Advances and Applications in Discrete Mathematics
© 2015 Pushpa Publishing House, Allahabad, India
Published Online: March 2015
http://dx.doi.org/10.17654/AADMJan2015_075_090
Volume 15, Number 1, 2015, Pages 75-90
ISSN: 0974-1658

COUNTABLE LOWER SEMILATTICES WHOSE SET OF JOIN-REDUCIBLE ELEMENTS IS WELL-ORDERED

Hamid Kulosman* and Alica Miller
Department of Mathematics
University of Louisville
Louisville, KY 40292, U. S. A.
e-mail: h0kulo01@louisville.edu
a0mill01@louisville.edu

Abstract

In our previous papers [2] and [3], we have introduced the notion of special semigroups. They are commutative Boolean semigroups that can be built from a trivial semigroup in finitely or infinitely many steps, where in each step an idempotent is adjoined in one of the three allowed ways. In our paper [4], we characterized finite special semigroups. In this paper, we show that some countable special semigroups correspond to the lower semilattices whose set of joinreducible elements is well-ordered. In that way, we characterize these lattices.

[^0]
1. Introduction and Preliminaries

In Section 1, we briefly discuss the content of the paper. Then we introduce some notations and preliminary notions.

In Section 2, we discuss the notion of special semigroups. (This notion was introduced in our previous papers [2] and [3].) They are commutative Boolean semigroups that can be built from a trivial semigroup in finitely or infinitely many steps, where in each step an idempotent is adjoined in one of the three allowed ways. The i th step of the building process is completely described by an element a_{i} of the set $\{0,1, \ldots, i-1$, 'id', 'ze' $\}$ of $i+2$ elements. The sequence $\mathbf{a}=a_{0}, a_{1}, a_{2}, \ldots$, obtained in that way, is called a defining sequence of the semigroup. It follows that the special semigroups form a large class of semigroups each of which can be easily defined. They can be arbitrarily big, nevertheless, checking of associativity is completely avoided. Because of that, they can be useful for various purposes.

In Section 2, we also discuss the notion of join-reducible elements of a lower semilattice.

In Section 3, in our main theorem, we show that some countable special semigroups correspond to the lower semilattices whose set of join-reducible elements is well-ordered (either finite, or of type ω). In that way, we characterize these lattices.

In Section 4, we give some examples which illustrate the conditions appearing in our main theorem. We also raise a question.

Now we introduce some notations and preliminaries.
All the notions or facts related to semigroups and partially ordered sets (posets), that we use but not define or state in this paper, can be found in [1].

The symbol ω will denote the smallest infinite ordinal number.
A nonempty set S with an associative binary operation is called a semigroup. The operation is multiplication and is denoted by •, which is usually omitted. The trivial semigroup S_{0} consists of a single element s_{0},
with the only possible operation $s_{0} s_{0}=s_{0}$. An element e of the semigroup S is called the identity if $s e=e s=s$ for all $s \in S$. An element z of S is called the zero if $s z=z s=z$ for all $s \in S$. It is usually denoted by 0 . A semigroup S is called Boolean if $s^{2}=s$ for every $s \in S$.

If $x \leq y$ are two elements of a poset (P, \leq), then the interval $[x, y]$ is the set of all elements $z \in P$ such that $x \leq z \leq y$. The poset P is said to be locally finite if every interval of it is finite.

Let (P, \leq) be a poset. For any two elements $x, y \in P$, we say that x covers y if $x<y$ and there is no element $z \in P$ such that $x<z<y$. We associate to (P, \leq) the covering relation $\mathcal{C}(P)$, defined in the following way: $(x, y) \in \mathcal{C}(P)$ if and only if y covers x.

Remark 1.1. The Hasse diagram of a finite poset (P, \leq) is a directed graph $\mathcal{H}(P)$ with the property that there is a directed edge from x to y if and only if y covers x. Furthermore, when drawing the directed graph on a Euclidean plane, instead of drawing a directed segment from x to y, we draw a segment without an arrow but putting x lower than y. We will use the notation $x-y$ to denote an edge in the Hasse diagram. This assumes $x<y$. Also, we will use the notation $x_{1}-x_{2}-\cdots-x_{n}$ to denote a path in the Hasse diagram. If C is a subgraph of the Hasse diagram with the greatest element x, then $C-y$ denotes the graph obtained by adding to C the directed edge $x-y$, assuming that y covers x. Similarly, we use the notation $y-C$ for the graph obtained by adding the directed edge $y-x$ to the subgraph C of the Hasse diagram, assuming that C has the least element x and that x covers y.

Let a, b be two elements of P. An element $d \in P$ is called the meet of a and b (notation $a \wedge b$) if $d \leq a, d \leq b$ and $d \geq e$ for any element $e \in P$ such that $e \leq a$ and $e \leq b$. If for any elements $a, b \in P$ the meet $a \wedge b$ exists, then P is called a lower semilattice.

Lemma 1.2 [1, Proposition 1.3.2]. Let (E, \cdot) be a Boolean commutative semigroup. Then the relation \leq on E defined by

$$
a \leq b \text { if } a b=a
$$

is a partial order on E with respect to which (E, \leq) is a lower semilattice. In (E, \leq), the meet of a and b is their product $a b$.

Conversely, let (E, \leq) be a lower semilattice. Then (E, \wedge) is a Boolean commutative semigroup and

$$
(\forall a, b \in E) a \leq b \text { if and only if } a \wedge b=a .
$$

Thus, to quote [1, page 15], the notions of lower semilattice and Boolean commutative semigroup are equivalent and interchangeable.

Given a Boolean commutative semigroup (E, \cdot), we say that the partial order \leq on E, defined in the above lemma, is the natural partial order on E and that (E, \leq) is the natural semilattice associated to the semigroup E. Conversely, if (E, \leq) is a lower semilattice, then we say that the semigroup $(E, \cdot=\wedge)$ is the natural semigroup associated to (E, \leq). Thus, we have the natural correspondence $(E, \cdot) \leftrightarrow(E, \leq)$ between commutative Boolean semigroups and lower semilattices.

2. Construction and Basic Properties of Special Semigroups; Join-reducible Elements

To any semigroup S (which might even be a monoid), we can adjoin a new element x and define the operation on $S \cup\{x\}$ by adding the rules $x x=x$ and $s x=x s=s$ for all $s \in S$ to already existing multiplication on S. Then the element x is the identity element of the new semigroup $S \cup\{x\}$ and this process is called the adjoining of an identity. If the operation on $S \cup\{x\}$ is defined by adding the rules $x x=x$ and $s x=x s=x$ for all $s \in S$ to already existing multiplication on S, then the element x is the
zero element of the new semigroup $S \cup\{x\}$ and this process is called the adjoining of a zero.

We will consider one more type of adjoining. Namely, let S be a semigroup and let t be an element of S. We adjoin to S a new element x (which "behaves like t ") and define the operation on $S \cup\{x\}$ by adding the rules $x x=x$ and $x s=t s, s x=s t$ for all $s \in S$ to already existing multiplication on S. Then $S \cup\{x\}$ is a semigroup and x is an idempotent in it.

We start with the trivial semigroup $S_{0}=\left\{s_{0}\right\}$. We will adjoin a new element s_{1} to S_{0} and obtain a new semigroup $S_{1}=\left\{s_{0}, s_{1}\right\}$, we will then adjoin a new element s_{2} to S_{1} and obtain a new semigroup $S_{2}=$ $\left\{s_{0}, s_{1}, s_{2}\right\}$, etc. Which of the three described types of adjoining we have each time is described by a sequence $\mathbf{a}=a_{0}, a_{1}, a_{2}, \ldots$, which is defined in the following way:
$a_{0}=$ 'ze' or 'id', meaning that s_{0} is adjoined as zero or as identity to the empty set; both values result in the same semigroup S_{0};
$a_{n} \in\{$ 'id', 'ze', $0,1,2, \ldots, n-1\}, n=1,2,3, \ldots$; here $a_{n}=$ 'ze' means that s_{n} is adjoined to S_{n-1} as zero, $a_{n}=$ 'id' means that s_{n} is adjoined to S_{n-1} as identity, and $a_{n}=i \in\{0,1,2, \ldots, n-1\}$ means that s_{n} is adjoined to S_{n-1} as an idempotent "behaving like s_{i} ". (This means that the new rules on $S_{n}=S_{n-1} \cup\left\{s_{n}\right\}$, added to the already existing multiplication on S_{n-1}, are: $s_{n} s_{n}=s_{n}, s_{n} s=s_{i} s, s s_{n}=s s_{i}$, for all $s \in S_{n-1}$.)

In this way to any sequence $\mathbf{a}=a_{0}, a_{1}, a_{2}, \ldots$, we uniquely associate a semigroup S_{ω}, whose underlying set is $\left\{s_{0}, s_{1}, s_{2}, \ldots\right\}$. We say that a sequence $\mathbf{a}=a_{0}, a_{1}, a_{2}, \ldots$ is a defining sequence of the semigroup associated to it. We call any semigroup S_{ω} a special semigroup of type ω.

Observe that all the special semigroups $S_{N}(N \geq 0)$ and S_{ω} are commutative Boolean semigroups. However, not all commutative Boolean semigroups are special. So a natural question that arises is to characterize all commutative Boolean semigroups that are special. That is of interest because of the specific way in which special semigroups are defined (built up). Finite special commutative Boolean semigroups are characterized in our paper [3]. We give a characterization of the infinite ones of type ω in this paper in Section 3.

Remark 2.1. In order to construct an S_{ω}, one has to construct all the intermediate $S_{N}, N=0,1,2, \ldots$. So this remark about the Hasse diagrams, and the comment after it, can be very useful for understanding the main theorem of the paper.

Let $S=S_{N}$ be a special semigroup and $i \leq N$. Then the Hasse diagram $\mathcal{H}\left(S_{i}\right)$ of the special semigroup $S_{i}=\left\{s_{0}, s_{1}, \ldots, s_{i}\right\}$ is the same as the induced subgraph of $\mathcal{H}\left(S_{N}\right)$ on $\left\{s_{0}, s_{1}, \ldots, s_{i}\right\}$.

Based on the previous remark, we describe how to construct the Hasse diagram of a special semigroup $S=S_{N}$. For $\left\{s_{0}\right\}$, we put a point. Then for $i=1,2, \ldots, N$, we repeat the following procedure. If s_{i} is added to $\left\{s_{0}, s_{1}, \ldots, s_{i-1}\right\}$ with $a_{i}=k \in\{0,1, \ldots, n-1\}$, then, to get the Hasse diagram of $\left\{s_{0}, s_{1}, \ldots, s_{i}\right\}$, we add the segment $a_{k}-a_{i}$ to the Hasse diagram of $\left\{s_{0}, s_{1}, \ldots, s_{i-1}\right\}$. If s_{i} is added to $\left\{s_{0}, s_{1}, \ldots, s_{i-1}\right\}$ with $a_{i}=$ ' id', then, to get the Hasse diagram of $\left\{s_{0}, s_{1}, \ldots, s_{i}\right\}$, we add all the segments $b-s_{i}$ to the Hasse diagram of $\left\{s_{0}, s_{1}, \ldots, s_{i-1}\right\}$, where b is any maximal element of $\left\{s_{0}, s_{1}, \ldots, s_{i_{1}}\right\}$, i.e., where b is any uncovered element of the Hasse diagram of $\left\{s_{0}, s_{1}, \ldots, s_{i-1}\right\}$. Finally, if s_{i} is added to $\left\{s_{0}, s_{1}, \ldots, s_{i-1}\right\}$ with $a_{i}=$ 'ze', then, to get the Hasse diagram of $\left\{s_{0}, s_{1}, \ldots, s_{i}\right\}$, we add the segment $s_{i}-a$ to the Hasse diagram of $\left\{s_{0}, s_{1}, \ldots, s_{i-1}\right\}$, where a is the least element of $\left\{s_{0}, s_{1}, \ldots, s_{i-1}\right\}$.

Definition 2.2. Let (P, \leq) be a poset. An element $x \in P$ is said to be join-reducible if the following condition holds:

$$
(\exists Y \subset P) x=\sup (Y) \text { and } x \notin Y .
$$

Otherwise, x is called join-irreducible.
Note that if P has the least element, say a, then the element a is joinreducible since $a=\sup (\varnothing)$ and $a \notin \varnothing$.

Remark 2.3. An element s_{i} is join-reducible in $S=S_{N}$ if and only if it is join-reducible in some/every S_{k} with $k \geq i$.

Indeed, it is enough to observe that if an element a is join-reducible in $\left\{s_{0}, \ldots, s_{i-1}\right\}$, then it is join-reducible in $\left\{s_{0}, \ldots, s_{i}\right\}$. That follows from the fact that $\mathcal{C}\left(\left\{s_{0}, \ldots, s_{i-1}\right\}\right)$ is equal to the covering relation $\mathcal{C}\left(\left\{s_{0}, \ldots, s_{i}\right\}\right)$ plus one or more elements added. So if for some element $a \in\left\{s_{0}, \ldots, s_{i-1}\right\}$, there are elements $b, c \in\left\{s_{0}, \ldots, s_{i-1}\right\}$ with $(a, b),(a, c) \in \mathcal{C}\left(\left\{s_{0}, \ldots, s_{i-1}\right\}\right)$, then $(a, b),(a, c) \in \mathcal{C}\left(\left\{s_{0}, \ldots, s_{i}\right\}\right)$.

3. Main Theorem

Definition 3.1. Let (S, \leq) be a partially ordered set. A path in S is a finite sequence $x_{1}>x_{2}>\cdots>x_{n}$ such that x_{i} covers x_{i+1} for $i=$ $1,2, \ldots, n-1$.

Lemma 3.2. Let (S, \leq) be a locally finite partially ordered set, x, y, z $\in S$. Let $y<x$ and $z<x$ and suppose that y and z are incomparable. Then there is a join-reducible element u in $[y, x] \cup[z, x]$ and $y<u, z<u$.

Note that this lemma holds in greater generality, but for the purpose of this paper, this version is enough.

Proof. We may assume that S is the union $[y, x] \cup[z, x]$. Then we prove by induction on the total number of elements of S. If x is join-reducible, then
we are done. Suppose x is not join-reducible. Let x^{\prime} be the element covered by x (it exists since x is the greatest element in S). Then $x^{\prime}>y$ and $x^{\prime}>z$, so we may apply the inductive hypothesis to $S^{\prime}=\left[y, x^{\prime}\right] \cup\left[z, x^{\prime}\right]$.

Theorem 3.3. Every special semigroup $S=S_{\omega}$ (considered as a lower semilattice in the natural way) has the following four properties:
(i) the set of join-reducible elements of S is well-ordered, either finite or of type ω;
(ii) if there are infinitely many join-reducible elements, every element of S is smaller than some join-reducible element;
(iii) every element of S covers finitely many elements;
(iv) S is locally finite.

Conversely, if (S, \leq) is a countable lower semi-lattice which satisfies the above four conditions, then S can be realized as a special semigroup S_{ω}.

Proof. (\Rightarrow) Since $S=S_{\omega}=\left\{s_{0}, s_{1}, s_{2}, \ldots\right\}$, the conditions (i) and (ii) are obviously satisfied.

Let us show that the condition (iii) holds. When an element s_{i} of S_{ω} is added as a zero, it does not cover any element at the moment when it is adjoined. At the moment when for the first time (if at all) another element s_{j} is added as a zero, then s_{i} covers s_{j} and in the final semigroup S_{ω}, s_{j} is the only element covered by s_{i}. When an element s_{i} is added as an element behaving like another element s_{t}, then s_{i} covers s_{t} and in the final semigroup S_{ω}, s_{t} is the only element covered by s_{i}. When an element s_{i} is added as an identity, it covers finitely many elements (some of $s_{0}, s_{1}, \ldots, s_{i-1}$) and they are the only elements covered by s_{i} in the final semigroup S_{ω}. This proves that the condition (iii) holds.

Let us show that the condition (iv) holds. Let s_{t} and s_{k} be two elements of S_{ω} such that $s_{t}<s_{k}$. (Note that t can be \geq or $\leq k$.) The only elements s_{l} of S_{ω} with $l>k$, that are $<s_{k}$ are those that are added as zeros, but they are $<s_{t}$, so they are not in the interval $\left[s_{t}, s_{k}\right]$. So in the interval $\left[s_{t}, s_{k}\right]$ we can have only elements s_{i} such that $i \leq \max \{t, k\}$. This proves that the condition (iv) holds.
$(\Leftarrow)(1)$ Let r_{0} be the smallest join-reducible element. If r_{0} has no predecessors, then put $p_{0}=r_{0}$. Otherwise, the set of predecessors of r_{0} is finite (by (iii)). Let p_{0} be their infimum. By (iv), the interval $\left[p_{0}, r_{0}\right.$] is finite, hence $\left[p_{0}, r_{0}\right)$ is a finite tree.
(2) Label $s_{0}=p_{0}$ (as if we are starting creating S_{ω} by adding s_{0} as a zero). Then label all the elements of the tree $\left[p_{0}, r_{0}\right)$ as if we are continuing with creating S_{ω} by adding new elements behaving like already existing elements: $s_{1}, s_{2}, \ldots, s_{n_{0}-1}$. Then label $r_{0}\left(\right.$ if $\left.r_{0} \neq p_{0}\right)$ by $s_{n_{0}}$ as if we are adding a new element to S_{ω} as an identity.
(3) We claim that all the elements of S, smaller than r_{0}, are either in [p_{0}, r_{0}), or on a unique decreasing path $D P\left(p_{0}\right)$, starting at p_{0}. (Note that [p_{0}, r_{0}) might be just p_{0} and that the unique decreasing path might be finite or infinite, including the possibility that it just consists of the vertex p_{0}.)
(4) It is enough to show that for every element $x<r_{0}, x$ is comparable with p_{0}. (Then if $x \geq p_{0}, x \in\left[p_{0}, r_{0}\right]$; if $x<p_{0}, x \in D P\left(p_{0}\right)$.) Suppose $x<r_{0}$ is incomparable with p_{0}. Let y be a predecessor of r_{0} which is $\geq x$. Then, by Lemma 3.2, there is a join-reducible element in $\left[p_{0}, y\right] \cup[x, y]$, contradicting the assumption that r_{0} is the smallest join-reducible element.
(5) If $D P\left(p_{0}\right)$ does not consist just of p_{0}, then we label by $s_{n_{0}+1}$ the next element (after p_{0}) on that path as if we are adding a new element to S_{ω} as a zero.
(6) If $s_{n_{0}+1}$ is added to S_{ω}, then we denote $p_{0}^{\prime}=s_{n_{0}+1}$, otherwise, $p_{0}^{\prime}=p_{0}$.
(7) Now all the elements of S smaller than r_{0} are either in $\left[p_{0}^{\prime}, r_{0}\right]$ or on a unique decreasing path $D P\left(p_{0}^{\prime}\right)$ starting at p_{0}^{\prime}. (This follows from (3).)
(8) If there are more join-reducible elements, then let r_{1} be the next one. Let p_{1} be the infimum of the predecessors of r_{1}. (The set of predecessors is finite by (ii).)
(9) We claim that p_{1} is comparable with r_{0}. (Suppose to the contrary. Let π be a predecessor of r_{1} which is between r_{0} and r_{1}. Then $\pi \neq r_{0}$, otherwise p_{1} would be comparable with r_{0}. Hence, by Lemma 3.2, there is a join-reducible element in $\left[p_{1}, \pi\right] \cup\left[r_{0}, \pi\right]$, bigger than p_{1} and r_{0}. This contradicts the assumption that r_{1} is the next join-reducible element after r_{0}.)
(10) It follows from (7) and (9) that there are three possibilities for p_{1} : (a) $p_{1}>r_{0}$; (b) $p_{1} \in\left[p_{0}^{\prime}, r_{0}\right]$; and (c) $p_{1}<p_{0}^{\prime}$.
(11) (a) If $p_{1}>r_{0}$, then there is a unique decreasing path from p_{1} to r_{0}. The set of leaves of the tree $\left[r_{0}, r_{1}\right.$) (finite by (iv)) coincides with the set of the predecessors of r_{1}. We label the non-root vertices of that tree (a finite set by (iii)) by $s_{n_{0}+1}, \ldots, s_{n_{1}-1}$ or by $s_{n_{0}+2}, \ldots, s_{n_{1}-1}$ (depending on whether $p_{0}^{\prime}=p_{0}$ or $\left.p_{0}^{\prime}<p_{0}\right)$ as if we are adding new elements to S_{ω} behaving as already existing elements.
(12) (b) If $p_{1} \in\left[p_{0}^{\prime}, r_{0}\right]$, then the vertices from $\left[p_{1}, r_{1}\right] \cap\left[p_{0}^{\prime}, r_{0}\right]$ are roots of the trees (some of which are possibly just roots) of a forest whose set of leaves coincides with the set of predecessors of r_{1}. We label the nonroot vertices of this forest (a finite set by (iii)) by $s_{n_{0}+1}, \ldots, s_{n_{1}-1}$ or by $s_{n_{0}+2}, \ldots, s_{n_{1}-1}$ (depending on whether $p_{0}^{\prime}=p_{0}$ or $p_{0}^{\prime}<p_{0}$) as if we are adding new elements to S_{ω} behaving as already existing elements.
(13) (c) If $p_{1} \leq p_{0}^{\prime}$, then there is a unique decreasing path from p_{0}^{\prime} to p_{1}. We label the elements of this path by $s_{n_{0}+1}, \ldots, s_{n_{0}+m_{1}}$, or by $s_{n_{0}+2}, \ldots, s_{n_{0}+m_{1}}$ (depending on whether $p_{0}^{\prime}=p_{0}$ or $p_{0}^{\prime}<p_{0}$) as if we are adding new elements to S_{ω} as zeros. (If $p_{1}=p_{0}^{\prime}$, then $m_{1}=1$ in the first case and $m_{1}=2$ in the second case.) The vertices from [p_{1}, r_{1}) are roots of the trees (some of which are possibly just roots) of a forest whose set of leaves coincides with the set of predecessors of r_{1}. We label the non-root vertices of this forest by $s_{n_{0}+m_{1}+1}, \ldots, s_{n_{1}-1}$ as if we are adding new elements to S_{ω} behaving as already existing elements. Then label r_{1} by $s_{n_{1}}$ as if we are adding a new element to S_{ω} as an identity.
(14) We claim that all the elements of S, smaller than r_{1}, are either in [$\left.p_{1}, r_{1}\right)$, or on a unique decreasing path $D P\left(p_{1}\right)$, starting at p_{1}.
(15) It is enough to show that for every element $x<r_{1}, x$ is comparable with p_{1}. (Then if $x \geq p_{1}, x \in\left[p_{1}, r_{1}\right]$; if $x<p_{1}, x \in D P\left(p_{1}\right)$.) Suppose $x<r_{1}$ is incomparable with p_{1}. Let y be a predecessor of r_{1} which is $\geq x$. Then, by Lemma 3.2, there is a join-reducible element in $\left[p_{1}, y\right] \cup[x, y]$. Hence $x \leq r_{0}$. However, all the elements comparable with r_{0} are either in $\left[p_{0}, r_{0}\right]$ or on $D P\left(p_{0}\right)$. In either case, x is comparable with p_{1}, a contradiction.
(16) If $D P\left(p_{1}\right)$ does not consist just of p_{1}, then we label by $s_{n_{1}+1}$ the next element (after p_{1}) on that path as if we are adding a new element to S_{ω} as a zero.
(17) If $s_{n_{1}+1}$ is added to S_{ω}, then we denote $p_{1}^{\prime}=s_{n_{1}+1}$, otherwise, $p_{1}^{\prime}=p_{1}$.
(18) We now proceed by induction. Suppose that we have labeled the elements of the interval $\left[p_{k-1}^{\prime}, r_{k-1}\right]$ and that r_{k} is the next join-reducible element. Let p_{k} be the infimum of the predecessors of r_{k}. (The set of predecessors is finite by (ii).)
(19) We claim that p_{k} is comparable with r_{k-1}. (Suppose to the contrary. Let π be a predecessor of r_{k} which is between r_{k-1} and r_{k}. Then $\pi \neq r_{k-1}$, otherwise, p_{k} would be comparable with r_{k-1}. Hence, by Lemma 3.2, there is a join-reducible element in $\left[p_{k}, \pi\right] \cup\left[r_{k-1}, \pi\right]$, bigger than p_{k} and r_{k-1}. This contradicts the assumption that r_{k} is the next join-reducible element after r_{k-1}.)
(20) It follows from the analogue of (14) and from (19) that there are three possibilities for p_{k} : (a) $p_{k}>r_{k-1}$; (b) $p_{k} \in\left[p_{k-1}^{\prime}, r_{k-1}\right]$; and (c) $p_{k}<p_{k-1}^{\prime}$.
(21) (a) If $p_{k}>r_{k-1}$, then there is a unique decreasing path from p_{k} to r_{k-1}. The set of leaves of the tree $\left[r_{k-1}, r_{k}\right)$ (finite by (iv)) coincides with the set of the predecessors of r_{k}. We label the non-root vertices of that tree (a finite set by (iii)) by $s_{n_{k-1}+1}, \ldots, s_{n_{k}-1}$ or by $s_{n_{k-1}+2}, \ldots, s_{n_{k}-1}$ (depending on whether $p_{k-1}^{\prime}=p_{k-1}$ or $p_{k-1}^{\prime}<p_{k-1}$) as if we are adding new elements to S_{ω} behaving as already existing elements.
(22) (b) If $p_{k} \in\left[p_{k-1}^{\prime}, r_{k-1}\right]$, then the vertices from $\left[p_{k}, r_{k}\right] \cap$ [$p_{k-1}^{\prime}, r_{k-1}$] are roots of the trees (some of which are possibly just roots)
of a forest whose set of leaves coincides with the set of predecessors of r_{k}. We label the non-root vertices of this forest (a finite set by (iii)) by $s_{n_{k-1}+1}, \ldots, s_{n_{k}-1}$, or by $s_{n_{k-1}+2}, \ldots, s_{n_{k}-1}$ (depending on whether p_{k-1}^{\prime} $=p_{k-1}$ or $\left.p_{k-1}^{\prime}<p_{k-1}\right)$ as if we are adding new elements to S_{ω} behaving as already existing elements.
(23) (c) If $p_{k} \leq p_{k-1}^{\prime}$, then there is a unique decreasing path from p_{k-1}^{\prime} to p_{k}. We label the elements of this path by $s_{n_{k-1}+1}, \ldots, s_{n_{k-1}+m_{1}}$, or by $s_{n_{k-1}+2}, \ldots, s_{n_{k-1}+m_{1}}$ (depending on whether $p_{k-1}^{\prime}=p_{k-1}$ or p_{k-1}^{\prime} $<p_{k-1}$) as if we are adding new elements to S_{ω} as zeros. (If $p_{k}=p_{k-1}^{\prime}$, then $m_{k}=1$ in the first case and $m_{k}=2$ in the second case.) The vertices from [p_{k}, r_{k}) are roots of the trees (some of which are possibly just roots) of a forest whose set of leaves coincides with the set of predecessors of r_{k}. We label the non-root vertices of this forest by $s_{n_{k-1}+m_{k}+1}, \ldots, s_{n_{k}-1}$ as if we are adding new elements to S_{ω} behaving as already existing elements. Then label r_{k} by $s_{n_{k}}$ as if we are adding a new element to S_{ω} as an identity.
(24) We claim that all the elements of S, smaller than r_{k}, are either in [p_{k}, r_{k}) or on a unique decreasing path $D P\left(p_{k}\right)$, starting at p_{k}.
(25) It is enough to show that for every element $x<r_{k}, x$ is comparable with p_{k}. (Then, if $x \geq p_{k}, x \in\left[p_{k}, r_{k}\right]$; if $x<p_{k}, x \in D P\left(p_{k}\right)$.) Suppose $x<r_{k}$ is incomparable with p_{k}. Let y be a predecessor of r_{k} which is $\geq x$. Then, by Lemma 3.2, there is a join-reducible element in $\left[p_{k}, y\right] \cup[x, y]$. Hence $x \leq r_{k-1}$. However, all the elements comparable with r_{k-1} are either in $\left[p_{k-1}, r_{k-1}\right.$] or on $\operatorname{DP}\left(p_{k-1}\right)$. In either case, x is comparable with p_{k}, a contradiction.
(26) If $D P\left(p_{k}\right)$ does not consist just of p_{k}, then we label by $s_{n_{k}+1}$ the next element (after p_{k}) on that path as if we are adding a new element to S_{ω} as a zero.
(27) If $s_{n_{k}+1}$ is added to S_{ω}, then we denote $p_{k}^{\prime}=s_{n_{k}+1}$, otherwise, $p_{k}^{\prime}=p_{k}$.
(28) Now we consider two possibilities: (A) there are finitely many joinreducible elements; and (B) there are infinitely many join-reducible elements.
(29) (A) Suppose there are finitely many join-reducible elements. We consider the situation after we label all of them in the above inductive procedure (1)-(27). Let r_{t} be the last join-reducible element. The remaining (non-labeled) elements of S form a forest whose set of roots is $\left[p_{t}^{\prime}, r_{t}\right.$] $\cup D P\left(p_{t}^{\prime}\right)$. (Some of the trees of this forest might be just roots.) Let us list these trees (before that let us denote $N=n_{t}$ or $N=n_{t}+1$, depending on whether $p_{t}^{\prime}<p_{t}$ or $\left.p_{t}^{\prime}=p_{t}\right): T_{0}, T_{1}, \ldots, T_{N}, T_{N+1}, T_{N+2}, \ldots$. Here T_{N+1}, T_{N+2}, \ldots are trees with roots v_{1}, v_{2}, \ldots, where v_{1}, v_{2}, \ldots are vertices on $\operatorname{DP}\left(p_{t}^{\prime}\right)$ after p_{t}^{\prime} in decreasing order (from some point on these vertices and the trees might not exist). We now label the remaining vertices in the following order:

- label one leaf on each of T_{0}, \ldots, T_{N} (if they have unlabeled leaves);
- label v_{1};
- label one leaf on each of T_{0}, \ldots, T_{N+1}, (if they have unlabeled leaves);
- label v_{2};
- label one leaf on each of T_{0}, \ldots, T_{N+2} (if they have unlabeled leaves);
- label v_{3};
- label one leaf on each of T_{0}, \ldots, T_{N+3} (if they have unlabeled leaves);

In this way, all the elements of S will be labeled and we will finish the creation of S_{ω}.
(30) (B) Suppose there are finitely many join-reducible elements. In each step of the above inductive procedure (1)-(27), we finished with the labeling of the subsemigroup $\left[p_{k}^{\prime}, r_{k}\right.$] of S. The semigroup $\left[p_{k-1}^{\prime}, r_{k-1}\right.$] is a subsemigroup of $\left[p_{k}^{\prime}, r_{k}\right]$ for every k, so $\cup_{k \in \mathbb{N}}\left[p_{k}^{\prime}, r_{k}\right]$ is a subsemigroup of the intended semigroup S_{ω}. We claim that, in fact, $S_{\omega}=\bigcup_{k \in \mathbb{N}}\left[p_{k}^{\prime}, r_{k}\right]$. This follows from the assumed condition (ii). Thus, all the elements of S will be labeled and we will finish the creation of S_{ω} in this case as well.

The proof of the theorem is finished.

4. Some Examples

The following examples show that the four conditions in our main theorem are independent.

Example 4.1. Let $S=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\} \cup\left\{a_{\omega}\right\}$ be a lower semilattice in which $a_{i}<a_{j}$ for every $i<j$ and $a_{i}<a_{\omega}$ for every i. This semigroup satisfies the conditions (i), (ii) and (iii), but not (iv). It cannot be realized as an S_{ω} (but it can as an $S_{\omega+1}$).

Example 4.2. Let $S=\{a\} \cup\left\{b_{1}, b_{2}, b_{3}, \ldots\right\} \cup\left\{c_{1}, c_{2}, c_{3}, \ldots\right\}$ and let the covering relation of S be $\mathcal{C}(S)=\left\{\left(a, b_{i}\right) \mid i=1,2,3, \ldots\right\} \cup\left\{\left(b_{i}, c_{i-1}\right) \mid i=\right.$ $2,3,4, \ldots\} \cup\left\{\left(b_{1}, c_{1}\right)\right\} \cup\left\{\left(c_{i}, c_{i+1}\right) \mid i=1,2,3, \ldots\right\}$. This semigroup satisfies the conditions (i), (ii) and (iv), but not (iii). It cannot be realized as an S_{ω} (but it can as an $S_{\omega+1}$).

Example 4.3. Let $S=\bigcup_{i=1}^{\infty}\left\{a_{i, 1}, a_{i, 2}, a_{i, 3}\right\} \cup\{b\}$ and let the covering relation of S be $\mathcal{C}(S)=\bigcup_{i=1}^{\infty}\left\{\left(a_{i, 1}, a_{i, 2}\right),\left(a_{i, 1}, a_{i, 3}\right)\right\} \cup \bigcup_{i=1}^{\infty}\left\{\left(a_{i, 2}, a_{i+1,1}\right)\right.$,
$\left.\left(a_{i, 3}, a_{i+1,1}\right)\right\} \cup\left\{\left(a_{1,1}, b\right)\right\}$. This semigroup satisfies the conditions (i), (iii) and (iv), but not (ii). It cannot be realized as an S_{ω} (but it can as an $S_{\omega+1}$).

Example 4.4. Let $S=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\} \cup\left\{b_{1}, b_{2}, b_{3}\right\} \cup\left\{c_{1}, c_{2}, c_{3}\right\}$ and let the covering relation of S be $\mathcal{C}(S)=\left\{\left(a_{i}, a_{i+1}\right) \mid i=1,2,3, \ldots\right\} \cup$ $\left\{\left(a_{1}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(b_{1}, b_{3}\right),\left(b_{2}, b_{3}\right)\right\} \cup\left\{\left(a_{2}, c_{1}\right),\left(a_{2}, c_{2}\right),\left(c_{1}, c_{3}\right),\left(c_{2}, c_{3}\right)\right\}$. This semigroup satisfies the conditions (ii), (iii) and (iv), but not (i). It cannot be realized as an S_{ω}, in fact, it cannot be realized as any S_{τ}, τ an ordinal.

The above examples inspire the following.
Question 4.5. Characterize all the lower semilattices that can be realized as an S_{τ}, τ an ordinal. More concretely, is the well-orderedness of the set of join-reducible elements a necessary and sufficient condition?

References

[1] J. M. Howie, Fundamentals of semigroup theory, London Mathematical Society Monographs, New Series, 12, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995.
[2] H. Kulosman and A. Miller, Adjoining idempotents to semigroups, Int. J. Algebra 5 (2011), 897-908.
[3] H. Kulosman and A. Miller, Zero-divisor graphs of some special semigroups, Far East J. Math. Sci. (FJMS) 57 (2011), 63-90.
[4] H. Kulosman and A. Miller, A note about finite lower semilattices whose set of join-reducible elements is totally ordered, Far East J. Math. Sci. (FJMS) 87 (2014), 195-205.

[^0]: Received: August 21, 2014; Accepted: October 6, 2014
 2010 Mathematics Subject Classification: Primary 06A12; Secondary 20M14.
 Keywords and phrases: Boolean semigroup, adjoining idempotents, special semigroup, lower semilattice, join-reducible element.
 *Corresponding author
 Communicated by K. K. Azad

