry far away from the spheroid. We 

notice that 00
2 =ψE  and hence .00

4 =ψE  In view of this, 1ψ  must satisfy 

 .01
4 =ψE  (45) 

It can be verified that the expression 

 ( ) ( ) ( ) ( )∑
∞

=
+++ ′′−−=

0
111

222 ,11
n

nnn tPsQAtscf  (46) 
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where ( )sQn 1+′  is the derivative of Legendre function of second kind 

( )sQn 1+  with respect to s, satisfies .02 =fE  In view of this, we shall 

impose the restriction on the functions ( )sGn 1+  through 

 ( ) ( ) ( ) ( )∑
∞

=
+++ ′′−−=ψ

0
111

222
1

2 11
n

nnn tPsQAtscE  (47) 

so that .01
4 =ψE  

Now operating 2E  on equation (44) and equating the result with the 
right hand side of (47), we get 

[{( ) ( )} ( ) ( ) ( )] ( )∑
∞

=
+++ ′++−″−

0
111

2 211
n

nnn tPsGnnsGs  

( ) ( ) ( )∑
∞

=
+++ ′′−=

0
11

222
1 .

n
nnn tPsQtscA  (48) 

Following (Lakshmana Rao and Iyengar [15]), we note that ( )sGn 1+  is 

governed by the differential equation 

( ) ( ) ( ) ( ) ( ) ( ),341 1111
2 sgsGnnsGssGs nnnn ++++ =+−′+′′−  (49) 

where 

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( )sQAnn

nnAnn
nncsg nnnn 331

2
1 7252

43
5232

21
++++ ′





++
++−

++
++=  

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( ).3212

21
1212

1
111

2 sQAnn
nnAnn

nnc nnn −+− ′





++
++−

+−
−−  (50) 

Equations (49) and (50) are valid for ...,3,2,1,0=n  with an understanding 

that the term involving 

 ( )sQ 1−′  is 
12 −

−
s

s  and .01 =−A  (51) 
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Using the method of variation of parameters, we note that 

( ) ( ) ( )sQBsPsG nnnnn 11111 +++++ ′+′α=  

( )
( ) ( ) ( ) ( ) ( )∫ ++

+ ′−
++

′
−

s

s nn
n dssgsQsnn

sP
1

11
21 121  

( )
( )( ) ( ) ( ) ( )∫ ++

+ ′−
++

′
+

s

s nn
n dssgsPsnn

sQ
1

11
21 121  for ...,,2,1,0=n (52) 

where 1ss =  represents the value specifying the spheroid past in which the 

flow is being studied. Thus, the flow region 1S  is given by .1ss >  As 

,∞→s  ( )1ψ  must tend to 0. In view of this, we have to take .01 =α +n  

Hence the appropriate expression for ( )sGn 1+  is given by 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )∫ ++

+
+++ ′−

++
′

−′=
s

s nn
n

nnn dssgsQsnn
sPsQBsG

1
11

21
111 121  

( )
( ) ( ) ( ) ( ) ( )∫ ++

+ ′−
++

′
+

s

s nn
n dssgsPsnn

sQ
1

11
21 121  

for ....,2,1,0=n  (53) 

As ( )sgn 1+  involves one set { }1+nA  of arbitrary constants, the functions 

( )sGn 1+  involve two sets of arbitrary constants { }1+nA  and { }.1+nB  Using 

this in equation (44), we get .1ψ  

Solution of equation (41) 

To solve equation (41) (viz.) ,02

2
2 =ψ







 λ−
c

E  we take the solution in 

the form 

 ( ) ( ) ( ) ( ).11 22 tSsRtsc −−=ψ  (54) 

Substituting this in equation (41), we notice that ( )sR  and ( ),tS  respectively, 

satisfy the differential equations 
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 ( ) ( ) ( ) ( ) 0
1

121 2
222 =








−
+λ+Λ−′+′′− sR

s
ssRssRs  (55) 

and 

 ( ) ( ) ( ) ( ) ,0
1

121 2
222 =








−
−λ+Λ+′−′′− tS

t
ttSttSt  (56) 

where Λ is a separation constant [20]. These are spheroidal wave differential 
equations of radial and angular type, respectively. To ensure regularity of 
solution at infinity and in the flow region, we have to choose the solutions of 
equations (55) and (56) in the form 

( )( ) ( ) ( ) ( )
21

3

2
1

1,0

1/23
1

121, 






 −













λ++=λ

−∞

=

+ ∑ s
sidrrisiR

r

n
r

n
n  

( ) ( ) ( ) ( )∑
∞

=
+ λλ++






πλ

×
1,0

23
1/

21
212

r
r

n
r sKidrr  (57) 

and 

 ( )( ) ( ) ( ) ( )∑
∞

=
+λ=λ

1,0

1
1

1/1
1 ,,

r
r

n
rn tPidtiS  (58) 

where 

 ( ) ( ) ( )tPdt
dttP rr 1

21
1 1 ++ −=  (59) 

denotes the associated Legendre function of the first kind. 

The coefficients ( )λid n
r
1  in the above expansions are constants depending 

on the parameter iλ and the suffix r has the value ...,5,3,1  or ...,6,4,2,0  

depending upon the odd or even values of .1+n  We have, therefore, the 
solution 
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 ( ) ( ) ( )( ) ( )( )∑
∞

=

λλ−−=ψ
1

1
1

3
1

22
2 ,,,11

n
nnn tiSsiRCtsc  (60) 

where s’nC  are constants. 

Hence, the stream function for the region 1S  is given by 

( )( ) ( ) ( )2221 112
1, tsUcts −−−=ψ  

( ) ( ) ( ) ( )∑
∞

=
++ ′−−+

0
11

222 11
n

nn tPsGtsc  

( ) ( ) ( )( ) ( )( )∑
∞

=

λλ−−+
1

1
1

3
1

22 .,,11
n

nnn tiSsiRCtsc  (61) 

We can see that 

( ) ( ) ( ) ( ) ( )∑
∞

=
+++ ′′−−=ψ

0
111

22212 11
n

nnn tPsQAtscE  

( ) ( ) ( )( ) ( )( )∑
∞

=

λλ−−λ+
1

1
1

3
1

22
2

,,11
n

nnn tiSsiRCtsc  (62) 

and 

( ) ( ) ( ) ( )( ) ( )( )∑
∞

=

λλ−−λ=ψ
1

1
1

3
1

22
3

4
14 .,,11

n
nnn tiSsiRCts

c
E  (63) 

Using equations (62) and (63) in equation (24), we have 

( )( ) ( ) ( ) ( ) ( )∑
∞

=
+++ ′′−−=

0
111

221 112,
n

nnn tPsQAtsctsC  

( )( ) ( )( )∑
∞

=

λλ+µλ+
1

1
1

3
12

2
.,,

n
nnn tiSsiRCk

k
c

 (64) 
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Pressure distribution in 1S  

Equations (17) and (18) using equation (36) lead to 

( ) ( )
( )

( ( ) ) ( )
( )

( ( ) )14
2

12
2

1

1212
2 ψ

∂
∂

−
+µγ−ψ

∂
∂

−
+µ=

∂
∂ Etskc

kEtsc
k

s
p  (65) 

and 

( ) ( )
( )

( ( ) ) ( )
( )

( ( ) ).
1212

2 14
2

12
2

1
ψ

∂
∂

−
+µγ+ψ

∂
∂

−
+µ−=

∂
∂ Estkc

kEstc
k

t
p  (66) 

Using the expressions in equations (62) and (63) in (65) and (66) and 
integrating the resulting equations, we get 

( )( ) ( ) ( ) ( ) ( ) ( )∑
∞

=
+++ +++µ−=

0
111

1 .212
2,

n
nnn tPnnsQAcktsp  (67) 

Thus, ( )( ),,1 tsψ  ( )( )tsC ,1  and ( )( )tsp ,1  given in equations (61), (64)       

and (67) give, respectively, the stream function, microrotation and pressure 
distribution for the region .1S  These involve the three sets of constants { },nA  

{ },nB  { }nC  as can be seen from equations (61), (53) and (64). 

5. Solution for the Flow in the Region 0S  

We have seen earlier that the flow in the porous region 0S  is governed 

by equations (28) and (29) which lead to equation (30). Equation (30) 

implies that the pressure distribution ( )( )tsp ,0  in 0S  is harmonic and hence 

it is given by 

 ( )( ) ( ) ( )( ) ( )∑
∞

=

β+α=
0

0 ,,
n

nnnnn tPsQsPtsp  (68) 

where { }nα  and { }nβ  constitute two sets of arbitrary constants to be 

determined. This ( )( )tsp ,0  has to be regular within the spheroid and hence 
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0=βn  for all n. The velocity components ( )tsu ,0  and ( )( )tsv ,0  can be 

determined from equations (29) and (68). 

In view of the continuity equation in the region ,0S  we introduce the 

stream function ( )0ψ  through 

 ( )
( )

( )
( )

ξ∂
ψ∂=

η∂
ψ∂−=

0
0

31
0

0
32 ; vhhuhh  (69) 

as in equation (14). Using (68) and (29), the stream function ( )0ψ  takes the 

form 

 ( )( ) ( ) ( ) ( ) ( )∑ ∫
∞

=
−

+++ ′α−−=ψ
0

1 121212
210 .1,

n

t
nnn dttPsPsckts  (70) 

Thus, in all, we have four sets of unknown constants { },nA  { },nB  { },nC  

{ }nα  and these can be determined by using the boundary conditions given 

by equations (31), (32), (33) and (34). 

6. Velocity and Microrotation Components in the Regions 10, SS  

The expressions for the velocity components ( )( )tsu ,1  and ( )( )tsv ,1  are 

as 

( )( )
( ) ( )

( )
,

1

1,
1

2222
1

tstsc
tsu

∂
ψ∂

−−
=  

( )( )
( ) ( )

( )
.

1

1,
1

2222
1

sttsc
tsv

∂
ψ∂

−−
=  (71) 

Further, 

( )( )
( )

( )

( )
,1,

0

22

21
0

s
p

tsc

sktsu
∂

∂

−

−−=  
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( )( )
( )

( )

( )
.1,

0

22

21
0

t
p

tsc

tktsv
∂

∂

−

−=  (72) 

These can be obtained by using the expressions for ( )1ψ  given in equation 

(61) and ( )0p  given in equation (68). Thus, the expressions for the velocity 

components ( ) ( ) ( ) ( );,;, 0011 vuvu  the microrotation component ( )1C  can all 

be written explicitly. Using these expressions and those of ( )0p  and ( )1p  in 

the boundary conditions given by equations (31), (32), (33) and (34), we can 
write the equations that lead to the determination of the arbitrary constants. 

7. Determination of Arbitrary Constants 

In view of the continuity of the normal velocity components on the 
interface 1ss =  given by equation (31), we have 

( ) ( ) ( ) ( ) ( ) ( )∑
∞

=
++ ++−−−

0
111

2
1

22
1

2 2111
n

nn tPnnsGscsUc  

( )( ) ( ( )( ))∑
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=

λ−λ−−
1

1
1

2
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3
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2
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n
nnn tiStdt

dsiRCsc  

( ) ( ) ( ) ( )∑
∞

=
+++ ′α−−=

0
1111

2
1

1 .1
n

nnn tPsPsck  (73) 

As the tangential velocity components are to vanish on the boundaries, 
equation (32) leads to 

( ) ( ) (( ) ( )) ( ) ( )∑
∞

=
+=+ ′−−+′−−

0
1

2
1

22
1

2
1

2 111
1

n
nssn tPtsGsds

dctPtsUc  

[ ( )( )]∑
∞

=
=λ−+

1
on

3
1

2
1

,1
n

ssnn siRsds
dCc  
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( ) ( ) ( )∑
∞

=
+ =′−λ×

1,0
1

21/ .01
r

r
n

r tPtid  (74) 

The condition (33) on microrotation gives rise to the equation 

( ) ( ) ( )∑
∞

=
+++ ′−′−

0
1

2
111

2
1 112

n
nnn tPtsQAsc  

( ) ( )( ) ( ) ( )∑ ∑
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=
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=
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1 1,0
1
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1

3
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r

n
rmn tPtidsiRC
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The continuity of pressure on the interfaces given by equation (34) yields 

( ) ( ) ( ) ( ) ( )∑
∞

=
+++ +++µ−

0
1111 212

2

n
nnn tPnnsQAck  

( )( ) ( )∑
∞

=
+++α=

0
1111 .

n
nnn tPsP  (76) 

Using the orthogonality property of Legendre functions and the associated 
Legendre functions, equations (73) to (76) give rise to the following 
equations adopting some simple algebraic manipulation: 

( ) ( ) ( ) ( ) ( )2111 111
2
1

2
0

2
1

2 ++′−−δ− ++ nnsQBscsUc nnn  

( ) ( ) ( )( ) ( )∑
∞

=

λλ−++−
1

1
1

3
1

2
1 ,121

m

m
nnm idsiRsCnnc  

( ) ( ) ( )( ),1 111
2
1

1 sPsck nn ++ ′α−−=  (77) 

( ) ( ) ( )111
2

01
2 21 sQnnBcsUc nnn ++ +++δ−  

[ ( )( )] ( ) ,0,1
1

1
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3
1

2
1∑

∞

=
= =λλ−+

m

m
nssnm idsiRsds

dCc  (78) 



Stokes Flow of an Incompressible Micropolar Fluid … 133 

( ) ( ) ( ) ( )( ) ( ) ,0,12
1

1
1

3
12

2
111

2
1 ∑

∞

=
++ =λλλ+µ+′−

m

m
nmmnn idsiRC
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ksQAsc  (79) 

( ) ( ) ( ) ( ) ( ).212
2

111111 sPnnsQAck
nnnn ++++ α=+++µ−  (80) 

From equations (77) and (78), the coefficient 1+nB  can be eliminated and 

using (79) and (80), we get a non-homogeneous linear system of algebraic 
equations for the determination of constants { }.nC  This system is seen to be 

 ∑
∞

=

=δ−=
1

0 ...,,2,1,0,
m

nmnm nUcCD  (81) 

where 

nmD  
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The above linear system splits into two complementary subsystems 
where n is even and n is odd. The subsystem when n is odd reduces to the 
homogeneous set of equations 

 ∑
∞

=
+ =

1
22,12 0

m
mmn CD  (83) 
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and we, therefore, have .0642 === CCC  Hence ,nA  nB  are all zero 

when n is even. The analytical determination of the odd suffixed constants is 
not possible. In view of this, we propose to determine them numerically. 
Here we truncate the system (81) to fifth order and numerically evaluate the 
coefficients ,1C  ,3C  ,5C  7C  and .9C  This is the maximum extent to which 

the order of truncation can be extended, since the coefficients of spheroidal 
wave functions needed for a higher order truncation are not explicitly 
available in the standard literature [20]. 

After determining these, it is possible to evaluate numerically the other 
constants. The details of the manipulations are omitted in view of the 
lengthiness of the expressions and the final system only is reported here. 

8. Determination of Drag 

To evaluate the drag on the body, we need the stress components and the 
couple stress components. The stress tensor is given by equation (5) and we 
need to evaluate the rate of strain components ije  and the spin component 

.φω  

The velocity vector q  can be written in the form 

 ,ηξ += eveuq  (84) 

where 

( ) ( )
,

1

1
2222 tstsc

u
∂
ψ∂

−−
=  

( ) ( )
.

1

1
2222 sttsc

v
∂
ψ∂

−−
=  (85) 

The rates of strain components are given by 
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1
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t

tsc
e  
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.0==== φηηφφξξφ eeee  The spin qcurl2
1=  has only one non-zero 

component φω  in the direction of the vector φe  and this is given by 

 
( ) ( )

.
112

1 2
22

ψ
−−

=ωφ E
tsc

 (87) 

The surface stress ijt  for the micropolar fluid is given by equation (5) 

and we find that the only non-vanishing components of ijt  are ,ξξt  ,ηηt  

,φφt  ξηt  and .ηξt  These are given by 

( ) ,2 ξξξξ +µ+−= ekpt  

( ) ,2 ηηηη +µ+−= ekpt  

( ) ,2 φφφφ +µ+−= ekpt  

( ) ,2 φξηξη ω++µ= kekt  

( ) .2 φηξηξ ω−+µ= kekt  (88) 

The stress vector t  on the boundary of the body is given by 

 .ηξηξξξ += etett  (89) 
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We find that 
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and 

( )
1sst =ξη  

( ) ( ) ( ) ( ) ( )∑
∞

=
+++ ′′−−+µ=

0
1111

22
1 112

2

n
nnn tPsQAtsck  

( ) ( )( ) ( )( )∑
∞

=

λλλ+µ+
0

1
11

3
12

2
,,2

2

n
nnn tiSsiRC

c
k  

( )
( )

( ) ( ) ( ) ( )( ) ( )∑
∞

=
+++++ ′′β+′α−−

−
+µ+

0
1111111

22
122

1
2 112

n
nnnnn tPsQsPts

tsc
k  

( ) ( )

( )
( )( ) ( ) ( )( ) ( )∑

∞

=
+++++ ′′β+′α−−

−

+µ−
0

1111111
22

1222
1

2

1
1 112

n
nnnnn tPsQsPts

tsc
ksk  

( ) ( )
( ) ( ) ( ) ( )





′′−−

−−
+ ∑

∞

=
+++

0
1111

22
1

2
22

1

11
112 n

nnn tPsQAtsc
tsc

k  

( ) ( ) ( )( ) ( )( ) .,,11
0

1
1

3
1

22
1

2






λλ−−λ+ ∑

∞

=n
nnn tiSsiRCtsc  (91) 

The stress vector has the component 

 ( ) ( )
1
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1
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−
=  (92) 
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in the direction of the axis of symmetry and 

 ( ) ( )
1

111 22
22

1
ssradial tsttts
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stress =ξηξξ −+−

−
=  (93) 

in the radial direction of the meridian plane. The resultants of these two 
vector components over the entire surface of the body are obtained by 
integration and it is seen that the radial component integrates to zero. Thus, 
the resultant of the stress vector on the body is the force in the direction of 
the axis of symmetry and this gives the drag on the body. The drag D can be 
written in the form 
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and this simplifies to 
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Using the relations 
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and 
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ttP
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drawn from “The Theory of Spherical and Ellipsoidal Harmonics” due to 
Hobson [19], the drag simplifies to 
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Using equation (79), we may eliminate the series involving the constants 

nC  in the above expression for the drag and after further simplification we 

see that the drag due to the surface stress is given by the simple formula 

 ( ) .23 1
3AckD π+µ4=  (99) 

Introducing the non-dimensionalization scheme given by 

( ) .~24;~;~
121 DUckDCUcCA

c
UA nnnn +µπ=== ++  (100) 

It is seen, after dropping the tildes, that the non-dimensional drag D is given 
by 
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This depends upon the eccentricity of the spheroid, the material constant           
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λ, the micropolarity parameter k
kpl
+µ

=  and the non-dimensional 

permeability parameter kp defined through ( ) .2
1

c
kkkp +µ=  

9. Special Case: (Impervious Spheroid) 

When ( ) ,01 =k  then the problem reduces to the case of flow past an 

impervious spheroid. In this case, the system is 

 ∑
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The drag experienced is given by 
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The result agrees with that obtained by Lakshmana Rao and Iyengar [15]. 
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10. Numerical Discussion 

The non-homogeneous linear system given in equation (81) is truncated 
to a 55×  system as mentioned already. The system is numerically solved and 
the needed constant 1A  is determined using equation (102). The numerical 

work is carried out for the micropolarity parameter 6.0,4.0,2.0=pl  and 

0.8; the material constant 5.1,2.1,0.1=λ  and 1.8 and permeability parameter 

001.0=kp  and 0.02. The variation of the drag is displayed through Figures 

1 to 6. 

It can be noticed from Figure 1 that for a fixed permeability parameter 
,001.0=kp  the drag on the spheroid increases steadily as λ increases for            

a fixed value of the micropolarity parameter pl. As pl increases the drag 
decreases for each of the λ’s. The same trend is observed for other values       
of the permeability parameter 02.0=kp  (Figure 2). As the micropolarity 

viscosity k increases, pl increases and thus a part of energy will be spent in 
opposing the rotational nature of the fluid particle and this naturally results in 
a reduction in drag. Thus, an increase in pl for a fixed λ leads to a reduction 
in drag as can be seen in Figures 1 and 2. 

 

Figure 1. Variation of drag with respect to λ for different values of the 
polarity parameter pl when 2.11 =s  and the permeability parameter =kp  

.001.0  
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Figure 2. Variation of drag with respect to λ for different values of the 
polarity parameter pl when 2.11 =s  and the permeability parameter =kp  

.02.0  

 
Figure 3. Variation of drag with respect to s for different values of λ when 
the polarity parameter 4.0=pl  and the permeability parameter .001.0=kp  

 
Figure 4. Variation of drag with respect to s for different values of λ when 
the polarity parameter 4.0=pl  and the permeability parameter .02.0=kp  
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Figure 3 shows the variation of drag on the spheroid with the eccentricity 

1s  for polarity parameter 4.01 =p  and permeability parameter .001.0=kp  

As 1s  is increasing for different values of the polarity parameter pl with fixed 

permeability constant 001.0=kp  and ,5.1=λ  the drag is increasing. An 

increase in 1s  leads to the increase in the volume of the porous region in the 

spheroid. This naturally leads to greater absorption of the fluid in the vicinity 
of the outer boundary .1ss =  As the volume of the body itself is increasing 

with increase in ,1s  we can expect that the body experiences a larger drag. 

Figure 4 also indicates the same trend for the drag with polarity parameter 
4.0=pl  and permeability parameter .02.0=kp  

Figures 5 and 6 indicate the variation of the drag with respect to the 
geometric parameter 1s  for different values of the polarity parameter pl when 

kp and λ are fixed as (0.001, 1.5) and (0.02, 1.5). The drag is not changing 
much for an increase of 1s  from 1.2 to 1.5 but therefrom, as 1s  increases it is 

showing an increasing trend. 

In the present problem, plotting the stream lines is a difficult task in view 

of the complicated nature of the stream functions ( )0ψ  and ( ).1ψ  Using the 

expressions for the radial and angular prolate spheroidal wave functions and 
the related coefficients, we have attempted to compute these by a program 
developed and computed the values of the stream functions for values of 
( ),, ts  within and outside a spheroid .21 =s  

The stream line pattern for diverse values of λ, micropolarity parameter 
pl and permeability parameter kp is presented. It is observed that for smaller 
permeability parameter, the flow is almost uniform as in Figures 7, 8 and 9. 
As the permeability is increased, the flow field is seen to be disturbed as is 
observed by Raja Sekhar and Osamu Sano in their study of viscous flow past 
a circular/spherical void in porous media [21]. This phenomenon is seen in 
Figure 10. 
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As the material constant λ is further increased, with a large permeability, 
the micropolar nature of the fluid must be further interacting and dividing 
stream line patterns which are generated and we find the stream line patterns 
as in Figures 11 and 12. Suitable experimental studies concerning micropolar 
fluid flow past spherical or spheroidal objects may throw further light on this 
aspect. 

 

Figure 5. Variation of drag with respect to s for different values of the 
polarity parameter pl when the permeability parameter 001.0=kp  and =λ  

.5.1  

 

Figure 6. Variation of drag with respect to s for different values of the 
polarity parameter pl when the permeability parameter 02.0=kp  and =λ  

.5.1  
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Figure 7. Stream lines for .01.0,4.0,2.1 ===λ kppl  

 
Figure 8. Stream lines for .01.0,6.0,2.1 ===λ kppl  

 
Figure 9. Stream lines for .01.0,6.0,5.1 ===λ kppl  
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Figure 10. Stream lines for .02.0,4.0,2.1 ===λ kppl  

 
Figure 11. Stream lines for .1.0,6.0,0.2 ===λ kppl  

 

Figure 12. Stream lines for .1.0,6.0,0.3 ===λ kppl  
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