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Abstract 

Cumulative sum (CUSUM) control chart has been proposed for 
detecting simultaneous shifts in the parameters of the Erlang-truncated 
exponential distribution. It was observed that the parameters of the 
CUSUM chart, that is, the lead distance and the mask angle change 
considerably for a slight shift in the parameters of the distribution.   
The average run length (ARL) of the control chart also changes 
considerably for a slight shift in the parameters of the distribution. 

1. Introduction 

The quality of a product is one fundamental thing that majority of 
consumers look for when purchasing a product. This makes producers keep 
researching into how to improve the quality of their product in order to 
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maintain old and woo consumers. Following the famous work of Shewart     
[10, 11], researchers in recent times are developing different quality control 
schemes for monitoring the quality of a product. 

One of the quality control techniques that has found a niche in statistical 
process control, as a parallel process control technique, to the well known 
Shewart control charts is the cumulative sum (CUSUM) chart developed by 
Page [7, 8]. The CUSUM charts have the advantage of detecting small to 
moderate size shift from a simple acceptable quality level than the Shewart 
control charts. 

Umpteen of researchers have studied and developed control charts for 
monitoring shifts in the parameters of life time distributions. Johnson and 
Leone [3] made use of simultaneous applications of sequential probability 
ratio test (SPRT) to test a simple null hypothesis against two separate simple 
alternative hypotheses on either sides of the null hypothesis. Edgeman [1] 
studied inverse Gaussian control charts. Nabar and Bilgi [6] developed a 
CUSUM chart for the inverse Gaussian distribution. Kantam and Rao [5] 
investigated the CUSUM control chart for the log-logistic distribution. Rao 
[9] developed a one-sided CUSUM control chart for monitoring a shift in one 
of the parameters of the Erlang-truncated exponential distribution (ETED) on 
the assumption that the other parameter is fixed and known. Parallel to the 
work of Rao [9], this study seeks to develop a CUSUM chart for monitoring 
simultaneous shifts in the parameters of the ETED. 

2. Erlang-truncated Exponential Distribution 

The ETED developed by El-Alosey [2] has the probability density 
function 

( ) ( ) { ( )}λ−λ− −−−=λ evxevvxf 1exp1,,  (1) 

for 0>x  and .0,0 >λ>v  

The distribution function is given by 

( ) { ( )},1exp1,, λ−−−−=λ evxvxF  (2) 
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v is the shape parameter and λ is the scale parameter. The mean and variance 

of the ETED are ( ( )) 11 −λ−−=µ ev  and ( ( )) ,1 22 −λ−−=σ ev  respectively. 

3. Sequential Probability Ratio Test (SPRT) 

Wald’s [12] SPRT is a joint, subject by subject, likelihood ratio test 
(LRT). In this approach, each subject constitutes a stage. Let ( )λ,, vxf  

denote the distribution of a random variable x following and ETED. Let 0H  

be the hypothesis that there is no shift in the parameters of the distribution    
of x and 1H  be the hypothesis that there is a shift in the parameters of the 

distribution of x. Thus, the distribution of x is given by ( )00,, λvxf  when 

0H  is true, and by ( )11,, λvxf  when 1H  is true. For any positive integral 

value m, the probability that a sample mxxx ...,,, 21  is obtained is given by 

( )∏
=

λ=
m

i
im vxfP

1
111 ,,  (3) 

when 1H  is true, and by 

( )∏
=

λ=
m

i
im vxfP

1
000 ,,  (4) 

when 0H  is true. 

The SPRT for testing 0H  against 1H  is defined as follows: two positive 

constants A and B ( )AB <  are chosen. At each stage of the experiment        

(at the mth trial for any integral value m), the probability ratio mm PP 01        

is computed. If ,
0
1 AP

PB
m
m <<  then the experiment is continued by taking 

additional observation. If ,
0

1 A
P
P

m

m ≥  then the process is terminated with the 

rejection of .0H  If ,
0

1 B
P
P

m

m ≥  then the process is terminated with the 
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acceptance of .0H  The constants A and B are to be determined so that the 

test will have the prescribed strength ( ),, βα  where α and β are the Type I 

and Type II errors, respectively. The constants 
α
β−1=A  and .1 α−

β=B  

For the purpose of practical computation, it is much more convenient       

to compute the logarithm of the ratio 
m
m

P
P
0
1  than the ratio itself. Thus, the 

continuation region can be given as .lnlnln
0
1 AP

PB
m
m <<   

4. CUSUM Chart for Controlling Parameters v and λ 

The likelihood ratio test to test the null hypothesis that there is no shift in 
the parameters of the ETED against the alternative that there is a shift in the 
parameters of the ETED is given by 
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The continuation region of the SPRT discriminating between the two 
hypotheses is given by 
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Considering the mean and variance of the ETED, any shift in the 
parameters affects these two moments. Let 0v  and 0λ  be the target values, 

let ( )011 vvvv >=  and ( )011 λ>λλ=λ  be the changed values due to 

shift in the parameters. The SPRT will stop by rejecting or accepting, or 

continue to sample, as 
m
m

P
P
0
1ln  is outside or in between Aln  and .ln B  The 

process stops by rejecting 0H  if ;lnln
0
1 AP

P
m
m ≥  this gives a rejection line 

01 vv >  and .01 λ>λ  Similarly, if we employ SPRT with the same strength 

to the cases 01 vv <  and ,01 λ<λ  then another rejection line is obtained. 

These two rejection lines give a geometrical nature of masking. The 
observations in the sample enter the mask in a sequential way. Thus, the 

mask for the CUSUM chart was developed. For AP
P

m
m lnln

0
1 ≥  and 

considering equation (7), 
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Similarly, the rejection line, when ,lnln
0
1 AP

P
m
m ≤  is given by 
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Equations (8) and (9) form the regions above and below the plane 

., 1 
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



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m
i ixm  If m is allowed sequentially, at some stage ∑ =

m
i ix1  satisfies 

either equation (8) or equation (9). Till then, the procedure continues. Using 
the slopes and intercepts of the two lines (equations (8) and (9)), the 
parameters of the CUSUM chart, called the angle and lead distance, are 
obtained. From Figure 1, =θ1tan  slope of the line ,11 DQP =  and the lead 

distance 1OP  is ,1d  where 
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=θ−1tan  slope of the line ,11
∗

−− = DQP  and the lead distance 1−OP  is 

,1−d  where  
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Figure 1. CUSUM control chart. 

Let mxxx ...,,, 21  be a sample from ETED. If the points 





 ∑ =

m
i ixm 1,  

are plotted with a suitable scale, then the ordinates of the points represent the 
cumulative sum of the data. Equations (8) and (9) are the consequences of a 
shift in the population parameters v and λ. Figure 1 indicates a considerable 

shift in the population parameters if ∑ =
m
i ix1  falls outside the lines 11QP  and 

.11 −− QP  The chart is interpreted by placing the mask over the chart as shown 

in Figure 1 with point O over the last plotted point on the chart with line 



Albert Luguterah 72 

11 −PP  parallel to the axis m. If any of the points lies below ,11 −− QP  then it is 

an indication of a decrease in v and λ and if any of the points lies above 
,11QP  then it indicates an increase in v and λ. The graph of the points 







 ∑ =

m
i ixm 1,  is superimposed with the mask as shown in Figure 1 such that 

the point O of the mask and each point of the CUSUM chart coincide with 
the horizontal line parallel to the m axis. 

The values of the parameters angle θ and the lead distance d, for various 
values of α and choices of 1010 ,,, λλvv  and 0=β  have been tabulated in 

Table 1 and Table 2 for ready reference. From Table 1, it is obvious that as 

the ratios 
0
1

λ
λ  and 

0
1

v
v  increase, the values of the lead distance d decrease for 

fixed value of α. Also, the smaller the value of α the higher the value of d. 

Similarly, the value of angle θ decreases as the ratios 
0
1

λ
λ  and 

0
1

v
v  increase 

as shown in Table 2. 

Table 1. Values of the lead distance d for controlling λ and v 

     α  

0λ  1λ  0v  1v  0.1 0.05 0.01 

0.60 0.65 0.70 0.75 18.18 23.66 36.37 

0.60 0.70 0.70 0.80 9.47 12.33 18.95 

0.60 0.75 0.70 0.85 6.57 8.54 13.13 

0.60 0.8 0.70 0.90 5.11 6.65 10.22 

0.60 0.85 0.70 0.95 4.24 5.51 8.47 

0.60 0.90 0.70 1.00 3.65 4.75 7.30 

0.60 0.95 0.70 1.05 3.23 4.21 6.46 

0.60 1.00 0.70 1.10 2.92 3.80 5.84 
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Table 2. Values of angle θ for controlling λ and v 

0λ  1λ  0v  1v  θ 

0.60 0.65 0.70 0.75 71.39 

0.60 0.70 0.70 0.80 70.33 

0.60 0.75 0.70 0.85 69.28 

0.60 0.80 0.70 0.90 68.25 

0.60 0.85 0.70 0.95 67.24 

0.60 0.90 0.70 1.00 66.24 

0.60 0.95 0.70 1.05 65.27 

0.60 1.00 0.70 1.10 64.32 

5. Average Run Length (ARL) 

The ARL is the average number of trials required to detect a shift in the 
process average for the first time. According to Johnson [4] and Johnson and 
Leone [3], if α is the producer risk (Type I error), then the approximate ARL 
for detecting a shift in the parameters from 0λ  to 1λ  and from 0v  to 1v  is 

given by 
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Table 3 provides the ARL for various values of α  and choices of 

010 ,, λvv  and .1λ  From Table 3, it is clear that as the ratios 
0
1

λ
λ  and 

0
1

v
v  

increase, the values of the ARL decrease for a fixed value of α. Also, the 
smaller the value of α the higher the ARL. 

Table 3. Average run length (ARL) for controlling parameters λ and v 

     α  

0λ  1λ  0v  1v  0.1 0.05 0.01 

0.60 0.65 0.70 0.75 299.47 389.62 598.95 

0.60 0.70 0.70 0.80 84.39 109.80 168.78 

0.60 0.75 0.70 0.85 41.95 54.58 83.90 

0.60 0.80 0.70 0.90 26.21 34.11 52.43 

0.60 0.85 0.70 0.95 18.53 24.11 37.06 

0.60 0.90 0.70 1.00 14.13 18.39 28.27 

0.60 0.95 0.70 1.05 11.35 14.77 22.70 

0.60 1.00 0.70 1.10 9.46 12.31 18.92 

6. Hypothetical Example 

In this section, the application of the proposed CUSUM chart has been 
demonstrated using a hypothetical data simulated from the ETED. The first 
ten observations were simulated with 0.20 =v  and .5.00 =λ  The last five 

observation were simulated with 5.31 =v  and .5.11 =λ  Table 4 displays   

the simulated data and their cumulative sum. The parameters of the V-mask 
were calculated using ,0.20 =v  ,5.31 =v  5.00 =λ  and .5.11 =λ  The lead 

distance and the angle of the mask were 2.4 and ,33  respectively. The 

sample number ( )m  was plotted against the cumulative sum of the data.    

The point O of the V-mask was then placed at the last plotted point to 
monitor whether the process is in control as shown in Figure 2. Clearly, from     
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Figure 2, the process was out of control as observations 1 to 13 fell below 
line 11 −− QP  indicating a decrease in v and λ. This calls for an action to be 

taken in order to bring the process under control. 

Table 4. Simulated hypothetical data 
Sample number 

(m) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Data 2.7 2.9 0.8 0.8 0.2 0.5 0.8 0.3 1.8 1.9 3.6 0.9 1.7 1.8 1.2 

Cumulative sum 2.7 5.6 6.3 7.1 7.3 7.8 8.6 8.9 9.7 11.6 15.1 16 17.7 19.5 20.7 

 

Figure 2. CUSUM plot of simulated data. 

7. Conclusion 

In this study, a CUSUM chart for monitoring simultaneous shift in the 
parameters of an ETED has been proposed and various parameters of the 
CUSUM chart estimated. The results revealed that for an increase in the 
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ratios 
0
1

λ
λ  and ,

0
1

v
v  the values of the lead distance d decrease for fixed value 

of α. Also, the smaller the value of α the higher the value of d. Similarly, the 

value of angle θ decreases as the ratios 
0
1

λ
λ  and 

0
1

v
v  increase. In addition, as 

the ratios 
0
1

λ
λ  and 

0
1

v
v  increase, the values of the ARL decrease for a fixed 

value of α. 
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