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Abstract

In this paper, we investigate Lipschitz and asymptotic stability for
perturbed functional differential systems.

1. Introduction

Dannan and Elaydi introduced a new notion of uniformly Lipschitz
stability (ULS) [9]. This notion of ULS lies somewhere between uniformly
stability on one side and the notions of asymptotic stability in variation of
Brauer [4] and uniformly stability in variation of Brauer and Strauss [3] on
the other side. An important feature of ULS is that for linear systems, the
notion of uniformly Lipschitz stability and that of uniformly stability are

equivalent. However, for nonlinear systems, the two notions are quite
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distinct. Furthermore, uniform Lipschitz stability neither implies asymptotic
stability nor is it implied by it. Also, Elaydi and Farran [10] introduced the
notion of exponential asymptotic stability (EAS) which is a stronger notion
than that of ULS. They investigated some analytic criteria for an autonomous
differential system and its perturbed systems to be EAS. Gonzalez and Pinto
[11] proved theorems which relate the asymptotic behavior and boundedness
of the solutions of nonlinear differential systems. Choi et al. [7, 8] examined
Lipschitz and exponential asymptotic stability for nonlinear functional
systems. Also, Goo et al. [5, 12] investigated Lipschitz and asymptotic
stability for perturbed differential systems.

The purpose of this paper is to employ the theory of integral inequalities
to study Lipschitz and asymptotic stability for solutions of the nonlinear
differential systems. The method incorporating integral inequalities takes an
important place among the methods developed for the qualitative analysis of
solutions to linear and nonlinear systems of differential equations. In the
present situation, the method of integral inequalities is as efficient as the
direct Lyapunov’s method.

2. Preliminaries
We consider the nonlinear nonautonomous differential system
X(t) = f(t, x(t), x(to) = Xo, (2.1)

where f € C(R™ xR", R"), R* =0, ) and R" is the Euclidean n-space.

We assume that the Jacobian matrix f, = of /ox exists and is continuous on

R* xR" and f(t, 0) = 0. Also, consider the perturbed differential system
of (2.1),

V' = £t y)+ [, ol YS)ds + hit, YO, YO Y(o) = Yo, (22)

where g € C(R* xR", R"), heC[R" xR"xR", R"], g(t, 0)=0,
h(t,0,0)=0, and T : C(R*, R") - C(R", R") is a continuous operator.
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12
For x e R", let | x| = (Z?_l xfj . For an n x n matrix A, define the

norm | A| of Aby | A| = sup|y |<a| Ax|.

Let x(t, tg, Xg) denote the unique solution of (2.1) with X(tg, tg, Xg)
= Xg, existing on [ty, «). Then we can consider the associated variational

systems around the zero solution of (2.1) and around x(t), respectively,
V'(t) = fx(t, O)v(t), Vo) = Vo (2.3)
and
Z'(t) = f(t, x(t, tg, Xp))z(t), z(ty) = 2o (2.4)

The fundamental matrix ®(t, ty, Xg) of (2.4) is given by
CD(t to Xo) = i X(t to Xo)
1 1 axo 1 1 L

and @(t, tg, 0) is the fundamental matrix of (2.3).

Before giving further details, we give some of the main definitions that
we need in the sequel [9].

Definition 2.1. The system (2.1) (the zero solution x =0 of (2.1)) is
called

(S) stable if for any ¢ > 0 and ty > 0, there exists & = 8(ty, €) > 0 such
that if | xg | < 8, then | x(t)| < € forall t >ty >0,

(US) uniformly stable if the & in (S) is independent of the time tp,

(ULS) uniformly Lipschitz stable if there exist M > 0 and & > 0 such
that | x(t)| < M| xg | whenever | xg | <& and t > tg > 0,

(ULSV) uniformly Lipschitz stable in variation if there exist M > 0 and
8 > 0 such that | ®(t, tg, Xg)| <M for [xg| <8 and t >ty >0,
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(EAS) exponentially asymptotically stable if there exist constants K > 0,
c >0, and 6 > 0 such that

X(t)] < K| xg et o<ty <t
0 0
provided that | xq | < 8,

(EASV) exponentially asymptotically stable in variation if there exist
constants K > 0 and ¢ > 0 such that

|D(t, tg, Xo)| < Ke®70) o<ty <t
provided that | Xq | < .

Remark 2.2 [11]. The last definition implies that for | xq | < 3,

|X(1)] < K| xg|e0), o<ty <t.
We give some related properties that we need in the sequel.

We need Alekseev formula to compare between the solutions of (2.1)
and the solutions of perturbed nonlinear system

y' =ft. y)+at. y) yto) = Yo, (2.5)
where g e C(R* xR", R") and g(t, 0) = 0. Let y(t) = y(t, ty, Yo) denote
the solution of (2.5) passing through the point (tg, yg) in R™ x R".

The following is a generalization to nonlinear system of the variation of
constants formula due to Alekseev [1].

Lemma 2.3. Let x and y be solutions of (2.1) and (2.5), respectively. If
yo € R", then for all t such that x(t, ty, yg) € R",

Y . ¥0) = X(t o yo) + [ 000 s ¥($)a(s, Y(9)ds

Lemma 2.4 (Bihari-type inequality). Let u, A € C(R™), w e C((0, «))
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and w(u) be nondecreasing in u. Suppose that, for some ¢ > 0,
t
ut) < c+ L Ms)WU(s))ds, t>ty > 0.
0
Then
1 t
ut) <W W(c)+J't Ms)ds|, to<t<by,
0

u ds

-1 . .
UoWS)’W (u) is the inverse of W(u) and

where W (u) = |

b = sup{t >ty 1 W(c)+ L: A(s)ds € domW _1}.

Lemma 2.5 [15]. Let u, p, g, Vv, r e C(R*), w e C((0, «)), w(u) be

nondecreasing in u, and u < w(u). Suppose that for some ¢ > 0,

ut) < c + j ;(p(s)jtz [q(r)u(r) +v(x) j t:) r(a)w(u(a))da)dr)ds, £t
Then
u(t) < w-l[w (c) + j:o ( 0] tz (q(r) ()| t; r(a)da}dr} ds]

toSt<b1,

where W, W 1 are the same functions as in Lemma 2.4 and

b = sup{t >ty :W(c)

+ LZ ( p(s)jtz [q(r) + V(T)It; r(a)daJ er ds € domw _1}.

Lemma 2.6 [13]. Let u, A1, Ay, A3 € C(RT), w e C((0, »)) and w(u)
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be nondecreasing in u, u < w(u). Suppose that for some ¢ > 0,

uty <+ | : Aq(s)w(u(s))ds
0

+j;x2(s)(j:) kg(r)u(t)drjds, 0<ty <t

Then

u(t) < W‘l[w(c) +.[ (kl(s) + kz(s)jtz x3(r)dr)ds} tg <t <by,

t
to
where W, W 1 are the same functions as in Lemma 2.4, and

b = sup{t >ty :W(Cc)+ I (M(s) + kz(s)jts kg(r)drjds e domW _1}.

t
t
Lemma 2.7 [14]. Let u, p, g, r, ve C(R), we C((0, ©)) and w(u)
be nondecreasing in u. Suppose that for some ¢ > 0,

ut) <c + L: ( p(s) j tz (q(r)w(u(r)) () j t: r(a)w(u(a))dajdrj ds,

t >t

Then
u(t) < w-l[w (©)+ j; ( o) tz (q(r) v t; r(a)da)dr)ds]

to St<b_|_,

where W, W ~1 are the same functions as in Lemma 2.4, and

b = sup{t >ty :W(c)

+ J.; ( p(s)jtz {q(r) + v(r)jtz r(a)dajdr}ds e domW _1}.
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Lemma 2.8 [6]. Let u, A1, Ao, A3 € C(R*), w e C((0, »)) and w(u)
be nondecreasing in u. Suppose that for some ¢ > 0,

ut) < ¢+ j: Aq(s)W(u(s))ds
0

t s
n j kz(s)( j kg(r)w(u(r))drjds, 0<ty <t
t to
Then
1 t s
u(t) <W W(c)+jt xl(s)+x2(s)jt a()dt|ds| to<t<by,
0 0
where W, W ™t are the same functions as in Lemma 2.4, and
t s 4
b = sup{t >ty :W(c)+ L (kl(s) + kz(s)L kg(r)drjds e domWw }
0 0

3. Main Results

In this section, we investigate Lipschitz and asymptotic stability for
solutions of the perturbed functional differential systems.

We need the lemma to prove the following theorem.

Lemma 3.1. Let k, U, Aq, Ao, A3, g € C(R™), we C((0, ©)) and w(u)
be nondecreasing in u. Suppose that for some ¢ > 0,

uty<c+ | ; M(s){ [ tz {M(T)W(U(T))

+ 7»3(1)“‘; k(r)w(u(r))dr]dr + M(s)w(u(s))] ds, (3.2)

for t >ty > 0 and for some ¢ > 0. Then
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u(t) sw—l[w(c)+ L: kl(s)[ Lz [k2(1)+k3(r).[t; k(r)drjdr+k4(s)jds},
(3.2)

for ty <t < by, where W, W are the same functions as in Lemma 2.4, and

b = Sup{t >ty :W(c)+ L:) M(s)

‘ [ [ tZ (kz(t) #2500 t: k(r)drjdr ; M(s))ds e domW‘l}.

Proof. Define a function v(t) by the right member of (3.1). Then

V(0 =3400) [ [a(6ue(0)+ (0 KWl b Jos 42w
which implies
V(t) < kl(t)[ J' ; [xz(s) + xg(s)jtz k(r)drjds + M(t)} w(v(t)),

since v and w are nondecreasing and u(t) < v(t). Now, by integrating the

above inequality on [ty, t] and v(ty) = ¢, we have

vit) < ¢+ j ; xl(s)Ut: (kg(t) + A3(7) j t: k(r)dr)dr + M(s)}w(v(s))ds.

(3.3)

Then, by the well-known Bihari-type inequality, (3.3) yields the estimate
(3.2). O

Theorem 3.2. For the perturbed (2.2), we assume that

[9(t )| < al)w YO )+ b0, kshwl v @)
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and

[ht, y(), Ty®)] < ct)w( y(t) ), (3.5)
where a, b, ¢, k e C(R"), a, b, ¢, k e L(R"), we C((0, «)), and w(u)

. . 1 u
is nondecreasing in u and VW(U) w5 for some v > 0,

M (ty) = W_l[W(M )+ M j :( j tz (a(r) +b(r) j t: k(r)drjdr + c(s))ds},

(3.6)

where M(tg) < and by = . Then the zero solution of (2.2) is ULS
whenever the zero solution of (2.1) is ULSV.

Proof. Let x(t) = x(t, tp, yo) and y(t) = y(t, tg, Yg) be solutions of
(2.1) and (2.2), respectively. Since x = 0 of (2.1) is ULSV, it is ULS by [9,
Theorem 3.3]. Using the nonlinear variation of constants formula, (3.4) and
(3.5), we have

|y()|

t s
SECIESMECE y(s))|[ [ J9 yelde +[h(s, ¥(5), TY(5) |j ds
< M|Y0|+It;M|YO|

‘ { [ tz [a(r)w(%j +b()| t: k(r)w(%)dr} dr+ c(s)w/(l |yy(§)| |H ds.

Set u(t) =|y(t)|| vo |_1. Now an application of Lemma 3.1 yields

ly®)] <] yo |W_1[W(M )+ M j:o Utz (a(r) +b(x) j t; k(r)drjdr + c(s)j ds}.

Thus, by (3.6), we have | y(t)| < M(ty)| yo | for some M(ty) > 0 whenever

| Yo | < 8, and so the proof is complete. O
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Remark 3.3. Letting c(t) = 0 in Theorem 3.2, we obtain the same result
as that of Theorem 3.2 in [5].

Theorem 3.4. For the perturbed (2.2), we assume that
[9(t )| = al)w YO )+ b0, kshwl v @)

and
(L YO YO < [ els)wl Yo @9)

where a, b, ¢, k e C(R™), a, b, ¢, k € y(R™), w e C((0, «)), and w(u) is

nondecreasing in u and %w(u) < w(%) for some v > 0,

0 eS
M (to) =vv—1[vv(M)+ v | [a(r)+c(r)+ (o) k(r)drjdrds}, (39)
o7t to
where M(tg) < and by = . Then the zero solution of (2.2) is ULS
whenever the zero solution of (2.1) is ULSV.

Proof. Let x(t) = x(t, tg, yg) and y(t) = y(t, tg, yo) be solutions of

(2.1) and (2.2), respectively. Since x = 0 of (2.1) is ULSV, it is ULS. Using
the nonlinear variation of constants formula, (3.7) and (3.8), we have

| y(®)|

t S
<x)+ [ 10t sy [ ot v s+ s, v66), (o)

<Mlyo |+ [ Miyolf | ate) +eceu 5T aras

||yy(;)| |)dr}drds.

+j; M Yo |jtz b(r)It;k(r)w(
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Set u(t) = | y(t)|| yo | Then it follows from Lemma 2.7 that

1 tps T
ly@®)| <] yo W HW(M)+ MJ. j a(t) + o(7) + b(r).[ K(r)dr |duds |.
vt )
From (3.9), we get | y(t)| < M(t)| yo | for some M(ty) > O whenever
| Yo | < 8, and so the proof is complete. O

Remark 3.5. Letting c(s) = 0 in Theorem 3.4, we obtain the same result
as that of Theorem 3.2 in [5].

Theorem 3.6. For the perturbed (2.2), we assume that
J (s, (s 1ds < au] yO) )+ bO)f Koyl y(s)pds  (210)
and
[ h(t, y(t). Ty(®)] < ct)w(] y(t)|), (3.11)

where a, b, ¢, k e C(R"), a, b, ¢, k e L(R"), we C((0, «)), and w(u)

. N 1 u
is nondecreasing in u and VW(U) <w for some v > 0,

M(to) = vv—l[W(M)+ M j :(a(s) +e(s) + b(s)JtZ k(r)dtj ds}, (3.12)

where M(ty) <o and by = . Then the zero solution of (2.2) is ULS
whenever the zero solution of (2.1) is ULSV.

Proof. Let x(t) = x(t, tg, Yg) and y(t) = y(t, tg, yg) be solutions of

(2.1) and (2.2), respectively. Since x =0 of (2.1) is ULSV, it is ULS.
Applying Lemma 2.3, (3.10), and (3.11), we have

|y()|

t s
<|[x®+ LO | (s, ¥(9)) IUtOI g(v, y(v))[dr+[h(s, y(s). Ty(s)) des
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< Mlyo |+ [ Ml yol(ats) + e(s)uf LM s

+ LL M| yo |b(s)ItZ k(r)w(%) drds.

Set u(t) =|y(t)|| yo |_1. Now an application of Lemma 2.8 yields
1 t s
ly@®)| <] o W HwW(M)+ th (a(s) +e(s) + b(s,)jt k(r)drjds .
0 0

Hence, by (3.12), we have |y(t)|< M(ty)|yg| for some M(ty) >0
whenever | yg | < 8. This completes the proof. O

Remark 3.7. Letting c(t) = 0 in Theorem 3.6, we obtain the same result
as that of Theorem 3.3 in [5].

Lemma 3.8. Let U, Ay, Ao, A3, Ag, A5, Ag € C(RT), w € C((0, )) and

w(u) be nondecreasing in u, u < w(u). Suppose that for some ¢ > 0,

t t
ut) <c+ Jto M(s)u(s)ds + Lo Lo(s)w(u(s))ds
o ; ()] tz A (0)u(x) dds

t S
+ LO xs(s)jto rg(t)WU(t))deds, 0<ty <t.

Then

u(t) < w—l{w (©)+ j; (M(s) T hg(s) + xg(s)jtz hoa(1)de

+ 7\.5(S)Itz Ke(’t)d‘tjds:|, to <t< bl’ (313)

where W, W 1 are the same functions as in Lemma 2.4 and
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b = sup{t >ty :W(c)+ L: (kl(s) +Ao(s)+ x3(s)J‘tZ La(7)dr

+ J.t A (s)j ; Iy (r)drjds € domW_l}
T P '
Proof. Setting

t t
Z(t)=c+ It M(s)u(s)ds + L Lo(s)w(u(s))ds
o ; 1a(s)] tz (1) u(7)drds

S REC RECHICIES
we have z(ty) = ¢ and

Z(t) = M(t)u(t) + 2o (H)wiu(t))

; xg(t)j:o 1a(5)u(s)ds + 25(0) :O 2 (s)W(u(s))ds

t t
< [kl(t) +2(t) + 25(0)]  Fa(s)ds + (1) | . ks(s)ds)w(z(t)),

t>tg,

since z(t) and w(u) are nondecreasing, u<w(u), and u(t)<z(t).

Therefore, by integrating on [ty, t], the function z satisfies

2(t) < ¢ + jt: (xl(s) +Ao(s) + xg(s)j:) hg(t)dt

+25(5)] tz xs(r)dr)w(z(s))ds. (3.14)

It follows from Lemma 2.4 that (3.14) yields the estimate (3.13). O
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Theorem 3.9. For the perturbed (2.2), we assume that
t t
[ la(s y(sD1ds < ayw( y®) )+ bo)f k(s)w( y(s)ds  (3.15)
0 0
and

06, ¥00, YO = 0|0+ [ a@) vo)les ). (219

where a, b, ¢, k, g e C(R"), a, b, c k geh(RT), weC((0, «©)), and

w(u) is nondecreasing in u, u <w(u), and —W(u) < W( ) for some v > 0,
M (to) = W_l[W(M )+ M j t:(a(s) +o(s) + b(s)LZ k(t)dt

S
+c(s)j q(r)drjds}, (3.17)
to
where M(ty) <o and by =o. Then the zero solution of (2.2) is ULS

whenever the zero solution of (2.1) is ULSV.

Proof. Let x(t) = x(t, tg, yg) and y(t) = y(t, tg, yo) be solutions of
(2.1) and (2.2), respectively. Since x =0 of (2.1) is ULSV, it is ULS.
Applying Lemma 2.3, (3.15) and (3.16), we have

|y(®)]
<[x(®)|+ I; | O(t, s, y(5)) I( I tZI g(t, y(o))|dz + | h(s, y(s), Ty(s)) des

<M|yp |+ L: M| yo IC(s)%ds + J; M| Yo Ia(s)w(||y;§)||)ds

+L My e(s)] q(r)||y§)||d

[ Mo o (12
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Set u(t) =|y(t)|| yo |_1. Now an application of Lemma 3.8 yields

y(t)] <] yo W _1{W(M )+ M| ; (a(s) +¢(5)+b(s)] tz k(x)de

+ c(s)J.tZ q(r)drj ds}.

By (3.17), we have | y(t)| < M(ty)| yo | for some M(ty) > O whenever
| yo | < 8. This completes the proof. O

Remark 3.10. Letting c(t) =0 in Theorem 3.9, we obtain the same
result as that of Theorem 3.3 in [5].

Theorem 3.11. Let the solution x = 0 of (2.1) be EASV. Suppose that
the perturbing term g(t, y) satisfies

gty < &[0 )|+ b0 Kol y(s) s, (219

and

[h(t, y(@), TYO)]| < [ e 5c(s)] y(s) s, (319)

t
where a >0, a,b,c k,weC(R"), abc k wely(R"), w) is
nondecreasing in u, u < w(u), and %w(u) < w(%) for some v > 0. If
w1 * as S E
M(ty) =W W(c)+j Me J. a(t)+c(t)+b(r)] k(r)dr |dtds | < oo,
to to to
t>ty,  (3.20)
where ¢ =y |Me°‘t°, then all solutions of (2.2) approach zero as t — oo.

Proof. Let x(t) = x(t, tg, Yg) and y(t) = y(t, tg, yg) be solutions of
(2.1) and (2.2), respectively. Since the solution x = 0 of (2.1) is EASV, itis
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EAS by Remark 2.2. Using Lemma 2.3, (3.18) and (3.19), we have

[YO1< x|+ [, |06, y(s)
(] 19te viepla + s, (s) Ty e
< M]yo 770+ [/ Mot [ o7 (a(e) + (o) y0o)|
60 K" y(r) r asas
< M|yp le )+ | ; M=) :) ((am +c(0)] y(r) e

+ b(r)J ! k(ryw( y(r) |e°‘r)dr)drds.
to
Set u(t) =| y(t)[e*!. By Lemma 2.5 and (3.20), we obtain

()] < e~ “w —1[w () + j; MeaSj {a(r) + (1) + b(x) j t:) k(r)dr}drds}

S
L]
<e M(tg), t = to,

where ¢ = M| yq |e°‘t0. The above estimation yields the desired result. [

Remark 3.12. Letting c(s) = 0 in Theorem 3.11, we obtain the same
result as that of Theorem 3.4 in [5].

Theorem 3.13. Let the solution x = 0 of (2.1) be EASV. Suppose that the
perturbed term g(t, y) satisfies

t t
J.ats. vl < & am( v + b K yols] (220
0 0
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and

| h(t, y(t), Ty(t)] < e™e®w( y(t)]), (3.22)
where a >0, a,b, ¢, k, we C(R"), a,b,c, k,weLy(R") and w(u) is

nondecreasing in u, u < w(u), and %w(u) < w[%) for some v > 0. If
M (tg) = W_l{w )+ M J’ ;:(a(s) +¢(s) + b(s) j tz k(r)drj ds} <o,
by = oo, (3.23)

where ¢ = M| yq |e°‘t0, then all solutions of (2.2) approach zero as t — oo.

Proof. Let x(t) = x(t, tp, yo) and y(t) = y(t, tg, Yg) be solutions of
(2.1) and (2.2), respectively. Since the solution x = 0 of (2.1) is EASV, it is
EAS. Using Lemma 2.3, (3.21) and (3.22), we have

|y()|

t S
< x|+ [ 0 s y6)1[ [l v s+ 06, y6) Ty |
< Ml yo o700 4 [ et & a5 (| y(5))
0
+ e 9%(s)[ :) K(o)| y(x)|de + e Sc(s)wi] y(s) |)} ds
< M|y e lt-t) 4 J‘; Me ™ (a(s) + c(s))w( y(s)[e®)ds

o " Me“h(s) [ k)] y(x) fe“aeas.
to to

Set u(t) =| y(t)|e°‘t. Since w(u) is nondecreasing, it follows from Lemma
2.6 and (3.23) that
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t
|y(t)| < e”*w ‘{W(C) +M J.t [a(s) +c(s) + b(s.)J‘tS k(r)drjds}
0 0

<e *M(ty) t > tg,

where ¢ = M| yo [e*©. From the above estimation, we obtain the desired
result. O

Remark 3.14. Letting c(t) = 0 in Theorem 3.13, we obtain the same
result as that of Theorem 3.5 in [5].
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