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Abstract

In this paper, we study the Stokes flow of an incompressible
micropolar fluid past and within an isolated porous spheroid directed
along its axis of symmetry. We assume that the flow outside the
spheroid is governed by the micropolar fluid flow equations under
the Stokesian approximation and that within the porous spheroid by
Darcy’s equation. We determine the velocity field §, microrotation

field v and the pressure distribution p outside the porous spheroid and
also the velocity components and the pressure distribution within the
porous region. The expression for the drag on the spheroid is obtained
and its variation is studied numerically with respect to the geometric
parameter, micropolarity parameter and the permeability constant. It
is observed that as the permeability is increasing, the drag on the
spheroid is also increasing. For diverse values of the parameters under
consideration, the variations in the drag and the stream line pattern are
presented through graphs.

Received: November 20, 2014; Accepted: January 31, 2015

2010 Mathematics Subject Classification: 76S05.

Keywords and phrases: porous prolate spheroid, micropolar fluid, permeability constant,

prolate angular and radial spheroidal wave functions, stream lines, drag.

*Corresponding author
Communicated by K. K. Azad



116 T. K. V. Iyengar and T. S. L. Radhika

1. Introduction

Payne and Pell in their classic paper [1] have discussed the Stokes flow
of a viscous fluid past a class of axisymmetric bodies with a uniform velocity
at infinity which is parallel to the axis of symmetry. Though Stokes flows
are somewhat rare, their mathematical analysis has received considerable
attention in view of their occurrence in the important field of small particle
dynamics. Motivated by this study, the Stokes flow past a sphere has been
extensively studied for a wide variety of fluids over years. Another geometry
that has attracted the attention of researchers is that of a spheroid. However,
all these researches are concerned with solid bodies which are impervious. In
nature, as well as in diverse chemical processes, the particles that occur are
porous in character. In view of this, in the past few decades, significant
contributions have been made mainly dealing with viscous fluid flows past
axisymmetric porous bodies. Many of the contributions deal with sphere
geometry. Of course, a few of the works also deal with a porous spheroid or a
porous approximate sphere. In this context, the works of Joseph and Tao [2],
Sutherland and Tan [3], Ooms et al. [4], Neale et al. [5], Jones [6], Adler
[7, 8], Vainshtein et al. [9] and Srinivasacharya [10] need special mention.
Nanda Kumar and Masliyah [11] studied numerically the flow field inside
and around an isolated porous sphere. In all these problems, the flow
field variables outside the porous body are governed by the Stokesian
approximation of the Navier-Stokes equations and the flow inside the porous

body is assumed to follow either Darcian model or Brinkman model.

To explain the behavior of real fluids in certain contexts, Eringen
has proposed the theory of micropolar fluids [12] in 1966. In the words of
Lukaszewicz, this is a well founded and significant generalization of the
classical Navier-Stokes model covering both in theory and applications,
many more phenomena than the classical one can [13]. Ever since this
theory appeared, several Stokes flow past axisymmetric bodies dealing with
micropolar fluid flows have been studied by Lakshmana Rao and Bhujanga

Rao [14], Lakshmana Rao and Iyengar [15] and Iyengar and Srinivasacharya
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[16]. Significant contributions are also made by Ramkissoon and Majumdar
[17] and Ramkissoon [18].

All these problems deal with axisymmetric impervious solid objects like
sphere, spheroid and approximate sphere. The problems dealing with flows
of micropolar fluids past porous bodies, it seems, have not been given the
attention which they richly deserve. This is possibly due to the reason that
the micropolar fluid flow equations constitute a coupled system of partial
differential equations and in the case of porous bodies determining the
arbitrary constants in the solution using the appropriate boundary conditions
more complicated than in the counterpart situations in viscous fluids. A
micropolar fluid flow is characterized by a coupled system of vector

differential equations involving the fluid velocity ¢ and the microrotation
vector v (independent of ¢) in addition to the usual equation of continuity.

The equations are to be solved employing the usual no slip velocity on
the boundary and the hyperstick boundary condition for the microrotation
vector v which stipulates that the microrotation on an impervious boundary
coincides with the angular velocity of the boundary. In the case of porous
boundaries, however, these are to be suitably modified. In the present
problem, we have employed the following boundary conditions: At the
boundary of the porous body (i) the normal velocity component is
continuous, (ii) the tangential velocity vanishes, (iii) the microrotation
component vanishes and (iv) the pressure is continuous. The problems, of

course, can also be investigated with other possible boundary conditions.

In this paper, we study the flow of an incompressible micropolar fluid
past a porous prolate spheroid kept in an infinite expanse of the fluid with
uniform streaming at infinity along the direction of the axis of the spheroid.
We assume that the flow outside the spheroid is governed by the micropolar
fluid flow equations under the Stokesian approximation and that within
the porous spheroid by Darcy’s equation. We determine the velocity field g,
microrotation field v and the pressure distribution p outside the porous

spheroid and also the velocity components and the pressure distribution

within the porous region. The expressions for the velocity and microrotation



118 T. K. V. Iyengar and T. S. L. Radhika

components are obtained in terms of Legendre functions, associated
Legendre functions, radial prolate spheroidal wave functions and angular
prolate spheroidal wave functions [20]. The stresses acting on the outer
surface are estimated and the drag experienced by the spheroid is obtained.
The variation of the drag on the spheroid is studied numerically with respect
to the geometric parameter, micropolarity parameter and the permeability
constant. The results are displayed through graphs. The stream line pattern
for various values of parameters under consideration is also plotted.

The analysis for the case of the oblate spheroid can also be studied on

similar lines and hence is not attempted here.
2. Basic Equations

The field equations governing an incompressible micropolar fluid flow
are [12]

op Ly
2+ div(pg) = 0, (M

p% =pf — grad p + k curl V — (u + k)curl curl §

+ (M + 20+ k) grad div g, (2)

pj% = pf —2kV + k curl G — vy curl curl v + (o + B + ) grad divv ~ (3)

in which g, Vv are velocity and microrotation vectors, f, [ are body force
per unit mass, body couple per unit mass, respectively, and p is the fluid
pressure at any point. p and j are density of the fluid and gyration parameters,
respectively, and are assumed to be constants. The material constants
(A, 1, k) are viscosity coefficients and (o, B, y) gyro viscosity coefficients.

These conform to the inequalities

k>0, 2u+k>0; 30 +2u+k>0;
vy20; [Bl<y 30+B+y20 4)

and are assumed to be constants.
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The stress tensor #; and the couple stress tensor m; are given by

ti =(=p+ M +divg)d; + (20 + k)ej + kegjpy (Wy — Vi), ©)
mlj = a(div V)8U + Bvl-’j + ij,i (6)

in which the symbols Sijs &> 2w, and v,,, respectively, denote Kronecker

symbol, components of rate of strain, vorticity vector components and
microrotation vector components. Comma denotes covariant differentiation.

3. Mathematical Formulation of the Problem

Consider a prolate spheroid S. Let O be the center of the spheroid and F
its focus. Introduce the cylindrical polar coordinate system (r, 0, z) with
respect to O as origin and OF] extended on either side as z-axis.

—

Let us consider the slow stationary flow of an incompressible micropolar

fluid past the spheroid S with a uniform flow with velocity U in the direction
of the z-axis far away from the body. Let the region inside S be porous. The
fluid flow generated is assumed to be axially symmetric and is the same in
any meridian plane, and thus the flow variables will be independent of the
azimuth angle.

We shall introduce the prolate spheroidal coordinates (&, n, ¢) with

(e, e, ey) as base vectors and (hy, hp, h3) as the corresponding scale

factors through the definition

z +ir = ccosh(§ + in). (7
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We assume that the flow is Stokesian as in the classical investigation of
the problem by Payne and Pell [1] and Lakshmana Rao and Iyengar [15] and
this enables us to drop the inertial terms in the momentum equation and
bilinear terms in the balance of first stress moments.

Let (q(l), V(l), p(l)) denote the velocity, microrotation and pressure in
the region S) and let (6_1(0), p(o)) be the velocity and pressure in the porous
region Sj.

In view of the symmetry of the flow, we take

7V = (g, e +v V(e e, (8)
v = c(g, n)g, ©)
P = pW(g ). (10)

Ignoring the body force and body couple f and 7, respectively, in the
field equations, the basic equations governing the Stokesian flow in region

S} can be written in the form
divig") = o, (11)
—grad p(l) + ke curt v - (u + k)curl curl c}(l) =0, (12)
255 W 4 k curtl q(l) — v curl curl v 4 (oo + B+ y)grad div v = 0. (13)

In view of the continuity equation, we introduce the stream function W(l)

through

(1) (1)
hyhsu) = —a‘é’—n; V) = 5“(;—&. (14)

Using (8) and (14),

curl g = (hi Ez\y(l)jéq) (15)
3
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in which the Stokes stream function operator £ s given by

2 _ h3 o( hy 0 i h i
E hyhy (ai(hl% o +5ﬂ hyhs on) ) (16)

Evaluating the expressions for curl curl c}(l), divv\V) (which is equal

to zero), curl \7(1), curl curl V(l), the basic equations describing the flow in

region S; are

1 6p(1) k (1) H +k 0 £2 (1)
1o c® nrk + k é‘ 2,1
- hz 61’] hlh3 a(t? (h3 ) (E ) - (18)

ok 4 K i k g2 (1)+y{v2 hzjc(l) =0, (19)
3

where V? is the Laplacian operator given by

2 1 i hzhg,i 6 h3h1 6
V= oy {aa( m oe) o\ on 20)

Using the identity

h{vz - hLch(l) = E2 (i), 1)
3

equation (19) can be recasted in the form

2k, ¢V = kE2yW 4 yE2 (). 22)
Eliminating p(l) from (17) and (18), we have

(w+ k) EXW — kB2 (W) = 0. (23)
From (22) and (23), we get

2h,c) = g2y 4 WE“W(I). (24)
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Operating E 2 on equation (24) and using equation (23), we obtain

2
(E6 - %E“Jw(l) ) (25)
c
which can be written as
o 2 22 )
E°|E° — — v = 0, (26)
c
where
2 k(Qu+ k)
L _MepTR) 27
IR @7

Thus, the flow variables in the region S; are completely determinable

from the system of partial differential equations (26) and (24) using the

appropriate boundary and regularity conditions.

As mentioned earlier, the flow in the porous region S is assumed to be
Darcian. In view of this, the equations governing the flow in the region S,

are given by
divg") = o, (28)
7 = —kWgrad p© (29)

which implies that the pressure p(o) is a harmonic function given by the

equation
v2p0 — . (30)
Boundary conditions

The determination of the relevant flow field variables \y(i), c® and

p(i ) is subjected to the following boundary and regularity conditions:
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(i) Continuity of the normal velocity component on the interface:
u® =4 on s, (31)
(i1) Vanishing of the tangential velocity components on the interface:
v =0 ons. (32)
(iii)
cW(s,)=0 onS. (33)
(iv) Continuity of pressure on the interface:
PV =p®ons (34)

In addition to the above boundary conditions, it is natural to have
regularity of the flow field variables on the axis of symmetry. Further, as the

flow is a uniform stream at infinity, we have

Y= - % Ur? far away from the body. (35)

4. Solution for the Flow in the Region S,

Since we are dealing with a prolate spheroidal coordinate system, we

have
By =hy =c(s® =1%), hy = (s> = 1) (1= ¢2), (36)
E? = ﬁ[(sz - 1)6—22 +(1- zz)%} (37)
c“(s7 —19) Os ot
v? = ﬁ((ﬁ —1);—22+ (1 —t2)§+ ZS%—ZI%} (38)
where

s =cosh&, =cosn. (39)
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We assume that the boundary of the spheroid is given by s = sy.

The solution of equation (26) can be obtained by superposing the
solutions of the equations

E*y =0 (40)
and
2
[Ez —7“—2}\4; = 0. 41)
C

Solution of equation (40)

The solution of (40) can be written in the form

v =vyy + vy, (42)
where
vo =~ U (1 -7) @)
and
yi =57 =D (=)D Guy1 () By (0), (44)
n=0

where P, (¢) is the derivative of P,,;(¢) with respect to 7. The function
Yo in (43) represents the stream function due to a uniform stream of
magnitude U parallel to the axis of symmetry far away from the spheroid. We

notice that £ 2w0 = 0 and hence £ 4w0 = 0. In view of this, y; must satisfy

E*y, =0. (45)

It can be verified that the expression

f=67 =D~ 1)) Ay 101 () P (0), (46)

n=0
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where Q;,1(s) is the derivative of Legendre function of second kind

0,+1(s) with respect to s, satisfies E?f =0. In view of this, we shall

impose the restriction on the functions G, ,{(s) through
0
2 202 2 ' '
By = (s = 1) (1= )Y Ay 1041(5) Py (0) (47)
n=0

so that E4\|/1 =0.

Now operating E 2 on equation (44) and equating the result with the
right hand side of (47), we get

S DGt~ (2 + 1) (1 +2)Gyy(9)] By (1)

n=0
=D Ay (7 = £2) 0 41(5) By (0)- (48)
n=0

Following (Lakshmana Rao and Iyengar [15]), we note that G,_(s) is

governed by the differential equation

(5% = 1)Gpa1(5) + 45Gy 1 (5) = n(n + 3)Gpy1(5) = guir(s),  (49)

where
B n+1)(n+2) (n+3)(n+4) ,
gn+1(s) = 62[(2,1 +3)(2n + 9) Apy1 — 2n+5) (2n+7) An+3}Qn+3(S)
(n—1)(n) (n+1)(n+2) ,
—Cz[m n—l_mAn+l:|Qn—l(S)~ (50)

Equations (49) and (50) are valid for n = 0, 1, 2, 3, ... with an understanding

that the term involving

N

0" 1(s) is — and 4 = 0. (51)

s2—1
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Using the method of variation of parameters, we note that
Gpy1(8) = 0y 1 Pyp1(s) + By 1O (s)

e 6 D0 ()

+(ng$(ln(s_22) :1 (s =1) Pl (5) gpa1(s)ds for n=0,1,2, ..., (52)

where s = 51 represents the value specifying the spheroid past in which the
flow is being studied. Thus, the flow region §; is given by s >s;. As

s — o0, W(l) must tend to 0. In view of this, we have to take o, = 0.

Hence the appropriate expression for G,,,(s) is given by

Gria(5) = Breihn(5) = Gty [ (62 = D0 (5) 01

s [ 6 - D)

forn=0,1,2, ... (53)

As g,,1(s) involves one set {4,,,} of arbitrary constants, the functions
G,4+1(s) involve two sets of arbitrary constants {4,,;} and {B,,;}. Using

this in equation (44), we get ;.
Solution of equation (41)

7»2

To solve equation (41) (viz.) [E 2_ _2]“! = 0, we take the solution in
¢

the form

v =cy(s? = 1) (1= 2)R(s)S(?). (54)

Substituting this in equation (41), we notice that R(s) and S(z), respectively,

satisfy the differential equations
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2 _ \pr e\ 2.2 1 _
(s° =DR'(s) + 2sR'(s) = | A+ 17" + —|R(s) = 0 (55)
57 =1

and

(1-12)S"(t) — 2t S'(t) + (A + 022 - 1 112 jS(t) =0, (56)

where A is a separation constant [20]. These are spheroidal wave differential
equations of radial and angular type, respectively. To ensure regularity of
solution at infinity and in the flow region, we have to choose the solutions of
equations (55) and (56) in the form

-1

0 2 1/2
R, 5) =" r +1)(r +2)d}" (i) LS 3_1J

r=0,1 §

o) /2 > / |
(2] X 06 D@ @)K, 5p0s) 67

r=0,1
and
sWn, 1) = i L i)W ), (58)
r=0,1
where
PO =V1-2 4 P10 (59)

denotes the associated Legendre function of the first kind.

The coefficients d ,1,” (i1) in the above expansions are constants depending
on the parameter /A and the suffix r has the value 1, 3, 5, ... or 0, 2, 4, 6, ...

depending upon the odd or even values of n+1. We have, therefore, the

solution
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v2 = e(s? =)= R, 5)sD @, 1),
n=1

where C,;’s are constants.

Hence, the stream function for the region §; is given by

w5, 1) = ~3UA(? - 1) (1 - )

(s = 1) (1= 22)D Gyr($) P (0)

n=0

+ey(s2 =D =2)D R, )8 ih 1),
n=1

We can see that

Ezw(l) = cz(S2 -1)(1- fz)ZAnHQ;zH(S)Pr;H(t)
n=0

2 2 "N 3)(; 1)
+ 7\/ 2 =11 -1 CRD( @, 5)S0 @, 1)
n=1
and
5 < . .
EfyW = 257 -1 - )Y CRD (i, 5)500n, 1).
¢ n=1
Using equations (62) and (63) in equation (24), we have

CW(s, 1) =SNG =101 =2) Y 41051 ()P (1)
n=0

%—Zc RO, 5)sDn, 1),

(60)

(61)

(62)

(63)

(64)



Stokes Flow of an Incompressible Micropolar Fluid ... 129
Pressure distribution in §;

Equations (17) and (18) using equation (36) lead to

pV _ urk) 0,2 yOy_ 1t k) 0 pa ) 65
O e(s? - )a’( )2k(2 )5f( b

and

oV (Qu+k) 8 (y, Y+k) 0 pa ) 66
o 21— 2)53( O ey Y

Using the expressions in equations (62) and (63) in (65) and (66) and
integrating the resulting equations, we get

1 2u+k)c -
p (s, 1) = - BB S 10, ()n + Dn+ DPy(e). (67)

n=0
Thus, \y(l)(s, 1), C(l)(s, t) and p(l)(s, t) given in equations (61), (64)
and (67) give, respectively, the stream function, microrotation and pressure

distribution for the region S;. These involve the three sets of constants {4, },

{B,}, {C,} as can be seen from equations (61), (53) and (64).
5. Solution for the Flow in the Region S

We have seen earlier that the flow in the porous region S is governed
by equations (28) and (29) which lead to equation (30). Equation (30)
implies that the pressure distribution p(o)(s, t) in S, is harmonic and hence

it is given by
o0
PO, 1) =D (Pu(s) + Bu0a () By 2), (68)
n=0
where {a,} and {B,} constitute two sets of arbitrary constants to be

determined. This p(o)(s, t) has to be regular within the spheroid and hence
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B, =0 for all n. The velocity components u®(s, t) and v(o)(s, t) can be
determined from equations (29) and (68).
In view of the continuity equation in the region S;, we introduce the

stream function \V(O) through

(0) (0)
hyhau®) = —a‘g—n; iy (© = a‘"a—& (69)

as in equation (14). Using (68) and (29), the stream function \V(O) takes the

form
= t
O, 0) = kVels> 1) Y 21 B | Ppa(dar. (70)
n=0 -

Thus, in all, we have four sets of unknown constants {4, }, {B,}, {C,},
{o,} and these can be determined by using the boundary conditions given

by equations (31), (32), (33) and (34).
6. Velocity and Microrotation Components in the Regions S, S;

The expressions for the velocity components u(l)(s, t) and v(l)(s, t) are

as
()]
(1)( ) = 1 oy
u s, t 5
czx/(sz _2)(s2 -1) ot
1)
D(s. 1) = 1 2 an
v (s, t
02\/(5,2 _ 12)(1 —l2) Os
Further,
WO, 1) = KDV —1 gp© ,

c\/(sz _2) Os
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KOV =2 gp©
c\/(sz ~2) ot

These can be obtained by using the expressions for w(l) given in equation

vO(s, £) = (72)

(61) and p(o) given in equation (68). Thus, the expressions for the velocity
components u(l), v(l); u(o), v(o) ; the microrotation component C(l) can all

be written explicitly. Using these expressions and those of p(o) and p(l) in

the boundary conditions given by equations (31), (32), (33) and (34), we can
write the equations that lead to the determination of the arbitrary constants.

7. Determination of Arbitrary Constants

In view of the continuity of the normal velocity components on the
interface s = s given by equation (31), we have

Ue?(sf —1) = c*(sf - 1)2 Guy1(s1) (n +1)(n +2) B4 (1)
n=0

—cw/slz—liC RP (@, 1) (\/ 2sW(ir, 1)
n=1

HVe(s? = 1)) oy 1By a(s1) B 0. (73)

As the tangential velocity components are to vanish on the boundaries,
equation (32) leads to

—~Uc?s) (1= 1) R() + Z% ((s* - 1)Gpi1(s))—y, (1= %) Py (0)

on s=s1

Z \/ R(3)(lk )]
n=l1
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Z ld (i) (1= )Py (t) = 0. (74)

r=0,1

The condition (33) on microrotation gives rise to the equation

o0

¢ [2 : 2 o

7 V(i ~ 1D Ay Gt (s)V1 = 2 Py (0)
n=0

7‘—22 R, ) Y a1 - 2B =0 (75)

r=0,1

The continuity of pressure on the interfaces given by equation (34) yields

- M D An 1Ot (1) (n + 1) (1 + 2) By (1)
n=0

= D (@Bt (1) B (0). (76)
n=0

Using the orthogonality property of Legendre functions and the associated
Legendre functions, equations (73) to (76) give rise to the following

equations adopting some simple algebraic manipulation:

Uc? (st = 1)8,0 = (57 = 1) Bpy1Qpa(s1) (n + 1) (n + 2)
—c(n+1)(n+2)ZC Vst = 1R, s)dl (i)

= —kWe(s? = 1) (apy1Ppat (1), (77)

2 2
—Ucs180, + ¢“Byy(n +1)(n +2)0,11(s))

+cZC —[\/S - R(3)(ll s)] d™(in) = 0, (78)

on s=57
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, k)32 < . my.
N 1) Q) + BRS¢ RO, sp)al ) = 0. (79)
|

SR O (1 + )1+ 2) = oy By 1), (80)

From equations (77) and (78), the coefficient B,_.; can be eliminated and

using (79) and (80), we get a non-homogeneous linear system of algebraic

equations for the determination of constants {C,,}. This system is seen to be

Y DyyCpy = Ucdy,, n=0,1,2, ... (81)

where

D,

nm

= d%’(ik)H\/ d R(3)(zk §1)+—/—

RO, s )} (57 = 1)1 (s1)

Sl —1
—2(n + 1) (20 + Dst =1 05i1(s) RS (iR, 1)

2 /

H+k A )2 Poasi(s1)
+Q2u+k)(n+1)2n+1)——=2k /(s —1

( )( )( ) k c2 (1 )P2n+](Sl)

- On41(51) D2441(51) 1(3)
i (sy) Js? -1 Riay @2 51) #2

The above linear system splits into two complementary subsystems
where n is even and 7 is odd. The subsystem when » is odd reduces to the
homogeneous set of equations

o0
ZD2n+l,2mC2m =0 (83)

m=1
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and we, therefore, have C, = C4 = C¢--- = 0. Hence 4,, B, are all zero

when 7 is even. The analytical determination of the odd suffixed constants is
not possible. In view of this, we propose to determine them numerically.
Here we truncate the system (81) to fifth order and numerically evaluate the
coefficients Cj, C3, C5, C; and Cg. This is the maximum extent to which
the order of truncation can be extended, since the coefficients of spheroidal
wave functions needed for a higher order truncation are not explicitly

available in the standard literature [20].

After determining these, it is possible to evaluate numerically the other
constants. The details of the manipulations are omitted in view of the

lengthiness of the expressions and the final system only is reported here.
8. Determination of Drag

To evaluate the drag on the body, we need the stress components and the
couple stress components. The stress tensor is given by equation (5) and we

need to evaluate the rate of strain components e; and the spin component
CO¢.
The velocity vector ¢ can be written in the form

q = ué{; + vén, (84)

where

L
cz\/(sz _2) (2 -1) ot’

1 oy
- N (85)
v 02\/(S2 _ [2)(1 _t2) Os

The rates of strain components are given by

t s(2s? —1-12) J
)

1
ee =735 3 |Vt 57 Vs v
34 Cz(sz_tz)( st 2 _ 2t (Sz_tz)(sz_l
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(52 — 1)\Vss — (1 _tz)\Vtt 5“52 -1
TNt T S o 2 2N 3,2 2 7 Vs
232 — P2 -1)(1-12) S(s?-2)PA1-1

V1 -t

Wi
A(s? - t2)2\/s2 -1

. 1 P S t(2t2—1—s2)\u
m c3(sz_t2) st 2 _ 72 t (Sz_tz)(l_tz) S P

1 s t
€hp = W+ Vot | (86)
o0 03(52 B tz)(sz IR (1- 12) Sfj

gy = epe = €ng = €pn = 0. The spin = %curl ¢ has only one non-zero
component @, in the direction of the vector €, and this is given by

_ 1
e —1)(1- 1)

The surface stress #; for the micropolar fluid is given by equation (5)

o E%y. (87)

and we find that the only non-vanishing components of 7; are fgz, fyy,

toy> fen and fne. These are given by

teg = —p + (2p + k)egg,

tyg = —P + (20 + ke,

tyy = =P + (21 + k)egy,

ten = 20+ k)egy + ko,

te = QU+ k)ens — kay. (88)
The stress vector 7 on the boundary of the body is given by

f = téaéa + ténén' (89)
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We find that

KWs (252 = 1-2)(2u + k)
(st -2

(teg) sy, = —pW(sp, 1) +

X D (a1 Pyt (1) Pt (0) (90)
n=0

and

(tE_J] )S=s1

- M\/(slz -1)(1- )ZAn+lQn+l(Sl) n1(7)
LG ,;)C RO, 5) 500, 1)

§§“;"W - Z(anﬂpnﬂ(smsn+1Qn+1(s1))Pn+l<r)

(2;(+2k)slk \/T Z(anﬂ 71 (51) + Brs1Ona1(s1)) B (2)

k st -1 - Ay 10441(51) Py
' 252 - 1)(1 - 1) (s =D =1 )nzg 190+1(s1) Byt (¢)
+_ (Sl _1)(1_t )ZC Rl3)(17\’ S)S(l)(ﬁ\, t) (91)

n=0

The stress vector has the component

(stress) iqr = \/7(t\/s —ltge —sV1—t t&n) (92)
N —t



Stokes Flow of an Incompressible Micropolar Fluid ... 137

in the direction of the axis of symmetry and

(stress),agial = ﬁ (sV1-¢° teg + Ws? -1 ten)g—s (93)
N

in the radial direction of the meridian plane. The resultants of these two
vector components over the entire surface of the body are obtained by
integration and it is seen that the radial component integrates to zero. Thus,
the resultant of the stress vector on the body is the force in the direction of
the axis of symmetry and this gives the drag on the body. The drag D can be
written in the form

1
D = 2ncs? - II_I(t\/SZ —ltge — sVl =12 leg)ymg @t (94)

and this simplifies to

1
2nc?y st -1 (J. 1 st - lp(l)(sl, t)dt

202 + k) s; (s — 1)V & , P
220D 0 1G] ‘n+1(;§2dt
n=0

-G RJFo k“z(anﬂp,m(s»j LS ‘) Xl
e ReslsE 1Y Q)| 1= B )
n=0

2 < . ! :
~ () 5 Y RO 5) j' 1\/(1 — ) sWa, t)dtj. (95)
¢ n=0 B
Using the relations

[LU=DB0 23 ) %)
-1 (sE - 1%) 5]
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and

U A O NS (P
LW‘”— 5 On(s1), (97)

drawn from “The Theory of Spherical and Ellipsoidal Harmonics” due to
Hobson [19], the drag simplifies to

D = 2meys — 1| e 35 ~1(2u+ F)Q(s1) — 2p + K51 (s1)

2 o0
—g(wk)?“—zle le, R, s))d"M ()| (98)
C
n=0

Using equation (79), we may eliminate the series involving the constants

C,, in the above expression for the drag and after further simplification we

see that the drag due to the surface stress is given by the simple formula

D= %(m L k)4, (99)

Introducing the non-dimensionalization scheme given by

Ayt =L Aps Gy =UcC,; D =4n(@u+ k)UeD.  (100)
c
It is seen, after dropping the tildes, that the non-dimensional drag D is given
by
1

D =34, (101)

where

¢, R, s1)dg" (i)
4y = — 20+ K) 52 e . (102)

k Vst —104(s)

This depends upon the eccentricity of the spheroid, the material constant
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A, the micropolarity parameter pl/ = ﬁ and the non-dimensional
permeability parameter kp defined through ip = K #

C

9. Special Case: (Impervious Spheroid)

When &) = 0, then the problem reduces to the case of flow past an

impervious spheroid. In this case, the system is

0
D DyyCy = ~Uebpy, n=0,1,2.., (103)
m=1
where
Im d 3 51 3),.
nm —dz (17\,)|:{ Sl - d R( )(lk sl)-i-ﬁ]{l(m)(ﬁu, Sl)}
Sl —

x (st = 1)Ohp41(51)
—2(n +1)(2n + DsE =105 (s) RS, 51) | (104)

The drag experienced is given by
D =— 4, (105)

where

Z 'C,, RO (i, )™ (in)
A = 2(“ + k) 7\‘2 m=1 ) (106)

k \/512 -10i(s)

The result agrees with that obtained by Lakshmana Rao and Iyengar [15].
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10. Numerical Discussion

The non-homogeneous linear system given in equation (81) is truncated
to a 5x 5 system as mentioned already. The system is numerically solved and
the needed constant 4; is determined using equation (102). The numerical
work is carried out for the micropolarity parameter p/ = 0.2, 0.4, 0.6 and
0.8; the material constant A =1.0,1.2,1.5 and 1.8 and permeability parameter
kp = 0.001 and 0.02. The variation of the drag is displayed through Figures
1 to 6.

It can be noticed from Figure 1 that for a fixed permeability parameter

kp = 0.001, the drag on the spheroid increases steadily as A increases for

a fixed value of the micropolarity parameter p/. As pl increases the drag
decreases for each of the A’s. The same trend is observed for other values
of the permeability parameter kp = 0.02 (Figure 2). As the micropolarity
viscosity k increases, p/ increases and thus a part of energy will be spent in
opposing the rotational nature of the fluid particle and this naturally results in
a reduction in drag. Thus, an increase in p/ for a fixed A leads to a reduction

in drag as can be seen in Figures 1 and 2.

Drag

Figure 1. Variation of drag with respect to A for different values of the
polarity parameter p/ when s; = 1.2 and the permeability parameter kp =
0.001.
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Drag
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Figure 2. Variation of drag with respect to A for different values of the

polarity parameter p/ when s; =1.2 and the permeability parameter kp =

0.02.

9

— 1

— =12
A=1.5

—— A=1.8

Figure 3. Variation of drag with respect to s for different values of A when

the polarity parameter p/ = 0.4 and the permeability parameter kp = 0.001.
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Figure 4. Variation of drag with respect to s for different values of A when

the polarity parameter p/ = 0.4 and the permeability parameter kp = 0.02.
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Figure 3 shows the variation of drag on the spheroid with the eccentricity
sy for polarity parameter pl = 0.4 and permeability parameter kp = 0.001.
As s; is increasing for different values of the polarity parameter p/ with fixed
permeability constant kp = 0.001 and A =1.5, the drag is increasing. An
increase in s; leads to the increase in the volume of the porous region in the
spheroid. This naturally leads to greater absorption of the fluid in the vicinity
of the outer boundary s = s7. As the volume of the body itself is increasing
with increase in sy, we can expect that the body experiences a larger drag.

Figure 4 also indicates the same trend for the drag with polarity parameter

pl = 0.4 and permeability parameter kp = 0.02.

Figures 5 and 6 indicate the variation of the drag with respect to the

geometric parameter s; for different values of the polarity parameter p/ when

kp and A are fixed as (0.001, 1.5) and (0.02, 1.5). The drag is not changing

much for an increase of s; from 1.2 to 1.5 but therefrom, as s; increases it is

showing an increasing trend.

In the present problem, plotting the stream lines is a difficult task in view

of the complicated nature of the stream functions \4/(0) and \V(l). Using the

expressions for the radial and angular prolate spheroidal wave functions and
the related coefficients, we have attempted to compute these by a program
developed and computed the values of the stream functions for values of

(s, t), within and outside a spheroid s; = 2.

The stream line pattern for diverse values of A, micropolarity parameter
pl and permeability parameter kp is presented. It is observed that for smaller
permeability parameter, the flow is almost uniform as in Figures 7, 8 and 9.
As the permeability is increased, the flow field is seen to be disturbed as is
observed by Raja Sekhar and Osamu Sano in their study of viscous flow past
a circular/spherical void in porous media [21]. This phenomenon is seen in

Figure 10.
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As the material constant A is further increased, with a large permeability,
the micropolar nature of the fluid must be further interacting and dividing
stream line patterns which are generated and we find the stream line patterns
as in Figures 11 and 12. Suitable experimental studies concerning micropolar

fluid flow past spherical or spheroidal objects may throw further light on this
aspect.

Figure 5. Variation of drag with respect to s for different values of the
polarity parameter p/ when the permeability parameter kp = 0.001 and A =
1.5.

2%

51

Figure 6. Variation of drag with respect to s for different values of the
polarity parameter p/ when the permeability parameter kp = 0.02 and A =
L.5.
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Figure 7. Stream lines for A = 1.2, p/ = 0.4, kp = 0.01.
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Figure 9. Stream lines for A = 1.5, pl = 0.6, kp = 0.01.
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