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Abstract 

In this paper, we investigate Lipschitz and asymptotic stability for 
perturbed functional differential systems. 

1. Introduction 

Dannan and Elaydi introduced a new notion of uniformly Lipschitz 
stability (ULS) [9]. This notion of ULS lies somewhere between uniformly 
stability on one side and the notions of asymptotic stability in variation of 
Brauer [4] and uniformly stability in variation of Brauer and Strauss [3] on 
the other side. An important feature of ULS is that for linear systems, the 
notion of uniformly Lipschitz stability and that of uniformly stability are 
equivalent. However, for nonlinear systems, the two notions are quite 
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distinct. Furthermore, uniform Lipschitz stability neither implies asymptotic 
stability nor is it implied by it. Also, Elaydi and Farran [10] introduced the 
notion of exponential asymptotic stability (EAS) which is a stronger notion 
than that of ULS. They investigated some analytic criteria for an autonomous 
differential system and its perturbed systems to be EAS. Gonzalez and Pinto 
[11] proved theorems which relate the asymptotic behavior and boundedness 
of the solutions of nonlinear differential systems. Choi et al. [7, 8] examined 
Lipschitz and exponential asymptotic stability for nonlinear functional 
systems. Also, Goo et al. [5, 12] investigated Lipschitz and asymptotic 
stability for perturbed differential systems. 

The purpose of this paper is to employ the theory of integral inequalities 
to study Lipschitz and asymptotic stability for solutions of the nonlinear 
differential systems. The method incorporating integral inequalities takes an 
important place among the methods developed for the qualitative analysis of 
solutions to linear and nonlinear systems of differential equations. In the 
present situation, the method of integral inequalities is as efficient as the 
direct Lyapunov’s method. 

2. Preliminaries 

We consider the nonlinear nonautonomous differential system 

 ( ) ( )( ) ( ) ,,, 00 xtxtxtftx ==′  (2.1) 

where ( ),, nnCf RRR ×∈ +  [ )∞=+ ,0R  and nR  is the Euclidean n-space. 

We assume that the Jacobian matrix xff x ∂∂=  exists and is continuous on 
nRR ×+  and ( ) .00, =tf  Also, consider the perturbed differential system 

of (2.1), 

 ( ) ( )( ) ( ) ( )( ) ( )∫ =++=′
t
t

ytytTytythdssysgytfy
0

,,,,,, 00  (2.2) 

where ( ),, nnCg RRR ×∈ +  [ ],, nnnCh RRRR ××∈ +  ( ) ,00, =tg  

( ) ,00,0, =th  and ( ) ( )nn CCT RRRR ,,: ++ →  is a continuous operator. 



Lipschitz Stability for Perturbed Functional Differential Systems 575 

For ,nx R∈  let .
21

1
2 ⎟
⎠
⎞

⎜
⎝
⎛= ∑ =

n
j jxx  For an nn ×  matrix A, define the 

norm A  of A by .sup 1 AxA x ≤=  

Let ( )00,, xttx  denote the unique solution of (2.1) with ( )000 ,, xttx  

,0x=  existing on [ ).,0 ∞t  Then we can consider the associated variational 

systems around the zero solution of (2.1) and around ( ),tx  respectively, 

 ( ) ( ) ( ) ( ) 00,0, vtvtvtftv x ==′  (2.3) 

and 

 ( ) ( )( ) ( ) ( ) .,,,, 0000 ztztzxttxtftz x ==′  (2.4) 

The fundamental matrix ( )00,, xttΦ  of (2.4) is given by 

( ) ( ),,,,, 00
0

00 xttxxxtt
∂
∂=Φ  

and ( )0,, 0ttΦ  is the fundamental matrix of (2.3). 

Before giving further details, we give some of the main definitions that 
we need in the sequel [9]. 

Definition 2.1. The system (2.1) (the zero solution 0=x  of (2.1)) is 
called 

(S) stable if for any 0>ε  and ,00 ≥t  there exists ( ) 0,0 >εδ=δ t  such 

that if ,0 δ<x  then ( ) ε<tx  for all ,00 ≥≥ tt  

(US) uniformly stable if the δ in (S) is independent of the time ,0t  

(ULS) uniformly Lipschitz stable if there exist 0>M  and 0>δ  such 
that ( ) 0xMtx ≤  whenever δ≤0x  and ,00 ≥≥ tt  

(ULSV) uniformly Lipschitz stable in variation if there exist 0>M  and 
0>δ  such that ( ) Mxtt ≤Φ 00,,  for δ≤0x  and ,00 ≥≥ tt  
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(EAS) exponentially asymptotically stable if there exist constants ,0>K  
,0>c  and 0>δ  such that 

( ) ( ) ttexKtx ttc ≤≤≤ −−
00 0,0  

provided that ,0 δ<x  

(EASV) exponentially asymptotically stable in variation if there exist 
constants 0>K  and 0>c  such that 

( ) ( ) ttKextt ttc ≤≤≤Φ −−
000 0,,, 0  

provided that .0 ∞<x  

Remark 2.2 [11]. The last definition implies that for ,0 δ≤x  

( ) ( ) .0, 00 0 ttexKtx ttc ≤≤≤ −−  

We give some related properties that we need in the sequel. 

We need Alekseev formula to compare between the solutions of (2.1) 
and the solutions of perturbed nonlinear system 

 ( ) ( ) ( ) ,,,, 00 ytyytgytfy =+=′  (2.5) 

where ( )nnCg RRR ,×∈ +  and ( ) .00, =tg  Let ( ) ( )00,, yttyty =  denote 

the solution of (2.5) passing through the point ( )00, yt  in .nRR ×+  

The following is a generalization to nonlinear system of the variation of 
constants formula due to Alekseev [1]. 

Lemma 2.3. Let x and y be solutions of (2.1) and (2.5), respectively. If 

,0
ny R∈  then for all t such that ( ) ,,, 00

nyttx R∈  

( ) ( ) ( )( ) ( )( )∫ Φ+=
t

t
dssysgsystyttxytty

0
.,,,,,,, 0000  

Lemma 2.4 (Bihari-type inequality). Let ( ),, +∈λ RCu  ( )( )∞∈ ,0Cw  
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and ( )uw  be nondecreasing in u. Suppose that, for some ,0>c  

( ) ( ) ( )( )∫ ≥≥λ+≤
t

t
ttdssuwsctu

0
.0, 0  

Then 

( ) ( ) ( ) ,, 10
1

0
bttdsscWWtu

t

t
<≤⎥⎦

⎤
⎢⎣
⎡ λ+≤ ∫−  

where ( ) ( ) ( )∫ −=
u
u

uWsw
dsuW

0

1,  is the inverse of ( )uW  and 

( ) ( ) .dom:sup
0

1
01

⎭
⎬
⎫

⎩
⎨
⎧ ∈λ+≥= ∫ −t

t
WdsscWttb  

Lemma 2.5 [15]. Let ( ),,,,, +∈ RCrvqpu  ( )( ),,0 ∞∈ Cw  ( )uw  be 

nondecreasing in u, and ( ).uwu ≤  Suppose that for some ,0≥c  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )∫ ∫ ∫ ≥⎟
⎠
⎞

⎜
⎝
⎛ τ⎟

⎠
⎞

⎜
⎝
⎛ τ+ττ+≤

τt

t

s

t t
ttdsddaauwarvuqspctu

0 0 0
., 0  

Then 

( ) ( ) ( ) ( ) ( ) ( ) ,
0 0 0

1
⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛ τ⎟

⎠
⎞

⎜
⎝
⎛ τ+τ+≤ ∫ ∫ ∫

τ− t

t

s

t t
dsddaarvqspcWWtu  

,10 btt <≤  

where 1, −WW  are the same functions as in Lemma 2.4 and 

( )
⎩
⎨
⎧

≥= cWttb :sup 01  

( ) ( ) ( ) ( ) .dom
0 0 0

1
⎪⎭

⎪
⎬
⎫

∈⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
τ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
τ+τ+ ∫ ∫ ∫ −τt

t

s

t t
Wdsddaarvqsp  

Lemma 2.6 [13]. Let ( ),,,, 321
+∈λλλ RCu  ( )( )∞∈ ,0Cw  and ( )uw  
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be nondecreasing in ( )., uwuu ≤  Suppose that for some ,0>c  

( ) ( ) ( )( )∫ λ+≤
t

t
dssuwsctu

0
1  

( ) ( ) ( )∫ ∫ ≤≤⎟
⎠
⎞

⎜
⎝
⎛ τττλλ+

t

t

s

t
ttdsdus

0 0
.0, 032  

Then 

( ) ( ) ( ) ( ) ( ) ,, 10321
1

0 0
bttdsdsscWWtu

t

t

s

t
<≤⎥⎦

⎤
⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛ ττλλ+λ+≤ ∫ ∫−  

where 1, −WW  are the same functions as in Lemma 2.4, and 

( ) ( ) ( ) ( ) .dom:sup
0 0

1
32101

⎭
⎬
⎫

⎩
⎨
⎧ ∈⎟

⎠
⎞

⎜
⎝
⎛ ττλλ+λ+≥= ∫ ∫ −t

t

s

t
WdsdsscWttb  

Lemma 2.7 [14]. Let ( ),,,,, +∈ RCvrqpu  ( )( )∞∈ ,0Cw  and ( )uw  

be nondecreasing in u. Suppose that for some ,0≥c  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )∫ ∫ ∫ ⎟
⎠
⎞

⎜
⎝
⎛ τ⎟

⎠
⎞

⎜
⎝
⎛ +ττ+≤

τt

t

s

t t
dsddaauwartvuwqspctu

0 0 0
,  

.0tt ≥  

Then 

( ) ( ) ( ) ( ) ( ) ( ) ,
0 0 0

1
⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛ τ⎟

⎠
⎞

⎜
⎝
⎛ τ+τ+≤ ∫ ∫ ∫

τ− t

t

s

t t
dsddaarvqspcWWtu  

,10 btt <≤  

where 1, −WW  are the same functions as in Lemma 2.4, and 

( )
⎩
⎨
⎧

≥= cWttb :sup 01  

( ) ( ) ( ) ( ) .dom
0 0 0

1
⎪⎭

⎪
⎬
⎫

∈⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
τ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
τ+τ+ ∫ ∫ ∫ −τt

t

s

t t
Wdsddaarvqsp  
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Lemma 2.8 [6]. Let ( ),,,, 321
+∈λλλ RCu  ( )( )∞∈ ,0Cw  and ( )uw  

be nondecreasing in u. Suppose that for some ,0>c  

( ) ( ) ( )( )∫ λ+≤
t

t
dssuwsctu

0
1  

( ) ( ) ( )( )∫ ∫ ≤≤⎟
⎠
⎞

⎜
⎝
⎛ τττλλ+

t

t

s

t
ttdsduws

0 0
.0, 032  

Then 

( ) ( ) ( ) ( ) ( ) ,, 10321
1

0 0
bttdsdsscWWtu

t

t

s

t
<≤⎥⎦

⎤
⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛ ττλλ+λ+≤ ∫ ∫−  

where 1, −WW  are the same functions as in Lemma 2.4, and 

( ) ( ) ( ) ( ) .dom:sup
0 0

1
32101

⎭
⎬
⎫

⎩
⎨
⎧ ∈⎟

⎠
⎞

⎜
⎝
⎛ ττλλ+λ+≥= ∫ ∫ −t

t

s

t
WdsdsscWttb  

3. Main Results 

In this section, we investigate Lipschitz and asymptotic stability for 
solutions of the perturbed functional differential systems. 

We need the lemma to prove the following theorem. 

Lemma 3.1. Let ( ),,,,,, 4321
+∈λλλλ RCuk  ( )( )∞∈ ,0Cw  and ( )uw  

be nondecreasing in u. Suppose that for some ,0≥c  

( ) ( ) ( ) ( )( )∫ ∫⎢⎢⎣
⎡

⎢
⎢
⎣

⎡
ττλλ+≤

t

t

s

t
uwsctu

0 0
21  

( ) ( ) ( )( ) ( ) ( )( ) ,43
0

dssuwsddrruwrk
t ⎥

⎥
⎦

⎤
λ+τ

⎥
⎥
⎦

⎤
τλ+ ∫

τ
 (3.1) 

for 00 ≥≥ tt  and for some .0≥c  Then 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ,
0 0 0

4321
1

⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛ λ+τ⎟

⎠
⎞

⎜
⎝
⎛ τλ+τλλ+≤ ∫ ∫ ∫

τ− t

t

s

t t
dssddrrkscWWtu  

 (3.2) 

for ,10 btt <≤  where 1, −WW  are the same functions as in Lemma 2.4, and 

( ) ( )
⎩
⎨
⎧ λ+≥= ∫

t

t
scWttb

0
101 :sup  

( ) ( ) ( ) ( ) .dom 1
432

0 0 ⎭
⎬
⎫∈⎟

⎠
⎞

⎜
⎝
⎛ λ+τ⎟

⎠
⎞

⎜
⎝
⎛ τλ+τλ× −τ

∫ ∫ Wdssddrrk
s

t t
 

Proof. Define a function ( )tv  by the right member of (3.1). Then 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ,
0 0

4321 ⎥⎦
⎤

⎢⎣
⎡ λ+⎟

⎠
⎞

⎜
⎝
⎛ τττλ+λλ=′ ∫ ∫

t

t

s

t
tuwtdsduwkssuwsttv  

which implies 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ),
0 0

4321 tvwtdsdkssttv
t

t

s

t ⎥⎦
⎤

⎢⎣
⎡ λ+⎟

⎠
⎞

⎜
⎝
⎛ ττλ+λλ≤′ ∫ ∫  

since v and w are nondecreasing and ( ) ( ).tvtu ≤  Now, by integrating the 

above inequality on [ ]tt ,0  and ( ) ,0 ctv =  we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )∫ ∫ ∫ ⎥⎦
⎤

⎢⎣
⎡ λ+τ⎟

⎠
⎞

⎜
⎝
⎛ τλ+τλλ+≤

τt

t

s

t t
dssvwsddrrksctv

0 0 0
.4321  

 (3.3) 

Then, by the well-known Bihari-type inequality, (3.3) yields the estimate 
(3.2). ~ 

Theorem 3.2. For the perturbed (2.2), we assume that 

 ( ) ( ) ( )( ) ( ) ( ) ( )( )∫+≤
t

t
dssywsktbtywtaytg

0
,  (3.4) 
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and 

 ( ) ( )( ) ( ) ( )( ),,, tywtctTytyth ≤  (3.5) 

where ( ),,,, +∈ RCkcba  ( ),,,, 1
+∈ RLkcba  ( )( ),,0 ∞∈ Cw  and ( )uw  

is nondecreasing in u and ( ) ⎟
⎠
⎞⎜

⎝
⎛≤ v

uwuwv
1  for some ,0>v  

( ) ( ) ( ) ( ) ( ) ( ) ,
0 0 0

1
0 ⎥⎦

⎤
⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛ +τ⎟

⎠
⎞

⎜
⎝
⎛ τ+τ+= ∫ ∫ ∫

∞ τ−
t

s

t t
dsscddrrkbaMMWWtM  

 (3.6) 

where ( ) ∞<0tM  and .1 ∞=b  Then the zero solution of (2.2) is ULS 

whenever the zero solution of (2.1) is ULSV. 

Proof. Let ( ) ( )00,, yttxtx =  and ( ) ( )00,, yttyty =  be solutions of 

(2.1) and (2.2), respectively. Since 0=x  of (2.1) is ULSV, it is ULS by [9, 
Theorem 3.3]. Using the nonlinear variation of constants formula, (3.4) and 
(3.5), we have 

( )ty  

( ) ( )( ) ( )( ) ( ) ( )( )∫ ∫ ⎟
⎠
⎞

⎜
⎝
⎛ +τττΦ+≤

t

t

s

t
dssTysyshdygsysttx

0 0
,,,,,  

∫+≤
t

t
yMyM

0
00  

( ) ( ) ( ) ( ) ( ) ( ) ( ) .
0 0 000

dsy
sywscddry

rywrkby
ywa

s

t t ⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛+τ⎥⎦

⎤
⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛τ+⎟

⎠
⎞

⎜
⎝
⎛ τ

τ× ∫ ∫
τ

 

Set ( ) ( ) .1
0

−= ytytu  Now an application of Lemma 3.1 yields 

( ) ( ) ( ) ( ) ( ) ( ) .
0 0 0

1
0 ⎥⎦

⎤
⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛ +τ⎟

⎠
⎞

⎜
⎝
⎛ τ+τ+≤ ∫ ∫ ∫

τ− t

t

s

t t
dsscddrrkbaMMWWyty  

Thus, by (3.6), we have ( ) ( ) 00 ytMty ≤  for some ( ) 00 >tM  whenever 

,0 δ<y  and so the proof is complete. ~ 
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Remark 3.3. Letting ( ) 0=tc  in Theorem 3.2, we obtain the same result 

as that of Theorem 3.2 in [5]. 

Theorem 3.4. For the perturbed (2.2), we assume that 

 ( ) ( ) ( )( ) ( ) ( ) ( )( )∫+≤
t

t
dssywsktbtywtaytg

0
,  (3.7) 

and 

 ( ) ( )( ) ( ) ( )( )∫≤
t

t
dssywsctTytyth

0
,,,  (3.8) 

where ( ),,,, +∈ RCkcba  ( ),,,, 1
+∈ RLkcba  ( )( ),,0 ∞∈ Cw  and ( )uw  is 

nondecreasing in u and ( ) ⎟
⎠
⎞⎜

⎝
⎛≤ v

uwuwv
1  for some ,0>v  

 ( ) ( ) ( ) ( ) ( ) ( ) ,
0 0 0

1
0 ⎥⎦

⎤
⎢⎣
⎡ τ⎟

⎠
⎞

⎜
⎝
⎛ τ+τ+τ+= ∫ ∫ ∫

∞ τ−
t

s

t t
dsddrrkbcaMMWWtM  (3.9) 

where ( ) ∞<0tM  and .1 ∞=b  Then the zero solution of (2.2) is ULS 

whenever the zero solution of (2.1) is ULSV. 

Proof. Let ( ) ( )00,, yttxtx =  and ( ) ( )00,, yttyty =  be solutions of 

(2.1) and (2.2), respectively. Since 0=x  of (2.1) is ULSV, it is ULS. Using 
the nonlinear variation of constants formula, (3.7) and (3.8), we have 

( )ty  

( ) ( )( ) ( )( ) ( ) ( )( )∫ ∫ ⎟
⎠
⎞

⎜
⎝
⎛ +τττΦ+≤

t

t

s

t
dssTysyshdygsysttx

0 0
,,,,,  

( ) ( )( ) ( )
∫ ∫ ⎢⎣

⎡ τ⎟
⎠
⎞

⎜
⎝
⎛ τ

τ+τ+≤
t

t

s

t
dsdy

ywcayMyM
0 0 0

00  

( ) ( ) ( ) .
0 0 0 0

0 dsddry
rywrkbyM

t

t

s

t t
τ⎥⎦

⎤
⎟
⎠
⎞

⎜
⎝
⎛τ+ ∫ ∫ ∫

τ
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Set ( ) ( ) .1
0

−= ytytu  Then it follows from Lemma 2.7 that 

( ) ( ) ( ) ( ) ( ) ( ) .
0 0 0

1
0 ⎥⎦

⎤
⎢⎣
⎡ τ⎟

⎠
⎞

⎜
⎝
⎛ τ+τ+τ+≤ ∫ ∫ ∫

τ− t

t

s

t t
dsddrrkbcaMMWWyty  

From (3.9), we get ( ) ( ) 00 ytMty ≤  for some ( ) 00 >tM  whenever 

,0 δ<y  and so the proof is complete. ~ 

Remark 3.5. Letting ( ) 0=sc  in Theorem 3.4, we obtain the same result 

as that of Theorem 3.2 in [5]. 

Theorem 3.6. For the perturbed (2.2), we assume that 

 ( )( ) ( ) ( )( ) ( ) ( ) ( )( )∫ ∫+≤
t

t

t

t
dssywsktbtywtadssysg

0 0
,  (3.10) 

and 

 ( ) ( )( ) ( ) ( )( ),,, tywtctTytyth ≤  (3.11) 

where ( ),,,, +∈ RCkcba  ( ),,,, 1
+∈ RLkcba  ( )( ),,0 ∞∈ Cw  and ( )uw  

is nondecreasing in u and ( ) ⎟
⎠
⎞⎜

⎝
⎛≤ v

uwuwv
1  for some ,0>v  

 ( ) ( ) ( ) ( ) ( ) ( ) ,
0 0

1
0 ⎥⎦

⎤
⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛ ττ+++= ∫ ∫

∞−
t

s

t
dsdksbscsaMMWWtM  (3.12) 

where ( ) ∞<0tM  and .1 ∞=b  Then the zero solution of (2.2) is ULS 

whenever the zero solution of (2.1) is ULSV. 

Proof. Let ( ) ( )00,, yttxtx =  and ( ) ( )00,, yttyty =  be solutions of 

(2.1) and (2.2), respectively. Since 0=x  of (2.1) is ULSV, it is ULS. 
Applying Lemma 2.3, (3.10), and (3.11), we have 

( )ty  

( ) ( )( ) ( )( ) ( ) ( )( )∫ ∫ ⎟
⎠
⎞

⎜
⎝
⎛ +τττΦ+≤

t

t

s

t
dssTysyshdygsysttx

0 0
,,,,,  
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( ) ( )( ) ( )
∫ ⎟

⎠
⎞

⎜
⎝
⎛++≤

t

t
dsy

sywscsayMyM
0 0

00  

( ) ( ) ( )
∫ ∫ τ⎟

⎠
⎞

⎜
⎝
⎛ τ

τ+
t

t

s

t
dsdy

ywksbyM
0 0

.
0

0  

Set ( ) ( ) .1
0

−= ytytu  Now an application of Lemma 2.8 yields 

( ) ( ) ( ) ( ) ( ) ( ) .
0 0

1
0 ⎥⎦

⎤
⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛ ττ+++≤ ∫ ∫− t

t

s

t
dsdksbscsaMMWWyty  

Hence, by (3.12), we have ( ) ( ) 00 ytMty ≤  for some ( ) 00 >tM  

whenever .0 δ<y  This completes the proof. ~ 

Remark 3.7. Letting ( ) 0=tc  in Theorem 3.6, we obtain the same result 

as that of Theorem 3.3 in [5]. 

Lemma 3.8. Let ( ),,,,,,, 654321
+∈λλλλλλ RCu  ( )( )∞∈ ,0Cw  and 

( )uw  be nondecreasing in u, ( ).uwu ≤  Suppose that for some ,0>c  

( ) ( ) ( ) ( ) ( )( )∫ ∫ λ+λ+≤
t

t

t

t
dssuwsdssusctu

0 0
21  

( ) ( ) ( )∫ ∫ τττλλ+
t

t

s

t
dsdus

0 0
43  

( ) ( ) ( )( )∫ ∫ ≤≤τττλλ+
t

t

s

t
ttdsduws

0 0
.0, 065  

Then 

( ) ( ) ( ) ( ) ( ) ( )⎢⎣
⎡

⎜
⎝
⎛ ττλλ+λ+λ+≤ ∫ ∫− t

t

s

t
dssscWWtu

0 0
4321

1  

( ) ( ) ,, 1065
0

bttdsds
s

t
<≤⎥⎦

⎤
⎟
⎠
⎞ττλλ+ ∫  (3.13) 

where 1, −WW  are the same functions as in Lemma 2.4 and 
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( ) ( ) ( ) ( ) ( )
⎩
⎨
⎧

⎜
⎝
⎛ ττλλ+λ+λ+≥= ∫ ∫

t

t

s

t
dssscWttb

0 0
432101 :sup  

( ) ( ) .dom 1
65

0 0 ⎭
⎬
⎫∈⎟

⎠
⎞ττλλ+ −∫ ∫ Wdsds

t

t

s

t
 

Proof. Setting 

( ) ( ) ( ) ( ) ( )( )∫ ∫ λ+λ+=
t

t

t

t
dssuwsdssusctz

0 0
21  

( ) ( ) ( )∫ ∫ τττλλ+
t

t

s

t
dsdus

0 0
43  

( ) ( ) ( )( )∫ ∫ τττλλ+
t

t

s

t
dsduws

0 0
,65  

we have ( ) ctz =0  and 

( ) ( ) ( ) ( ) ( )( )tuwttuttz 21 λ+λ=′  

( ) ( ) ( ) ( ) ( ) ( )( )∫ ∫ λλ+λλ+
t

t

t

t
dssuwstdssust

0 0
6543  

( ) ( ) ( ) ( ) ( ) ( ) ( )( ),
0 0

654321 tzwdsstdssttt
t

t

t

t
⎟
⎠
⎞

⎜
⎝
⎛ λλ+λλ+λ+λ≤ ∫ ∫  

,0tt ≥  

since ( )tz  and ( )uw  are nondecreasing, ( ),uwu ≤  and ( ) ( ).tztu ≤  

Therefore, by integrating on [ ],,0 tt  the function z satisfies 

( ) ( ) ( ) ( ) ( )∫ ∫⎜
⎝
⎛ ττλλ+λ+λ+≤

t

t

s

t
dsssctz

0 0
4321  

( ) ( ) ( )( ) .
0

65 dsszwds
s

t
⎟
⎠
⎞ττλλ+ ∫  (3.14) 

It follows from Lemma 2.4 that (3.14) yields the estimate (3.13). ~ 
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Theorem 3.9. For the perturbed (2.2), we assume that 

 ( )( ) ( ) ( )( ) ( ) ( ) ( )( )∫ ∫+≤
t

t

t

t
dssywsktbtywtadssysg

0 0
,  (3.15) 

and 

 ( ) ( )( ) ( ) ( ) ( ) ( ) ,,,
0

⎟
⎠
⎞

⎜
⎝
⎛ +≤ ∫

t

t
dssysqtytctTytyth  (3.16) 

where ( ),,,,, +∈ RCqkcba  ( ),,,,, 1
+∈ RLqkcba  ( )( ),,0 ∞∈ Cw  and 

( )uw  is nondecreasing in ( ),, uwuu ≤  and ( ) ⎟
⎠
⎞⎜

⎝
⎛≤ v

uwuwv
1  for some ,0>v  

( ) ( ) ( ) ( ) ( ) ( )⎢⎣
⎡

⎜
⎝
⎛ ττ+++= ∫ ∫

∞−

0 0

1
0 t

s

t
dksbscsaMMWWtM  

( ) ( ) ,
0

⎥⎦
⎤

⎟
⎠
⎞ττ+ ∫ dsdqsc

s

t
 (3.17) 

where ( ) ∞<0tM  and .1 ∞=b  Then the zero solution of (2.2) is ULS 

whenever the zero solution of (2.1) is ULSV. 

Proof. Let ( ) ( )00,, yttxtx =  and ( ) ( )00,, yttyty =  be solutions of 

(2.1) and (2.2), respectively. Since 0=x  of (2.1) is ULSV, it is ULS. 
Applying Lemma 2.3, (3.15) and (3.16), we have 

( )ty  

( ) ( )( ) ( )( ) ( ) ( )( )∫ ∫ ⎟
⎠
⎞

⎜
⎝
⎛ +τττΦ+≤

t

t

s

t
dssTysyshdygsysttx

0 0
,,,,,  

( ) ( ) ( ) ( )
∫ ∫ ⎟

⎠
⎞

⎜
⎝
⎛++≤

t

t

t

t
dsy

sywsayMdsy
syscyMyM

0 0 0
0

0
00  

( ) ( ) ( )
∫ ∫ τ

τ
τ+

t

t

s

t
dy

yqscyM
0 0 0

0  

( ) ( ) ( )
∫ ∫ τ⎟

⎠
⎞

⎜
⎝
⎛ τ

τ+
t

t

s

t
dsdy

ywksbyM
0 0

.
0

0  
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Set ( ) ( ) .1
0

−= ytytu  Now an application of Lemma 3.8 yields 

( ) ( ) ( ) ( ) ( ) ( )⎢⎣
⎡

⎜
⎝
⎛ ττ+++≤ ∫ ∫− t

t

s

t
dksbscsaMMWWyty

0 0

1
0  

( ) ( ) .
0

⎥⎦
⎤

⎟
⎠
⎞ττ+ ∫ dsdqsc

s

t
 

By (3.17), we have ( ) ( ) 00 ytMty ≤  for some ( ) 00 >tM  whenever 

.0 δ<y  This completes the proof. ~ 

Remark 3.10. Letting ( ) 0=tc  in Theorem 3.9, we obtain the same 

result as that of Theorem 3.3 in [5]. 

Theorem 3.11. Let the solution 0=x  of (2.1) be EASV. Suppose that 
the perturbing term ( )ytg ,  satisfies 

 ( )( ) ( ) ( ) ( ) ( ) ( )( ) ,,
0

⎟
⎠
⎞

⎜
⎝
⎛ +≤ ∫α− t

t
t dssywsktbtytaetytg  (3.18) 

and 

 ( ) ( )( ) ( ) ( )∫ α−≤
t

t
s dssyscetTytyth

0
,,,  (3.19) 

where ,0>α  ( ),,,,, +∈ RCwkcba  ( ),,,,, 1
+∈ RLwkcba  ( )uw  is 

nondecreasing in ( ),, uwuu ≤  and ( ) ⎟
⎠
⎞⎜

⎝
⎛≤ v

uwuwv
1  for some .0>v  If 

( ) ( ) ( ) ( ) ( ) ( ) ,
0 0 0

1
0 ∞<⎥⎦

⎤
⎢⎣
⎡ τ⎥⎦

⎤
⎢⎣
⎡ τ+τ+τ+= ∫ ∫ ∫

∞ τα−
t

s

t t
s dsddrrkbcaMecWWtM  

,0tt ≥  (3.20) 

where ,00
tMeyc α=  then all solutions of (2.2) approach zero as .∞→t  

Proof. Let ( ) ( )00,, yttxtx =  and ( ) ( )00,, yttyty =  be solutions of 

(2.1) and (2.2), respectively. Since the solution 0=x  of (2.1) is EASV, it is 
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EAS by Remark 2.2. Using Lemma 2.3, (3.18) and (3.19), we have 

( ) ( ) ( )( )∫ Φ+≤
t

t
systtxty

0
,,  

( )( ) ( ) ( )( ) dssTysyshdyg
s

t
⎟
⎠
⎞

⎜
⎝
⎛ +τττ× ∫

0
,,,  

( ) ( ) ( ) ( )( ) ( )∫ ∫ ⎜
⎝
⎛ ττ+τ+≤ ατ−−α−−α− t

t

s

t
sttt ycaeMeeyM

0 0

00  

( ) ( ) ( )( ) dsddrrywerkb
t

r τ⎟
⎠
⎞τ+ ∫

τ α−

0
 

( ) ( ) ( ) ( )( ) ( )∫ ∫ ⎜
⎝
⎛ ττ+τ+≤ ατ−α−−α− t

t

s

t
sttt eycaMeeyM

0 0

00  

( ) ( ) ( ( ) ) .
0

dsddrerywrkb
t

r τ⎟
⎠
⎞τ+ ∫

τ α  

Set ( ) ( ) .tetytu α=  By Lemma 2.5 and (3.20), we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ τ⎥⎦

⎤
⎢⎣
⎡ τ+τ+τ+≤ ∫ ∫ ∫

τα−α− t

t

s

t t
st dsddrrkbcaMecWWety

0 0 0

1  

( ) ,, 00 tttMe t ≥≤ α−  

where .00
teyMc α=  The above estimation yields the desired result. ~ 

Remark 3.12. Letting ( ) 0=sc  in Theorem 3.11, we obtain the same 

result as that of Theorem 3.4 in [5]. 

Theorem 3.13. Let the solution 0=x  of (2.1) be EASV. Suppose that the 
perturbed term ( )ytg ,  satisfies 

 ( )( ) ( ) ( )( ) ( ) ( ) ( )∫ ∫ ⎟
⎠
⎞

⎜
⎝
⎛ +≤ α−t

t

t

t
t dssysktbtywtaedssysg

0 0
,  (3.21) 
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and 

 ( ) ( )( ) ( ) ( )( ),,, tywtcetTytyth tα−≤  (3.22) 

where ,0>α  ( ),,,,, +∈ RCwkcba  ( )+∈ R1,,,, Lwkcba  and ( )uw  is 

nondecreasing in ( ),, uwuu ≤  and ( ) ⎟
⎠
⎞⎜

⎝
⎛≤ v

uwuwv
1  for some .0>v  If 

( ) ( ) ( ) ( ) ( ) ( ) ,
0 0

1
0 ∞<⎥⎦

⎤
⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛ ττ+++= ∫ ∫

∞−
t

s

t
dsdksbscsaMcWWtM  

,1 ∞=b  (3.23) 

where ,00
teyMc α=  then all solutions of (2.2) approach zero as .∞→t  

Proof. Let ( ) ( )00,, yttxtx =  and ( ) ( )00,, yttyty =  be solutions of 

(2.1) and (2.2), respectively. Since the solution 0=x  of (2.1) is EASV, it is 
EAS. Using Lemma 2.3, (3.21) and (3.22), we have 

( )ty  

( ) ( )( ) ( )( ) ( ) ( )( )∫ ∫ ⎟
⎠
⎞

⎜
⎝
⎛ +τττΦ+≤

t

t

s

t
dssTysyshdygsysttx

0 0
,,,,,  

( ) ( ) ( ) ( )( )∫ ⎢⎣
⎡+≤ α−−α−−α− t

t
ssttt sywsaeMeeyM

0

00  

( ) ( ) ( ) ( ) ( )( ) dssywscedyksbe
s

t
ss

⎥⎦
⎤+τττ+ ∫ α−α−

0
 

( ) ( ) ( )( ) ( ( ) )∫ αα−−α− ++≤
t

t
sttt dsesywscsaMeeyM

0

00  

( ) ( ) ( )∫ ∫ τττ+ ατα−t

t

s

t
t dsdeyksbMe

0 0
.  

Set ( ) ( ) .tetytu α=  Since ( )uw  is nondecreasing, it follows from Lemma 

2.6 and (3.23) that 
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( ) ( ) ( ) ( ) ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛ ττ+++≤ ∫ ∫−α− t

t

s

t
t dsdksbscsaMcWWety

0 0

1  

( ) ,, 00 tttMe t ≥≤ α−  

where .00
teyMc α=  From the above estimation, we obtain the desired 

result. ~ 

Remark 3.14. Letting ( ) 0=tc  in Theorem 3.13, we obtain the same 

result as that of Theorem 3.5 in [5]. 
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