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Abstract

A complete description of the indecomposable representations and
irreducible morphisms of some equipped posets of finite growth
representation type is provided.

1. Introduction

Poset Representation Theory was introduced in the 1970°s by Nazarova
and Roiter with the purpose of giving a proof of the second Brauer-Thrall
conjecture on the classification of algebras [10, 11]. The main problem
in this theory is to give a complete description of all indecomposable
representations of the additive category rep® of k-linear representations of
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a given poset P. In this case, a representation U € rep?P is a system of

k-vector spaces attached to the poset in such a way that
U=(Uy U,|xe?P),
where U, < U,, provided x < y [15].

Researches on the subject grew up so fast in the 1980’s. For instance,
soon afterwards the discovery by Nazarova and Kleiner of criteria to classify
posets of finite and tame representation type, Zavadskij and Nazarova
gave a criterion to classify posets of finite growth representation type via
the algorithm of differentiation with respect to a suitable pair of points
introduced by Zavadskij [9, 12, 13]. Furthermore, Zavadskij defined an
apparatus of differentiation consisting of five algorithms which allowed to
Bondarenko, Nazarova, Roiter and Zavadskij to classify posets endowed
with an involution [1, 2, 19]. Posets of this kind belong to a broadest class of
posets with additional structures whose classification was investigated in
the 1980°s and 1990°s. Actually, in the earliest 2000, Zabarilo and Zavadskij
defined equipped posets and gave criteria to classify equipped posets of one
parameter. Soon afterwards, Zavadskij classified equipped posets of finite
growth and tame representation type. To do that, he introduced some
algorithms of differentiation named VII-XVII. In particular, algorithms of
differentiations I, VII, VIII and IX were used to classify equipped posets of
finite growth representation type [16, 20, 21].

As we can see, most of the researches regarding poset representation
theory have been oriented to the classification of objects without paying
much attention to the behavior of morphisms of the categories involved in
the procedures. We quote that some of the few results regarding morphisms
of categories of posets with additional structures have been obtained by
the first author et al. in [3-5, 7]. In these works, categorical properties of
algorithms of differentiations VII, VIII and IX for equipped posets were
obtained. Such properties allow deducing that algorithms of differentiation
induce a categorical equivalence between the corresponding categories. We

recall that Gabriel in [8] proved that the algorithm of differentiation with
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respect to a maximal point induces a categorical equivalence between some
quotient categories and that Zavadskij in [18] used the algorithm of
differentiation with respect to suitable pair of points in order to describe the
Auslander-Reiten quiver of ordinary posets of finite growth representation
type [17, 22]. Actually, the current main goal of the poset representation
theory is to give a complete description of the Auslander-Reiten quiver of
the category of representations R = rep P of a given poset P. Such quiver is

obtained by defining suitable translations to the Gabriel’s quiver T'(R) of the

category which has classes of indecomposable representations as vertices and
irreducible morphisms as edges. In this paper, we describe the Gabriel’s
quiver of the category of representations of some equipped posets of finite

representation type.
2. Preliminaries

In this section, we introduce main notation and definitions to be used
throughout the paper. Authors refer the reader to [3-5, 7, 14, 15] for precise
definitions.

A poset (P, <) is called equipped if all the order relations between its
points x < y are separated into strong (denoted x < y) and weak (denoted

x = y) in such a way that
x<ydzorxdy<z implies x J z, )
i.e., a composition of a strong relation with any other relation is strong.

We let x < y denote an arbitrary relation in an equipped poset (P, <).

The order < on an equipped poset P gives raise to the relations < and <
of strict inequality: x < y (respectively, x < y) in P if and only if x < y

(respectively, x < y) and x # y.

A point x € P is called strong (weak) if x < x (respectively, x < x).

These points are denoted o (respectively, ®) in diagrams. We also denote
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P° < P (respectively, p® < P) the subset of strong points (respectively,

weak points) of P. If P® = &, then the equipment is #rivial and the poset
P is ordinary.

If P is an equipped poset and « € P, then the subsets of P denoted

a”, an, av, aa, a', a,, a" and a, are defined in such a way that

a" ={xePla<x}, a,={xeP|x<al,

a¥ ={xePladx}, ap={xe?P|x<a},

v \2
a =a’\a, a, =a,\a,

a" ={xePla=<x}, a ={xeP|x=<a).

Subset a” (a,) is called the ordinary upper (lower) cone, associated to
the point a € P and subset a" (ap) is called the strong upper (lower) cone

associated to the point a € P, whereas subsets a' and a, are called

truncated cones (upper and lower) associated to the point a € P.

In general, subsets a" and a . are not cones. Note that, if x P°, then

x =x, =@

The diagram of an equipped poset (P, <) may be obtained via its Hasse
diagram (with strong (o) and weak points (®)). In this case, a new line is
added to the line connecting two points x, y € P with x < y if and only if

such relation cannot be deduced of any other relations in P. In Figure 1, we

show an example of this kind of diagram:
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a¥ =d;a" ={a, ¢+ X+Y;(c7) ={cT}+Y; by ={c '+ B
Figure 1

For an equipped poset (P, <) and 4 — P, we define the subsets A",

A" and 4" insucha way that

AV=UaV, AY=UaY, AV=UaV.

acA acA acA

Subsets Ax, 4, and A, are defined in the same way.

If P is an equipped poset, then a chain C ={c; € P|1<i<n, ¢
<¢; if i 22} < P is a weak chain if and only if ¢;_; < ¢; for each i > 2. If
¢ < ¢,, then we say that C is a completely weak chain. Moreover, a subset
X P is completely weak if X = X ® and weak relations are the only
relations between points of X. Often, we let {¢; < ¢y < -+ < ¢,} denote a
weak chain which consists of points ¢, ¢3, ..., ¢,. An ordinary chain C is
denoted in the same way (by using the corresponding symbol <).

For an equipped poset P and 4, B < P, we write 4 < B if a < b for
each a € 4 and b € B. Notations 4 < B and 4 < B are assumed in the

same way.

The complexification of a real vector space can be generalized to the

case (F, G), where G = F(u) is a quadratic extension of F. In this case,

we assume that u is a root of the minimal polynomial 2+ ut+Ai, A=0

(A, u € F). In particular, if U, is an F-space, then the corresponding
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complexification is the G-vector space also denoted U(% = 170. As in the
case (R, C), we write U = Uy +ul, = U

To each G-subspace W of Uo, it is possible to associate the following

F-subspaces of Uy,

W* =ReWp =ImWr and W~ = gen{o € Uy |(a, 0) e W} c W™
and for a G-space Z, we have the following property:

Z* = F(Z) is called the F-hull of Z such that Z < F(Z).

The category of representations of an equipped poset over a pair of fields

(F, G) is defined as a system of the form
U=(Up: Uyslxe?), 2
where U is a finite dimensional F-space and for each x e P, U, is a G-
subspace of l70 such that
xsy=U,cU,
xdy= FU,)cU,.

For each x € P, we let Uy denote the radical subspace of U, such that
Ug= Y FU,)+ Y U..
z<X z=<X
We let rep P denote the category whose objects are the representations
of an equipped poset P over a pair of fields (F, G). In this case, a
morphism
¢:(Uos Uylx e P) > (Vs Vi |x € P)

between two representations U and V' is an F-linear map ¢ : Uy — |y such

that
o(U,)c V,, foreach x € P,

where 6:(70 - 170 is the complexification of ¢, i.e., the application
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G-linear induced by ¢ and defined in such a way that if z =x +uy € 170,

then §(z) = ¢>(z) = ¢(x) + up(y). The composition between morphisms of

rep P is defined in a natural way.

If P is an equipped poset and U,V e€repP, then U is a sub-
representation of V if and only if spaces U, Vy, U, and V, satisfy the

inclusions Uy < V and U, < V, foreach x € P.

Two representations U, V € repP are said to be isomorphic if and
only if there exists an F-isomorphism ¢ : Uy — ¥, such that (U, ) =V,
for each x € P.

The main problem dealing with equipped posets consists of classifying
its indecomposable representations up to isomorphisms.

The dimension of a representation U € repP is a vector d such that
d =dim U = (do; dy |x € P), where dy = dimp Ug and d, = dimg U, /U,.
A representation U e rep?P is sincere if dy #0 and d, # 0 for each
x € P. In other words, the vector d of a sincere representation U has not null
coordinates.

2.1. The matrix problem

In this subsection, we recall the matrix problem induced by an equipped

poset P, according to the new version described by Rodriguez and Zavadskij
in [23].

Each equipped poset P naturally defines a matrix problem of mixed type
over the pair (F, G). Consider a rectangular matrix M separated into vertical
stripes M, x € P, with M . being over F (over G) if the point x is strong
(weak):

& —>y

O
@]

M = G |G

]
[
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Such partitioned matrices M are called matrix representation of P over

(F, G). Two matrix representations are said to be equivalent or isomorphic

if they can be turned into each other with the help of the following

admissible transformations:

Their admissible transformations are as follows:

(a) F-elementary row transformations of the whole matrix M,

(b) F-elementary (G-elementary) column transformations of a stripe M,
if the point x is strong (weak);

(c) in the case of a weak relation x < y, additions of columns of the

stripe M, to the columns of the stripe M, with coefficients in G;

(d) in the case of a strong relation x < y, independent additions both
real and imaginary parts of columns of the stripe M, to real and imaginary
parts (in any combinations) of columns of the stripe M y with coefficients in

F (assuming that, for y strong, there are no additions to the zero imaginary
partof M ).

The corresponding matrix problem of mixed type over the pair (F, G)

consists of classifying indecomposables in the natural sense matrices M, up

to equivalence.

Remark 1. The matrix problem for representations (a)-(d) occurs
naturally in the classification of the objects U € repP up to isomorphisms.

In this case, it is associated to the representation U its matrix presentation
My =(M,; x € P) defined as follows:

If a point x € PY(P®), then the columns of the stripe M, consist of

coordinates (with respect to a fixed ordered basis B of Uj,) of a system of
generators G of U, (respectively, G-subspace U,) modulo its radical
subspace U;r (respectively, U, ). Problem (a)-(d) may be obtained by

changing basis B and the system of generators G.
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2.2. Some indecomposable objects

In this subsection, we give some examples of indecomposable objects in

the category rep P, where P is an equipped poset.

If P is an equipped poset and A < P, then P(4)= P(min A4) =
(F; P.|xe®), P.=G if xe A’ and P, =0 otherwise. In particular,
P(D)=(F;0,..,0).

If a, b e P®, then T(a) and G(a, b) denote indecomposable objects

with matrix representation of the following form:

a a b
1 1[0

T(a) = ,aeP® T(a,b)= with a < b.
u u |1

If we consider the notation (2) for objects in rep P, then the object T'(a)
may be described in such a way that T(a) = (T; T, | x € P), where Ty = F?
and

Tb = Gz, if x e av,
T, =1G{1, )}, ifxea',
0, otherwise,

where (1, u)[ is the column of coordinates with respect to an ordered basis

of T().

On the other hand, representation 7'(a, b) may be described in such a

way that T(a, b) = (Ty; T, | x € P), where Ty = F> and

G{(Lu)}, ifa=<x<b,

T, = TO=G2, if xea' UbY,

0, otherwise.
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If acP® and B P is a subset completely weak such that @ < B, then

we let T(a, B) denote the representation of P which satisfies the following

conditions with Ty = F 2,

G{(1,u)}, if xea"\B,
T, = ZN"OzGZ, if xea’ +BY,

0, otherwise.
In particular, T(a, &) = T(a).

Remark 2. In [20], it is proved that P(J), P(c;), T(c;) and T(c;, c;),
for 1<i< j<n are the only indecomposable representations (up to
isomorphisms) over the pair (R, C) of a completely weak chain C =
{eg << ¢y} In fact, if U =(Up; U, |1 <i<n) is a representation of
C over (R, C), then in the corresponding matrix representation each
block U.., 1 <i<n, may be reduced via admissible transformations to the

following standard form:

‘ i/

where the columns consist of generators of U ¢ modulo its radical subspace
U, =U,._, with respect to a fixed basis of Uy (in this case, empty cells

indicate null coordinates). This result can be generalized in a natural way to

the case (F, G) by using a suitable scalar u € G instead of the constant

i € C in the matrix presentation of U ¢; showed above.
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3. The Algorithm of Differentiation VII

The differentiation VII is one of the seventeen differentiations developed
by Zavadskij to classify (in particular) equipped posets of tame type and of
finite growth type [20, 21].

First of all, in this section, we recall the original construction of the
algorithm of differentiation VII [20].

A pair of incomparable points (a, b) in an equipped poset P is said to

be VIl-suitable, if a € P®, b € P° and
P=a" +by+{a<c| < <c,},

where {a < ¢ <+ <¢,} is a completely weak chain incomparable with
b, we can assume n >0 by setting cy = a. We let C denote the set

{e << ¢yt

If P is an equipped poset with a pair of points (a, b) VII-suitable, then

the derived poset, P' is an equipped poset with the following shape:

Rap)y =PMa+Cl+la” <a’}+C +CT,

where a € (P)®, a* e (P')°, Cand C* are completely weak chains with
C ={¢f <=<c,} and C" ={cf <---<c}, ¢ <c¢ for each i.
Furthermore, a~ < ¢, a' <¢f, ¢, <b. Points in the derived poset P’

satisfy the following conditions:

(1) Points @, a*, ¢; and ¢ inherit the relations that points @ and c¢;

had in the original poset P\{a + C}.

(2) Order relations in P\{a + C}, together with the relations described

above induce the order relations in J, ) (in particular, a~ < ¢, )-
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Figure 2 shows the diagrams of P and the corresponding fP('a b)-

ml
J (a.b) ct _ b

@
Figure 2

The functor of differentiation Dy, p) : rep P > rep fP(’a b). also denoted

: repP — rep R, p), it is defined in such a way that for U" = D, 1)(U) €

rep Ry p), if 1 <i < n, then

Upy = U,,
U, =U, NU,,
UL = F(U,),

U =U, NU,,

-
U;;r = Uc,- +F(Ua),
U, = U, for the remaining points x € ﬂ’(’a’b),
¢' = @, for a linear map-morphism ¢ : Uy — V. 3)
For example: P'(a) = P(at), T'(a) = T'(a, ¢;) = P*(a™).

The following result is known as the integration process of the algorithm
of differentiation VII [20].
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Lemma 3. For each object W € R', there exists an object U = WT e R
such that U' =W @& P™(a™), for some m > 0.

=, (U =U, where W =UY.

Zavadskij also proved the following results.

In [20], Zavadskij proved that (WT )i

Theorem 4. In the case of the differentiation VII, there exist mutually
inverse bijections between classes of indecomposables of the form:

Ind P\[T(a), T(a, ¢;), P(a)|]1 <i < n]e Ind UD('L,,b)\[P(a+)]

realized by the operations ¥ and 1.

Corollary 5. If T(R) and T(R') are Gabriel’s quiver of the categories
R and R', then

T(R\[P(a), T(a), T(a, ¢;)|1 <i < n]=T(R)N\P@a")]

4. On the Auslander-Reiten Quiver of Some Equipped Posets

In this section, we describe the Gabriel’s quiver and the Auslander-
Reiten quiver of some posets of finite representation type.

Henceforth, for a given equipped poset P and representations U, V'
erepP, we let rad?P denote the radical ideal of the category rep P,
Hom(U, V) = Rp(U, V') denote the F-vector space of morphisms between
U and V, sometimes we write R(U, V) instead of Rp(U, V) if it is clear

that U and V" are objects of the category of representations of a given poset
P. Further, if X < IndP, then we say that a representation U € rep?P is

X-free whenever no direct summand of U is isomorphic to an element of X.

The following result concerns X-free representations for a given subset
X c IndP.

Proposition 6. For a given equipped poset P, the following results hold:
(1) U erep? is P(D)-free if and only if Rp(U, P(J)) = 0.
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(@) If U eIndP\P(D), then rad(P(D),U)# 0. Furthermore, any
morphism f € rad(P(&D), U) is a non-split monomorphism.

Proof. (1) = If f e R(U, P(D)) and U = (Uy; U, |x € P) is P(D)-

free, then Uy = > U, with f(U,) =0 forall x € P thus f = 0.
xe?

< Let ¢ #0 be a morphism f e Rp(U, P(D)). Since ¢(U,)=0

for all xe®, Wy= > U cKerg (Kerg denotes the kernel of ¢).
xe?P

Moreover, since ¢ # 0, W, # Uy and Uy = E; © W,y. Therefore, U can be
written as a sum of representations of the form W @ E, where W and E are

subrepresentations of U induced by W, and E, respectively, in this case,
E = P"(QD) (m = dim Ej).

(2) Clearly, R(P(D), U) = Homp(F, Uy) = U, # 0 and any morphism
0 # f € Homg(F, Uy) is a non-split monomorphism as a consequence of

the first part of this proof. O

As a direct consequence of Proposition 6, we have that the set of vertices
of I'(R) denoted I'(R),, coincides with P(&J) for any equipped poset P.

For a representation U € rep P of an equipped poset P, we consider the
following subsets:
suppy,U = {x e P|U; =0and U, = 0},
supp ;U = {x € P|U, = Uy # 0},
suppU = {x € P|U, # 0} 4)

which are called the weak support, strong support and the support of
the representation U, respectively. Furthermore, we let nul U denote the

complementary subspace of supp U in P. Note that supp,U c P® and
supp,U U supp ;U < suppU.
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Given representations U, V' € repP of an equipped poset P and ¢ :
Uy — ¥V, € rep P, then the following identities hold:

Z U, + Z Uy < Ker¢ and Z Uf cIme. (5)
xesuppy U xenul V' xesuppU
Furthermore, if V € rep P is P(J) -free, then:
> ®U)f cimec T (6)
xesuppU xesupp V'

As a consequence of identities (5), we have the following result:

Proposition 7. If U, V € repP and

Up= D, Ui+ D Uf,

xesuppy V xenulV
then R(U, V) = 0.
Proof. See identities (5).
Proposition 8. If U € rep P such that for some X < supp U, Uy =

z Uy and V e repP is a representation such that X < supp,V, then
xeX

Rp(U, V) = 0.
Proof. If ¢ € Rp(U, V), then

o(Up) = q{ZUIJ = (PLZUxJ

xeX xeX
= Y oUy) e D oU,)
xeX xeX
c ZVX_ =0.
xeX

Thus, ¢ = 0. O
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Remark 9. Note that, if C is a weak chain and U, V € IndC, then a
morphism [ € Re(U, V') is neither split mono (for split monomorphism)
nor split epi (for split epimorphism).

4.1. The Auslander-Reiten quiver of a completely weak chain

In this subsection, we let € = {a; < ay < -+ < a,,} denote a weak chain

of size n.

Proposition 10. If P is an equipped poset such that a < B < P with

ae iP®, then the following conditions hold:
(1) End(P(x)) = F.

(2) The ring of endomorphisms End(T(x)) is a division ring isomorphic

a b
A= la, b e Fy.
-Ab  a-ub

(3) The ring of endomorphisms End(T(a, B)) is a division ring

to the ring

isomorphic to the ring A.

Proof. (1) First assertion is easy to see provided that End(P(x)) =
End(F) = F.

(2) If @ € End(7(x)), then the corresponding matrix representation has

the following form:

A._(a b j 7
Y a—pb) )

Thus, o is invertible if and only if a’ - pab + Ab?> # 0. We note that

a’ — uab + \b? (8)

is null whenever ¢ = 0 and b = 0.
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If b # 0, then (8) can be rewritten as:

2
2114 _a
b [( bj +u( bj+k],
which is not null. On the other hand, if » =0, then equation (8) can be

2

reduced to a“ which is null if a = 0. Therefore, ¢ is invertible as an

F-operator if and only if @ # 0 or b # 0.

Now, we denote v = a’ - uab + Ab? and suppose that A is invertible,

A_ll 1 a—-ub b1 1 a—ub—ub
u Vi Ab a J\u Vi Ab+ua
_— € geng .
v u u

This fact proves that if (p_l exists, then it defines an endomorphism of

thus

End(7(x)). Thus, if an endomorphism ¢ € End(7(x)) is not null, then
it is invertible, therefore, End(7(x)) is a division ring. Moreover, the

correspondence ¢ — M, which applies to each endomorphism its
corresponding matrix representation M, defines an isomorphism between

End(7'(x)) and A.
(3) Arguments described above prove this item. O

The following result is a consequence of Proposition 10.

Corollary 11. If U € IndC, then rad U = 0.

The following results are consequences of Propositions 6 and 7.

Proposition 12. If C is a completely weak chain, then the following
identities hold:
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() Ifi < j, then Ro(P(a;), P(a;)) = 0.

(2) Re(P(a;), T(a;)) = 0, foreach 1 < i, j < n.

G)If i < k, then Ro(P(a;), T(a;, a;)) = 0.

@) Ifi < j, then Ro(T(a;), Pla;)) = 0.

(5)If i < j, then Re(T(a;), T(a;)) = 0.

©)If i < j, then Re(T(a;), T(a;, ay)) = 0.

(N If i< j, then Ro(T(a;, ay), Pla;)) = 0.

8) Re(T(a;, ay), T(a;)) = 0, foreach 1< i, j < n.

O)Ifi < jors<r, then Re(T(ay, ay), T(a;, a,)) = 0.

Proof. (1) If i < j, then ¢; € nulP(a;) and Ry(q;) = F(q;)", then
Re(P(a;), T(a;)) = 0 by Proposition 6.

(2) If k =max{i, j}, then a; esuppP(q;), Py(a;)= Pi(q;)" and
ay € suppyT(a;), therefore, Re(P(q;), T(a;)) = 0 by Proposition 8.

() If i<k, then @ enulT(a;, ar)UsuppT(a;, ar). If a; €
nul7(a;, a;), then Re(P(a;), T(a;, ax)) =0 by Proposition 7. On the
other hand, if @; e supp,T(a;, ai), then Re(P(a;), T(a;, a;))=0 by

Proposition 8. Assertions (4), (5), (6) and (7) are the consequences of
Proposition 7.

(8) If k =max{j, s}, then a; € supp (T(a;, ay), To(a;, ay) =Ty (a;, ag)’
and a; € suppyT(a;). Proposition 8 allows to conclude Re(T(a;, ay),

T(a;)) = 0.

(9) Suppose that i < j. Then a; € supp;T(a;, ay), Ty(a;, ay)=T(a;, a5)"
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and a; € nilT(a;, a,). Proposition 7 allows to deduce Re(T(q;, ay),
T(a;, a,)) = 0. On the other hand, if s <r, then ag e supp ;T (q;, ay),
Ty(a;, ay) = Ty(a;, ag)™ and ag € suppyT(a;, a,), then Re(T(a;, ay),
T(a;, a,)) = 0 by Proposition 8. O

Remark 13. The following relationships will be used to characterize

irreducible morphisms of the category of representations of a completely

weak chain:
(i) Re(P(a;), P(a;))  Re(P(a;), Play)) foreach i < k < j.
(i) Re(T(a;), Pla;)) = Re(T(a;), Play)) for cach i < k < j.
(iii) If i = j # n, then Re(T(a;), P(a;)) € Re(T(a;, a;_1), P(a;)).
(iv) Re(P(a;), T(aj, a))  Re(P(a;), T(a,, ay)) foreach j <r <s
<k
) Re(T(aj,ar), P(a;)) = Re(T(aj, ar ), Pay)) foreach i<s< j.
(vi) Re(T(a;), T(a;)) = Re(T(a;), T(ay)) for each j < k < i.
(vil) If j <r<i, then Re(T(as, a), T(a;, ) © Re(T(a;, ay),
T(ag, a,)) foreach j <s<r and r <t <i.
(viii) If i <7 <k, then Re(T(a;, ar), T(a;, a,)) = Re(T(a;, a),
T(a, a;)) foreach j<s<iand r <t <k

The next result describes irreducible morphisms of a completely weak

chain.

Proposition 14. For an indecomposable representation P(a;) € rep C,

the following relationships hold.:

(1) Tre(P(a; ), P(a;)) = 0 foreach 1 < i, j < n.
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(2) Ir(T(a;), P(a;)) # 0 if and only if i = j = n. Moreover, any
irreducible morphism ¢ € Irie(T(a, ), P(a,)) is an epimorphism and
dimg Ire(7(a,), P(a,)) = 2.
() Trr(P(a;), T(aj, a;)) if and only if i=k and i=j+]1.

Furthermore, any irreducible morphism ¢ € Irr(P(a;), T(a;_;, a;)) is a

monomorphism and
dimF IIT(P((IZ'), T(al'_l, al-)) = 2.
(4) Te(T(aj, ar), P(a;)) =0 if and only if i=j and k=i+1.

Further, any irreducible morphism ¢ e Irt(T(a;, a;,1), P(a;)) is an

epimorphism and
dimF II'I'(T(CIZ', ai+1), P(Cll‘ )) =2.

(5) I(T(a;), T(a;))# 0 if and only if j=i-1. Further, any

irreducible morphism ¢ € Irt(T(a;), T(a;_1)) is an isomorphism and
dimgp Ire(T(q;), T(a;_1)) = 2.

(6) Tre(T(a;, a), T(aj, a,)) # 0 if and only if i=j and k=r+1
=i+2 or k=r and i=j—1=k—-2. Furthermore, any irreducible
morphism ¢ € Irt(T(a;, a;11), T(a;, a;.»)) and any irreducible morphism
¢ € Irr(T(a;_1, a;), T(a;_a, a;)) is an isomorphism and

dimp Ir(T(a;, a;11), T(a;, a;12)) = dimp (T(a;1, a;), T(a;-2, a;)) = 2.

Proof. (1) For the case j # i —1, we can use Corollary 11, the first part

of Proposition 12 and item (i) in Remark 13 to conclude that there are not
irreducible morphisms in Re(P(q;), P(a;)). On the other hand, consider

that j =i — 1, then we can assume that there exists a morphism

¢ € Re(P(a;), P(a;_1))
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inducing a morphism ¢’ =[@ 0] € Re(P(a;), T(a;_y, a;)) such that if T =
[1 0] € Re(T(a;_y, a;), P(a;)), then @ = 1¢'. Because of this, there are not
irreducible morphisms in Re(P(q;), P(a;_1)).

(2) =) See (4) in Proposition 12 and items (ii), (iii) in Remark 13.

<) If i=j=n and ¢ € Ro(T(a,), P(a,)) can be written as a

composition of the form

VAN 4
T(a,)—>U — P(a,)

in repC, then U is a representation {P(a;), T(a;), T(a;, a; )}-free, 1<i
< n—1, therefore, U must have as direct summands only representations
of types T(a,) and P(a,), therefore, f is split mono or g is split epi,
furthermore,
(T (ay), Play)) = Re(T(ay), Play)),
thus, any irreducible morphism is an epimorphism and
dimg Irr(7(a, ), P(a,)) = 2.
(3) =) See proof of Proposition 12 and (iv) in Remark 13.

<) Use the arguments as in part (2) of this proof. Parts (4)-(6) can
be proved by using arguments of parts (1)-(3) and Propositions 10, 12,
Corollary 11 and Remark 13.

The following figure shows the Auslander-Reiten quiver of the

completely weak chain € =a; < ap <+ < a,_1 < a,.
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SN
SN\

/\/\/\

— Tlag,8,) — Tlag.a,_1) — Tia

/\/\/\/\

— Tlag,an) — Tla; s8p=g) = Tlay.ap_g)

VAYAYAYAYAY
/NINININININ

Tia O +#———Tla

/\/\/\/\/\/\/\

T{ap=1} Tlag.aq) + Tloy,e3)

Y AYAYAYAYAYAYA

Tlag,ny) =—— T{az, 03} +— T{ay,n

FPAYAVAYAYIVATAYAYAY

— Plag-y) — Plag} +—— P{a

Figure 3. Auslander-Reiten quiver of a completely weak chain.

5. The Auslander-Reiten Quiver of f;

In this section, we give a description of the Auslander-Reiten quiver of

ab
the equipped poset Fj5 = {®o}. To do that, we begin giving the complete

list of its indecomposable representations via Lemma 3 and algorithms of
differentiation D-VII and completion. Same procedures can be used to

describe the Auslander-Reiten quiver of posets Fj¢- Fio.

The following figures show the completion (with a strong relation
a <b) E of the derived poset F|s; and some of its irreducible

representations:

o} b / o II) _
— gt C\/ — at
® a a- ¥ a” ¥

Figure 4
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1 Pla—)

T(a™)
M ~ u

1 P{u—‘r]

1 P(b)

Pa) =P b) |Pa*) = 111 (1)
T(a ) = 111 (1) (1’ P = P(b)

Thus, the complete list of indecomposable representations of Fj5 is:
Ind s = (P(@), P(a), P(b), T(a), Pa, b), Pla*)', T(a")"}.
For the sake of simplicity, let us assume notations Gj(a, b) and G,(a, b) for

representations P(aJr)’r and T (a_)T, respectively, [6]. Now, we can make a

description of irreducible morphisms of £s.

As in the case for a completely weak chain, it is easy to see that End U is

a division ring if U € Ind Fj5. Actually, the following isomorphisms can be
defined:

End(P(@)) = End(P(a)) = End(P(h)) = End(P(a, b)) = End(G, ((a, b)) = F

and
End(7(a)) = End(G,(a, b)) = A.

The following results are consequences of Propositions 6 and 7:
(i) Ry (P(a, b), I)=0 < I € Ind Fi5\{P(a, b)}.

(ii) Rp (P(a), I) = 0 < I € Ind Fi5\{P(a), P(a, b)}.
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(i) Rp(P(b), I)=0 < 1 e {P(D), P(a), T(a)}.
(iv) Rg(T(a), ) =0 < I e{P(D), P(b)}.

Note that the matrix representation of a morphism ¢ € Rp; (G2 (a, b),

Gi(a, b)) has the form shown in Figure 4. Furthermore, the following

1 ! 0
curbing holds 5(@2)c G{[Oj} In particular, (P[[OD and (p((ln are

1
elements of the subspace G{(Oj}’ therefore, ¢ = 0. Thus,

(V) Rg(Ga(a, b), I) = 0 < I € Ind Fi5\{G;(a, b), P(a, b)}.
On the other hand, if ¢ € Rp (T(a,b), T(a)), then the matrix

1
representation of ¢ has the shape given in Figure 4. In fact, 6((()}) =0,
therefore, ¢ = 0. Thus, as a consequence of Propositions 7 and 8, we have:

i) Rp (T(a, b), 1) = 0 = I € {P(D), P(b), T(a)}.

The following results regarding morphisms of category rep Fj5 are

consequences of items (i)-(vi) and Proposition 6:
() I(P(D), P(b)) = R (P(D), P(b)) and dim Ire(P(D), P(b)) = 1.
() Ie(P(D), T(a)) = R (P(D), P(a)) and dim Ire(P(D), T(a)) = 2.
(I Irx(G (a, b), P(a, b)) = R (G (a, b), P(a, b)) and dim Irr(G; (a, b),
P(a,b))=2.

(IV) Irr(P(a), P(a, b)) = R (P(a), P(a, b)) and dimIrr(P(a), P(a, b))
=1.
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Note that

jQFIS (T(a)’ Gl(a’ b)) = jQFIS (T(a)’ GZ(aa b))

= fRFl5(Gl(a: b)’ GZ(a’ b)) = Aa (9)
Rp. s (P(b), G(a, b)) = {(gju e IF}, (10)
Rp5(Gi(a, b), P(a)) = {(0 x)|x € F}. (1)

Isomorphisms described in formulas (9) allow defining the following
results for a morphism ¢ = (a0 B): T'(a) = P(a):

0= (a B)=@(B_% —B%]

Y

T

where y € Rp (T(a), Gi(a, b)) and e Ry (Gi(a, b), T(a)), therefore,
Irr(7(a), P(a)) = 0. On the other hand, any morphism in Rg (7(a),
Gi(a, b)) (inRg, (G(a, b), P(a))) passes through direct sums of 7'(a) and
Gi(a, b) (P(a) and T(a, b), respectively), then:

Rps(T(a), G(a, b)) = Iri(T(a), Gy(a, b)), dimIr(T(a), G(a, b)) =2

and

Rpi5(Gi(a, b), P(a)) = Ire(Gy(a, b), P(a)) and dim Ire(G (a, b), P(a)) = 1.
On the other hand, if ¢ = (g) € R (P(b), Gy(a, b)), then
p

G Lk
B artp)l
SN

Y
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where v € R (P(b), Gi(a, b)) and 1 e R (Gi(a, b), Gy(a, b)), then
Irr(P(b), Go(a, b)) = 0. Furthermore,

Rp: . (P(b). Gy(a, b)) = I(P(b), Gy(a, b)), dimIre(P(b), Gy(a, b)) = 1,
RFIS (Gl(a, b), Gz(a, b)) = Irr(Gl(a, b), Gz(a, b)) and
dim Irr(Gy(a, b), G,(a, b)) = 2

Results described above allow defining the Gabriel’s quiver of Fj5 in the

following way:

Figure 5

The following Figure 6 shows the Auslander-Reiten quiver of Fjs.

—
w}
o

Figure 6
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