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Abstract 

A complete description of the indecomposable representations and 
irreducible morphisms of some equipped posets of finite growth 
representation type is provided. 

1. Introduction 

Poset Representation Theory was introduced in the 1970’s by Nazarova 
and Roiter with the purpose of giving a proof of the second Brauer-Thrall 
conjecture on the classification of algebras [10, 11]. The main problem          
in this theory is to give a complete description of all indecomposable 
representations of the additive category Prep  of k-linear representations of   
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a given poset .P  In this case, a representation Prep∈U  is a system of             

k-vector spaces attached to the poset in such a way that 

( ),;0 P∈|= xUUU x  

where yx UU ⊆  provided yx ≤  [15]. 

Researches on the subject grew up so fast in the 1980’s. For instance, 
soon afterwards the discovery by Nazarova and Kleiner of criteria to classify 
posets of finite and tame representation type, Zavadskij and Nazarova      
gave a criterion to classify posets of finite growth representation type via   
the algorithm of differentiation with respect to a suitable pair of points 
introduced by Zavadskij [9, 12, 13]. Furthermore, Zavadskij defined an 
apparatus of differentiation consisting of five algorithms which allowed to 
Bondarenko, Nazarova, Roiter and Zavadskij to classify posets endowed    
with an involution [1, 2, 19]. Posets of this kind belong to a broadest class of 
posets with additional structures whose classification was investigated in    
the 1980’s and 1990’s. Actually, in the earliest 2000, Zabarilo and Zavadskij 
defined equipped posets and gave criteria to classify equipped posets of one 
parameter. Soon afterwards, Zavadskij classified equipped posets of finite 
growth and tame representation type. To do that, he introduced some 
algorithms of differentiation named VII-XVII. In particular, algorithms of 
differentiations I, VII, VIII and IX were used to classify equipped posets of 
finite growth representation type [16, 20, 21]. 

As we can see, most of the researches regarding poset representation 
theory have been oriented to the classification of objects without paying 
much attention to the behavior of morphisms of the categories involved in 
the procedures. We quote that some of the few results regarding morphisms 
of categories of posets with additional structures have been obtained by     
the first author et al. in [3-5, 7]. In these works, categorical properties of 
algorithms of differentiations VII, VIII and IX for equipped posets were 
obtained. Such properties allow deducing that algorithms of differentiation 
induce a categorical equivalence between the corresponding categories. We 
recall that Gabriel in [8] proved that the algorithm of differentiation with 
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respect to a maximal point induces a categorical equivalence between some 
quotient categories and that Zavadskij in [18] used the algorithm of 
differentiation with respect to suitable pair of points in order to describe the 
Auslander-Reiten quiver of ordinary posets of finite growth representation 
type [17, 22]. Actually, the current main goal of the poset representation 
theory is to give a complete description of the Auslander-Reiten quiver of    
the category of representations Prep=R  of a given poset .P  Such quiver is 

obtained by defining suitable translations to the Gabriel’s quiver ( )RΓ  of the 

category which has classes of indecomposable representations as vertices and 
irreducible morphisms as edges. In this paper, we describe the Gabriel’s 
quiver of the category of representations of some equipped posets of finite 
representation type. 

2. Preliminaries 

In this section, we introduce main notation and definitions to be used 
throughout the paper. Authors refer the reader to [3-5, 7, 14, 15] for precise 
definitions. 

A poset ( )≤,P  is called equipped if all the order relations between its 

points yx ≤  are separated into strong (denoted )yx 	  and weak (denoted 

)yx U  in such a way that 

zyx 	≤  or zyx ≤	  implies ,zx 	  (1) 

i.e., a composition of a strong relation with any other relation is strong. 

We let yx ≤  denote an arbitrary relation in an equipped poset ( )., ≤P  

The order ≤ on an equipped poset P  gives raise to the relations ≺  and �     
of strict inequality: yx ≺  (respectively, )yx �  in P  if and only if yx U  

(respectively, )yx 	  and .yx ≠  

A point P∈x  is called strong (weak) if xx 	  (respectively, .)xx U  

These points are denoted D  (respectively, ⊗) in diagrams. We also denote 
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PP ⊆D  (respectively, )PP ⊆⊗  the subset of strong points (respectively, 

weak points) of .P  If ,∅=⊗P  then the equipment is trivial and the poset 

P  is ordinary. 

If P  is an equipped poset and ,P∈a  then the subsets of P  denoted 

,∨a  ,∧a  ,∇a  ,∆a  ,▼a  ,▲a  pa  and oa  are defined in such a way that 

{ } { },, axxaxaxa ≤|∈=≤|∈= ∧
∨ PP  

{ } { },, axxaxaxa 		 |∈=|∈= ∆
∇ PP  

,\,\ aaaaaa ∧
∨ == ▲

▼  

{ } { }., axxaxaxa UU o
p |∈=|∈= PP  

Subset ( )∧
∨ aa  is called the ordinary upper (lower) cone, associated to      

the point P∈a  and subset ( )∆
∇ aa  is called the strong upper (lower) cone 

associated to the point ,P∈a  whereas subsets ▼a  and ▲a  are called 

truncated cones (upper and lower) associated to the point .P∈a  

In general, subsets pa  and oa  are not cones. Note that, if ,DP∈x  then 

.∅== o
p xx  

The diagram of an equipped poset ( )≤,P  may be obtained via its Hasse 

diagram (with  strong ( )D  and weak points ( )).⊗  In this case, a new line is 

added to the line connecting two points P∈yx,  with yx �  if and only if 

such relation cannot be deduced of any other relations in .P  In Figure 1, we 
show an example of this kind of diagram: 
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{ } ( ) { } { } BcbYccYXcaaAa +=+=++== −
∆

+−+∇ ;;,; pp  

Figure 1 

For an equipped poset ( )≤,P  and ,P⊂A  we define the subsets ,∇A  
pA  and ∨A  in such a way that 

.,,∪ ∪ ∪
Aa Aa Aa

aAaAaA
∈ ∈ ∈

∨∨∇∇ === pp  

Subsets oAA ,∆  and ∧A  are defined in the same way. 

If P  is an equipped poset, then a chain { 1,1 −≤≤|∈= ii cnicC P  

} P⊆≥< 2if ici  is a weak chain if and only if ii cc ≺1−  for each .2≥i  If 

,1 ncc ≺  then we say that C is a completely weak chain. Moreover, a subset 

P⊂X  is completely weak if ⊗= XX  and weak relations are the only 
relations between points of X. Often, we let { }nccc ≺"≺≺ 21  denote a 

weak chain which consists of points ....,,, 21 nccc  An ordinary chain C is 

denoted in the same way (by using the corresponding symbol <). 

For an equipped poset P  and ,, P⊂BA  we write BA <  if ba <  for 

each Aa ∈  and .Bb ∈  Notations BA ≺  and BA �  are assumed in the 
same way. 

The complexification of a real vector space can be generalized to the   
case ( ),, GF  where ( )uFG =  is a quadratic extension of F. In this case,    

we assume that u is a root of the minimal polynomial ,2 λ+µ+ tt  0≠λ  

( )., F∈µλ  In particular, if 0U  is an F-space, then the corresponding 
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complexification is the G-vector space also denoted .~
0

2
0 UU =  As in the 

case ( ),, CR  we write .~
000

2
0 UUUU =+= u  

To each G-subspace W of ,~
0U  it is possible to associate the following   

F-subspaces of ,0U  

FF WWW ImRe ==+  and { ( ) } +− ⊂∈α|∈α= WWUgenW t0,0  

and for a G-space Z, we have the following property: 

( )ZFZ =+~  is called the F-hull of Z such that ( ).ZFZ ⊂  

The category of representations of an equipped poset over a pair of fields 
( )GF ,  is defined as a system of the form 

( ),;0 P∈|= xUUU x  (2) 

where 0U  is a finite dimensional F-space and for each ,P∈x  xU  is a G-

subspace of 0
~U  such that 

,yx UUyx ⊂⇒≤  

( ) .yx UUFyx ⊂⇒	  

For each ,P∈x  we let xU  denote the radical subspace of xU  such that 

( )∑ ∑+=
xz xz

zzx UUFU
� ≺

.  

We let Prep  denote the category whose objects are the representations 

of an equipped poset P  over a pair of fields ( )., GF  In this case, a 

morphism 
( ) ( )PP ∈|→∈|ϕ xVVxUU xx ;;: 00  

between two representations U and V is an F-linear map 00: VU →ϕ  such 

that 
( ) ,~

xx VU ⊂ϕ  for each ,P∈x  

where 00
~~:~ VU →ϕ  is the complexification of ϕ, i.e., the application          
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G-linear induced by ϕ and defined in such a way that if ,~
0Uyxz ∈+= u  

then ( ) ( ) ( ) ( ).~ 2 yxzz ϕ+ϕ=ϕ=ϕ u  The composition between morphisms of 

Prep  is defined in a natural way. 

If P  is an equipped poset and ,rep, P∈VU  then U is a sub-

representation of V if and only if spaces ,0U  ,0V  xU  and xV  satisfy the 

inclusions 00 VU ⊂  and xx VU ⊂  for each .P∈x  

Two representations Prep, ∈VU  are said to be isomorphic if and    

only if there exists an F-isomorphism 00: VU →ϕ  such that ( ) ,~
xx VU =ϕ  

for each .P∈x  

The main problem dealing with equipped posets consists of classifying 
its indecomposable representations up to isomorphisms. 

The dimension of a representation Prep∈U  is a vector d such that 

( ),;dim 0 P∈|== xddUd x  where 00 dim Ud F=  and .dim xxGx UUd =  

A representation Prep∈U  is sincere if 00 ≠d  and 0≠xd  for each 

.P∈x  In other words, the vector d of a sincere representation U has not null 
coordinates. 

2.1. The matrix problem 

In this subsection, we recall the matrix problem induced by an equipped 
poset ,P  according to the new version described by Rodriguez and Zavadskij 
in [23]. 

Each equipped poset P  naturally defines a matrix problem of mixed type 
over the pair ( )., GF  Consider a rectangular matrix M separated into vertical 

stripes ,, P∈xM x  with xM  being over F (over G) if the point x is strong 

(weak): 
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Such partitioned matrices M are called matrix representation of P  over 
( )., GF  Two matrix representations are said to be equivalent or isomorphic 

if they can be turned into each other with the help of the following 
admissible transformations: 

Their admissible transformations are as follows: 

(a) F-elementary row transformations of the whole matrix M; 

(b) F-elementary (G-elementary) column transformations of a stripe xM  

if the point x is strong (weak); 

(c) in the case of a weak relation ,yx ≺  additions of columns of the 

stripe xM  to the columns of the stripe yM  with coefficients in G; 

(d) in the case of a strong relation ,yx �  independent additions both 

real and imaginary parts of columns of the stripe xM  to real and imaginary 

parts (in any combinations) of columns of the stripe yM  with coefficients in 

F (assuming that, for y strong, there are no additions to the zero imaginary 
part of .)yM  

The corresponding matrix problem of mixed type over the pair ( )GF ,  

consists of classifying indecomposables in the natural sense matrices M, up 
to equivalence. 

Remark 1. The matrix problem for representations (a)-(d) occurs 
naturally in the classification of the objects Prep∈U  up to isomorphisms. 

In this case, it is associated to the representation U its matrix presentation 
( )P∈= xMM xU ;  defined as follows: 

If a point ( ),0 ⊗∈ PPx  then the columns of the stripe xM  consist of 

coordinates (with respect to a fixed ordered basis B  of )0U  of a system of 

generators G  of +
xU  (respectively, G-subspace )xU  modulo its radical 

subspace +
xU  (respectively, ).xU  Problem (a)-(d) may be obtained by 

changing basis B  and the system of generators .G  
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2.2. Some indecomposable objects 

In this subsection, we give some examples of indecomposable objects in 
the category ,repP  where P  is an equipped poset. 

If P  is an equipped poset and ,P⊂A  then ( ) ( ) == APAP min  

( ),; P∈| xPF x  GPx =  if ∨∈ Ax  and 0=xP  otherwise. In particular, 

( ) ( ).0...,,0;FP =∅  

If ,, ⊗∈ Pba  then ( )aT  and ( )baG ,1  denote indecomposable objects 

with matrix representation of the following form: 

( ) ( )

ba

baTa

a

aT
1
01

,,,
1

uu
=∈= ⊗P  with .ba ≺  

If we consider the notation (2) for objects in ,repP  then the object ( )aT  

may be described in such a way that ( ) ( ),;0 P∈|= xTTaT x  where 2
0 FT =  

and 

{( ) }








∈
∈=

=

∇

,otherwise,0
,if,,1
,if,~ 2

0
paxG

axGT
T tx u  

where ( )tu,1  is the column of coordinates with respect to an ordered basis   

of .0T  

On the other hand, representation ( )baT ,  may be described in such a 

way that ( ) ( ),;, 0 P∈|= xTTbaT x  where 2
0 FT =  and 

{( ) }










∈== ∨∇

.otherwise,0

,if,~
,if,,1

2
0 baxGT

bxaG

T

t

x ∪

≺Uu
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If ⊗∈ Pa  and P⊂B  is a subset completely weak such that ,Ba ≺  then 

we let ( )BaT ,  denote the representation of P  which satisfies the following 

conditions with :2
0 FT =  

{( ) }










+∈=

∈

= ∨∇

.otherwise,0

,if,~
,\if,,1

2
0 BaxGT

BaxG
T

t

x

pu
 

In particular, ( ) ( )., aTaT =∅  

Remark 2. In [20], it is proved that ( ) ( ) ( )ii cTcPP ,,∅  and ( ),, ji ccT  

for nji ≤<≤1  are the only indecomposable representations (up to 

isomorphisms) over the pair ( )CR,  of a completely weak chain =C  

{ }.1 ncc ≺"≺  In fact, if ( )niUUU ic ≤≤|= 1;0  is a representation of    

C over ( ),, CR  then in the corresponding matrix representation each      

block ,icU  ,1 ni ≤≤  may be reduced via admissible transformations to the 

following standard form: 

I
I

I

U ic i
= , 

where the columns consist of generators of icU  modulo its radical subspace 

1−= ii cc UU  with respect to a fixed basis of 0U  (in this case, empty cells 

indicate null coordinates). This result can be generalized in a natural way to 
the case ( )GF ,  by using a suitable scalar G∈u  instead of the constant 

C∈i  in the matrix presentation of icU  showed above. 
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3. The Algorithm of Differentiation VII 

The differentiation VII is one of the seventeen differentiations developed 
by Zavadskij to classify (in particular) equipped posets of tame type and of 
finite growth type [20, 21]. 

First of all, in this section, we recall the original construction of the 
algorithm of differentiation VII [20]. 

A pair of incomparable points ( )ba,  in an equipped poset P  is said to 

be VII-suitable, if DPP ∈∈ ⊗ ba ,  and 

{ },1 nccaba ≺"≺≺++= ∆
∇P  

where { }ncca ≺"≺≺ 1  is a completely weak chain incomparable with     

b, we can assume 0≥n  by setting .0 ac =  We let C denote the set 

{ }.1 ncc ≺"≺  

If P  is an equipped poset with a pair of points ( )ba,  VII-suitable, then 

the derived poset, P′  is an equipped poset with the following shape: 

( ) { } { } ,\,
+−+− ++<++=′ CCaaCaba PP  

where ( ) ,⊗′∈ Pa  ( ) ,DP′∈+a  C and +C  are completely weak chains with 

{ }−−− = nccC ≺"≺1  and { },1
+++ = nccC ≺"≺  +−

ii cc ≺  for each i. 

Furthermore, ,1
−− ca ≺  ,1

++ < ca  .bcn <−  Points in the derived poset P′  

satisfy the following conditions: 

(1) Points +−+−
ii ccaa and,,  inherit the relations that points a and ic  

had in the original poset { }.\ Ca +P  

(2) Order relations in { },\ Ca +P  together with the relations described 

above induce the order relations in ( )ba,P′  (in particular, ).−−
nca ≺  
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Figure 2 shows the diagrams of P  and the corresponding ( )., baP′  

     

Figure 2 

The functor of differentiation ( ) ( ) ,reprep: ,, babaD PP ′→  also denoted  

′ : ( ),reprep , baPP ′→  it is defined in such a way that for ( )( ) ∈=′ UDU ba,  

( ) ,rep , baP′  if ,1 ni ≤≤  then 

,00 UU =′  

,baa UUU ∩=′  

( ),aa
UFU =′ +  

,bcc
UUU ii

∩=′−  

( ),acc
UFUU ii

+=′+  

xx UU =′  for the remaining points ( ),, bax P′∈  

,ϕ=ϕ′  for a linear map-morphism .: 00 VU →ϕ  (3) 

For example: ( ) ( ) ( ) ( ) ( ).,, 2 ++ =′=′=′ aPcaTaTaPaP i  

The following result is known as the integration process of the algorithm 
of differentiation VII [20]. 
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Lemma 3. For each object ,R′∈W  there exists an object R∈= ↑WU  

such that ( ),~ +⊕−′ aPWU m  for some .0≥m  

In [20], Zavadskij proved that ( ) ( ) ,~,~ UUWW −− ↑↓↓↑  where .~ ↓− UW  

Zavadskij also proved the following results. 

Theorem 4. In the case of the differentiation VII, there exist mutually 
inverse bijections between classes of indecomposables of the form: 

( ) ( ) ( )[ ] ( ) [ ( )]+′≤≤| aPniaPcaTaT bai \Ind1,,,\Ind ,PP R  

realized by the operations ↓ and ↑. 

Corollary 5. If ( )RΓ  and ( )R′Γ  are Gabriel’s quiver of the categories 

R  and ,R′  then 

( ) ( ) ( ) ( )[ ] ( ) [ ( )].\~1,,,\ +′Γ−≤≤|Γ aPnicaTaTaP i RR  

4. On the Auslander-Reiten Quiver of Some Equipped Posets 

In this section, we describe the Gabriel’s quiver and the Auslander-
Reiten quiver of some posets of finite representation type. 

Henceforth, for a given equipped poset P  and representations VU ,  

,repP∈  we let Prad  denote the radical ideal of the category ,repP  

( ) ( )VUVU ,,Hom PR=  denote the F-vector space of morphisms between 

U and V, sometimes we write ( )VU ,R  instead of ( )VU ,PR  if it is clear 

that U and V are objects of the category of representations of a given poset 
.P  Further, if ,IndP⊂X  then we say that a representation Prep∈U  is   

X-free whenever no direct summand of U is isomorphic to an element of X. 

The following result concerns X-free representations for a given subset 
.IndP⊂X  

Proposition 6. For a given equipped poset ,P  the following results hold: 

(1) Prep∈U  is ( )∅P -free if and only if ( )( ) .0, =∅PUPR  
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(2) If ( ),\Ind ∅∈ PU P  then ( )( ) .0,rad ≠∅ UP  Furthermore, any 

morphism ( )( )UPf ,rad ∅∈  is a non-split monomorphism. 

Proof. (1) ⇒ If ( )( )∅∈ PUf ,R  and ( )P∈|= xUUU x;0  is ( )∅P -

free, then ∑
∈

=
Px

xUU0  with ( ) 0=xUf  for all P∈x  thus .0=f  

⇐ Let 0≠ϕ  be a morphism ( )( )., ∅∈ PUf PR  Since ( ) 0~ =ϕ xU      

for all ,P∈x  ∑
∈

+ ϕ⊂=
Px

xUW Ker0  ( ϕKer  denotes the kernel of ).ϕ  

Moreover, since ,0≠ϕ  00 UW ≠  and .000 WEU ⊕=  Therefore, U can be 

written as a sum of representations of the form ,EW ⊕  where W and E are 
subrepresentations of U induced by 0W  and ,0E  respectively, in this case, 

( ) ( ).dim~
0EmPE m =∅=  

(2) Clearly, ( )( ) ( ) 0~,Hom, 00 ≠==∅ UUUP F FR  and any morphism 

( )0,Hom0 Uf F F∈≠  is a non-split monomorphism as a consequence of 

the first part of this proof.  

As a direct consequence of Proposition 6, we have that the set of vertices 
of ( )RΓ  denoted ( )0RΓ  coincides with ( )∅P  for any equipped poset .P  

For a representation Prep∈U  of an equipped poset ,P  we consider the 

following subsets: 

{ },0and0supp ≠=|∈= −
xxd UUxU P  

{ },0supp ≠=|∈= +
xxf UUxU P  

{ }0supp ≠|∈= xUxU P  (4) 

which are called the weak support, strong support and the support of          
the representation U, respectively. Furthermore, we let Unul  denote the 

complementary subspace of Usupp  in .P  Note that ⊗⊂ PUdsupp  and 

.suppsuppsupp UUU fd ⊂∪  
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Given representations Prep, ∈VU  of an equipped poset P  and :ϕ  

,rep00 P∈→ VU  then the following identities hold: 

∑ ∑
∈ ∈

+− ϕ⊂+
Ux Vx

xx
d

KerUU
supp nul

    and    ∑
∈

+ ϕ⊂
Ux

xU
supp

.Im  (5) 

Furthermore, if Prep∈V  is ( )∅P -free, then: 

( )∑ ∑
∈ ∈

++ ⊂ϕ⊂ϕ
Ux Vsx

xx VU
supp upp

.Im~  (6) 

As a consequence of identities (5), we have the following result: 

Proposition 7. If Prep, ∈VU  and 

∑ ∑
∈ ∈

+− +=
Vx Vx

xx
d

UUU
supp nul

0 ,  

then ( ) .0, =VUR  

Proof. See identities (5). 

Proposition 8. If Prep∈U  such that for some ,supp UX f⊂  =0U  

∑
∈

+

Xx
xU  and Prep∈V  is a representation such that ,supp VX d⊂  then 

( ) .0, =VUPR  

Proof. If ( ),, VUPR∈ϕ  then 

( )











ϕ=












ϕ=ϕ ∑∑

∈∈

+

Xx
x

Xx
x UUU0  

( ) ( )∑ ∑
∈ ∈

−− ϕ⊂ϕ=
Xx Xx

xx UU ~  

∑
∈

− =⊂
Xx

xV .0  

Thus, .0=ϕ   
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Remark 9. Note that, if C  is a weak chain and ,Ind, C∈VU  then a 

morphism ( )VUf ,CR∈  is neither split mono (for split monomorphism) 

nor split epi (for split epimorphism). 

4.1. The Auslander-Reiten quiver of a completely weak chain 

In this subsection, we let { }naaa ≺"≺≺ 21=C  denote a weak chain 

of size n. 

Proposition 10. If P  is an equipped poset such that P⊂Ba ≺  with 

,⊗∈ Pa  then the following conditions hold: 

(1) ( )( ) .~End FxP =  

(2) The ring of endomorphisms ( )( )xTEnd  is a division ring isomorphic 

to the ring 

.,








∈|








µ−λ−
=Λ Fba

bab

ba
 

(3) The ring of endomorphisms ( )( )BaT ,End  is a division ring 

isomorphic to the ring .Λ  

Proof. (1) First assertion is easy to see provided that ( )( ) =xPEnd  

( ) .~End FF =  

(2) If ( )( ),End xT∈ϕ  then the corresponding matrix representation has 

the following form: 

.: 







µ−λ−
=

bab
ba

A  (7) 

Thus, ϕ is invertible if and only if .022 ≠λ+µ− baba  We note that 

22 baba λ+µ−  (8) 

is null whenever 0=a  and .0=b  
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If ,0≠b  then (8) can be rewritten as: 

,
2

2








λ+





−µ+





− b

a
b
ab  

which is not null. On the other hand, if ,0=b  then equation (8) can be 

reduced to 2a  which is null if .0=a  Therefore, ϕ is invertible as an          
F-operator if and only if 0≠a  or .0≠b  

Now, we denote 22 baba λ+µ−=ν  and suppose that A is invertible, 

thus 










+λ

−µ−

ν
=

















λ

−µ−

ν
=







−

ab

bba

ab

bba
A

u

u

uu
11111  

.
1

gen
1

















∈








ν
−µ−=

uu
u

G
bba  

This fact proves that if 1−ϕ  exists, then it defines an endomorphism of 

( )( ).End xT  Thus, if an endomorphism ( )( )xTEnd∈ϕ  is not null, then        

it is invertible, therefore, ( )( )xTEnd  is a division ring. Moreover, the 

correspondence ϕ→ϕ M  which applies to each endomorphism its 

corresponding matrix representation ϕM  defines an isomorphism between 

( )( )xTEnd  and Λ. 

(3) Arguments described above prove this item.  

The following result is a consequence of Proposition 10. 

Corollary 11. If ,IndC∈U  then .0=Urad  

The following results are consequences of Propositions 6 and 7. 

Proposition 12. If C  is a completely weak chain, then the following 
identities hold: 
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(1) If ,ji <  then ( ( ) ( )) .0, =ji aPaPCR  

(2) ( ( ) ( )) ,0, =ji aTaPCR  for each .,1 nji ≤<  

(3) If ,ki <  then ( ( ) ( )) .0,, =kji aaTaPCR  

(4) If ,ji <  then ( ( ) ( )) .0, =ji aPaTCR  

(5) If ,ji <  then ( ( ) ( )) .0, =ji aTaTCR  

(6) If ,ji <  then ( ( ) ( )) .0,, =kji aaTaTCR  

(7) If ,ji <  then ( ( ) ( )) .0,, =jki aPaaTCR  

(8) ( ( ) ( )) ,0,, =jsi aTaaTCR  for each .,1 nji ≤≤  

(9) If ji <  or ,rs <  then ( ( ) ( )) .0,,, =rjsi aaTaaTCR  

Proof. (1) If ,ji <  then ( )ji aPa nul∈  and ( ) ( ) ,0
+= iii aPaP  then 

( ( ) ( )) 0, =ji aTaPCR  by Proposition 6. 

(2) If { },,max jik =  then ( ),supp ifk aPa ∈  ( ) ( )+= iki aPaP0  and 

( ),supp jdk aTa ∈  therefore, ( ( ) ( )) 0, =ji aTaPCR  by Proposition 8. 

(3) If ,ki <  then ( ) ( ).,supp,nul kjdkji aaTaaTa ∪∈  If ∈ia  

( ),,nul kj aaT  then ( ( ) ( )) 0,, =kji aaTaPCR  by Proposition 7. On the 

other hand, if ( ),,supp kjdi aaTa ∈  then ( ( ) ( )) 0,, =kji aaTaPCR  by 

Proposition 8. Assertions (4), (5), (6) and (7) are the consequences of 
Proposition 7. 

(8) If { },,max sjk =  then ( ),,supp sifk aaTa ∈  ( ) ( )+= siksi aaTaaT ,,0  

and ( ).supp jdk aTa ∈  Proposition 8 allows to conclude ( ( ),, si aaTCR  

( )) .0=jaT  

(9) Suppose that .ji <  Then ( ),,supp sidi aaTa ∈  ( ) ( )+= siisi aaTaaT ,,0  
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and ( ).,nil rji aaTa ∈  Proposition 7 allows to deduce ( ( ),, si aaTCR  

( )) .0, =rj aaT  On the other hand, if ,rs <  then ( ),,supp sifs aaTa ∈  

( ) ( )+= sissi aaTaaT ,,0  and ( ),,supp rjds aaTa ∈  then ( ( ),, si aaTCR  

( )) 0, =rj aaT  by Proposition 8.  

Remark 13. The following relationships will be used to characterize 
irreducible morphisms of the category of representations of a completely 
weak chain: 

    (i) ( ( ) ( )) ( ( ) ( ))kiji aPaPaPaP ,, CC RR ⊂  for each .jki ≤≤  

   (ii) ( ( ) ( )) ( ( ) ( ))kiji aPaTaPaT ,, CC RR ⊂  for each .jki ≤≤  

  (iii) If ,nji ≠=  then ( ( ) ( )) ( ( ) ( )).,,, 1 iiiii aPaaTaPaT −⊂ CC RR  

  (iv) ( ( ) ( )) ( ( ) ( ))srikji aaTaPaaTaP ,,,, CC RR ⊂  for each srj <≤  

.k≤  

   (v) ( ( ) ( )) ( ( ) ( ))skjikj aPaaTaPaaT ,,,, CC RR ⊂  for each .jsi ≤≤  

  (vi) ( ( ) ( )) ( ( ) ( ))kiji aTaTaTaT ,, CC RR ⊂  for each .ikj ≤≤  

 (vii) If ,irj <<  then ( ( ) ( )) ( )( ,,,,, kirjki aaTaaTaaT CC RR ⊂  

( ))ts aaT ,  for each rsj <≤  and .itr ≤≤  

(viii) If ,kri <<  then ( ( ) ( )) ( )( ,,,,, kirjki aaTaaTaaT CC RR ⊂  

( ))ts aaT ,  for each isj <≤  and .ktr ≤≤  

The next result describes irreducible morphisms of a completely weak 
chain. 

Proposition 14. For an indecomposable representation ( ) ,repC∈iaP  

the following relationships hold: 

(1) ( ( ) ( )) 0,Irr =ji aPaP  for each .,1 nji ≤≤  
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(2) ( ( ) ( )) 0,Irr ≠ji aPaT  if and only if .nji ==  Moreover, any 

irreducible morphism ( ( ) ( ))nn aPaT ,IrrC∈ϕ  is an epimorphism and 

( ( ) ( )) .2,Irrdim =nnF aPaT  

(3) ( ( ) ( ))kji aaTaP ,,Irr  if and only if ki =  and .1+= ji  

Furthermore, any irreducible morphism ( ( ) ( ))iii aaTaP ,,Irr 1−∈ϕ  is a 

monomorphism and 

( ( ) ( )) .2,,Irrdim 1 =− iiiF aaTaP  

(4) ( ( ) ( )) 0,,Irr ≠ikj aPaaT  if and only if ji =  and .1+= ik  

Further, any irreducible morphism ( ( ) ( ))iii aPaaT ,,Irr 1+∈ϕ  is an 

epimorphism and 

( ( ) ( )) .2,,Irrdim 1 =+ iiiF aPaaT  

(5) ( ( ) ( )) 0,Irr ≠ji aTaT  if and only if .1−= ij  Further, any 

irreducible morphism ( ( ) ( ))1,Irr −∈ϕ ii aTaT  is an isomorphism and 

( ( ) ( )) .2,Irrdim 1 =−iiF aTaT  

(6) ( ( ) ( )) 0,,,Irr ≠rjki aaTaaT  if and only if ji =  and 1+= rk  

2+= i  or rk =  and .21 −=−= kji  Furthermore, any irreducible 

morphism ( ( ) ( ))21 ,,,Irr ++∈ϕ iiii aaTaaT  and any irreducible morphism 

( ( ) ( ))iiii aaTaaT ,,,Irr 21 −−∈ϕ  is an isomorphism and 

( ( ) ( )) ( ( ) ( )) .2,,,dim,,,Irrdim 2121 == −−++ iiiiFiiiiF aaTaaTaaTaaT  

Proof. (1) For the case ,1−≠ ij  we can use Corollary 11, the first part 

of Proposition 12 and item (i) in Remark 13 to conclude that there are not 
irreducible morphisms in ( ( ) ( ))., ji aPaPCR  On the other hand, consider 

that ,1−= ij  then we can assume that there exists a morphism 

( ( ) ( ))1, −∈ϕ ii aPaPCR  
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inducing a morphism [ ] ( ( ) ( ))iii
t aaTaP ,,0 1−∈ϕ=ϕ′ CR  such that if =τ  

[ ] ( ( ) ( )),,,01 1 iii aPaaT −∈ CR  then .ϕ′τ=ϕ  Because of this, there are not 

irreducible morphisms in ( ( ) ( ))., 1−ii aPaPCR  

(2) ⇒) See (4) in Proposition 12 and items (ii), (iii) in Remark 13. 

⇐) If nji ==  and ( ( ) ( ))nn aPaT ,CR∈ϕ  can be written as a 

composition of the form 

( ) ( )n
gf

n aPUaT →→  

in ,repC  then U is a representation ( ) ( ) ( ){ }kiii aaTaTaP ,,, -free, i≤1  

,1−< n  therefore, U must have as direct summands only representations    

of types ( )naT  and ( ),naP  therefore, f is split mono or g is split epi, 

furthermore, 

( ) ( )( ) ( )( ( )),,,Irr nnnn aPaTaPaT CR=  

thus, any irreducible morphism is an epimorphism and 

( ) ( )( ) .2,Irrdim =nnF aPaT  

(3) ⇒) See proof of Proposition 12 and (iv) in Remark 13. 

⇐) Use the arguments as in part (2) of this proof. Parts (4)-(6) can        
be proved by using arguments of parts (1)-(3) and Propositions 10, 12, 
Corollary 11 and Remark 13. 

The following figure shows the Auslander-Reiten quiver of the 
completely weak chain .121 nn aaaa ≺≺"≺≺ −=C  
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Figure 3. Auslander-Reiten quiver of a completely weak chain. 

5. The Auslander-Reiten Quiver of 15F  

In this section, we give a description of the Auslander-Reiten quiver of 

the equipped poset { }.15
ba

F D⊗=  To do that, we begin giving the complete 

list of its indecomposable representations via Lemma 3 and algorithms of 
differentiation D-VII and completion. Same procedures can be used to 
describe the Auslander-Reiten quiver of posets 16F - .19F  

The following figures show the completion (with a strong relation 

)ba <  15F ′  of the derived poset 15F ′  and some of its irreducible 

representations: 

 

Figure 4 
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( ) ( )baPaP ,=↑−  ( )
0
11

u
=↑+aP

( )
10
011

u
=↑−aT ( ) ( )bPbP =↑+  

Thus, the complete list of indecomposable representations of 15F  is: 

{ ( ) ( ) ( ) ( ) ( ) ( ) ( ) }.,,,,,,,Ind 15
↑−↑+∅= aTaPbaPaTbPaPPF  

For the sake of simplicity, let us assume notations ( )baG ,1  and ( )baG ,2  for 

representations ( )↑+aP  and ( ) ,↑−aT  respectively, [6]. Now, we can make a 

description of irreducible morphisms of .15F  

As in the case for a completely weak chain, it is easy to see that End U is 
a division ring if .Ind 15FU ∈  Actually, the following isomorphisms can be 

defined: 

( )( ) ( )( ) ( )( ) ( )( ) ( )( )( ) F=====∅ ~,End~,End~End~End~End 1 baGbaPbPaPP  

and 
( )( ) ( )( ) .~,End~End 2 Λ== baGaT  

The following results are consequences of Propositions 6 and 7: 

(i) ( )( ) ( ){ }.,\Ind0,, 1515 baPFIIbaPF ∈⇔=R  

(ii) ( )( ) ( ) ( ){ }.,,\Ind0, 1515 baPaPFIIaPF ∈⇔=R  
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(iii) ( )( ) ( ) ( ) ( ){ }.,,0,15 aTaPPIIbPF ∅∈⇔=R  

(iv) ( )( ) ( ) ( ){ }.,0,15 bPPIIaTF ∅∈⇔=R  

Note that the matrix representation of a morphism ( )( ,,215 baGFR∈ϕ  

( ))baG ,1  has the form shown in Figure 4. Furthermore, the following 

curbing holds ( ) .
0
1~ 2















⊂ϕ GG  In particular, 














ϕ
0
1

 and 













ϕ
1
0

 are 

elements of the subspace ,
0
1















G  therefore, .0=ϕ  Thus, 

(v) ( )( ) ( ) ( ){ }.,,,\Ind0,, 215215 baPbaGFIIbaGF ∈⇔=R  

On the other hand, if ( ) ( )( ),,,15 aTbaTFR∈ϕ  then the matrix 

representation of ϕ has the shape given in Figure 4. In fact, ,0
0
1~ =













ϕ  

therefore, .0=ϕ  Thus, as a consequence of Propositions 7 and 8, we have: 

(vi) ( )( ) ( ) ( ) ( ){ }.,,0,,15 aTbPPIIbaTF ∅∈⇔=R  

The following results regarding morphisms of category 15rep F  are 

consequences of items (i)-(vi) and Proposition 6: 

  (I) ( ) ( )( ) ( ) ( )( )bPPbPP F ,,Irr 15 ∅=∅ R  and ( ) ( )( ) .1,Irrdim =∅ bPP  

 (II) ( ) ( )( ) ( ) ( )( )aPPaTP F ,,Irr 15 ∅=∅ R  and ( ) ( )( ) .2,Irrdim =∅ aTP  

(III) ( ) ( )( ) ( ) ( )( )baPbaGbaPbaG F ,,,,,,Irr 22 15R=  and ( )( ,,Irrdim 2 baG  

( )) .2, =baP  

(IV) ( ) ( )( ) ( ) ( )( )baPaPbaPaP F ,,,,Irr 15R=  and ( ) ( ))( baPaP ,,Irrdim  

.1=  



On the Gabriel’s Quiver of Some Equipped Posets 87 

Note that 

( ) ( )( ) ( ) ( )( )baGaTbaGaT FF ,,~,, 21 1515 RR =  

( ) ( )( ) ,~,,,~
2115 Λ== baGbaGFR  (9) 

( ) ( )( ) ,
0

~,, 115 





 ∈|






= Fx

x
baGbPFR  (10) 

( ) ( )( ) ( ){ }.0~,,115 F∈|= xxaPbaGFR  (11) 

Isomorphisms described in formulas (9) allow defining the following 
results for a morphism ( ) ( ) ( )::: aPaT →βα=ϕ  

( ) ( )N ,10
�� 
�� 	�

γ
τ












βα
λ
α−

λ
µα−β=βα=ϕ  

where ( ) ( )( )baGaTF ,, 115R∈γ  and ( ) ( )( ),,,115 aTbaGFR∈τ  therefore, 

( ) ( )( ) .0,Irr =aPaT  On the other hand, any morphism in ( ( ),15 aTFR  

( ))baG ,1  ( ( ) ( )( ))aPbaGF ,,in 115R  passes through direct sums of ( )aT  and 

( )baG ,1  ( )( aP  and ( ),, baT ),lyrespective then: 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) 2,,Irrdim,,,Irr,, 11115 == baGaTbaGaTbaGaTFR  

and 

( ) ( )( ) ( ) ( )( )aPbaGaPbaGF ,,Irr,, 1115 =R  and ( ) ( )( ) .1,,Irrdim 1 =aPbaG  

On the other hand, if ( ) ( )( ),,,: 215 baGbPFR∈






β
α

=ϕ  then 

N
,

0
1

γ
τ

























β
λ
µ+αβ
λ
β−α

=






β
α

=ϕ

�� 
�� 	�
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where ( ) ( )( )baGbPF ,, 115R∈γ  and ( ) ( )( ),,,, 2115 baGbaGFR∈τ  then 

( ) ( )( ) .0,,Irr 2 =baGbP  Furthermore, 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ,1,,Irrdim,,,Irr,, 11115 == baGbPbaGbPbaGbPFR  

( ) ( )( ) ( ) ( )( )baGbaGbaGbaGF ,,,Irr,,, 212115 =R  and 

( ) ( )( ) .2,,,Irrdim 21 =baGbaG  

Results described above allow defining the Gabriel’s quiver of 15F  in the 

following way: 

 

Figure 5 

The following Figure 6 shows the Auslander-Reiten quiver of .15F  

 

Figure 6 
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