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Abstract 

Let ( ) { nrnL |= max  can be partitioned into 1>r  distinct primes, i.e. 

n can be written as the sum of 1>r  distinct }primes  for all 

sufficiently large positive integers n. We show that ( )nL  is defined 
for all ,12≥n  i.e. every integer 12≥n  can be partitioned into two 
or more distinct primes, and we find a nontrivial initial lower bound 
( )n  approaching ,log2 n  and an integer 0n  such that ( ) ( )nnL ≥  

for all .0nn ≥  We pose finding an optimal lower bound ( )n  for 

( )nL  as a challenge to the research community. 

1. Introduction 

The literature is very rich with works on expressing integers as sums of a 
small number of primes. The following are conjectured by Goldbach: Every 
even integer greater than 2 can be expressed as the sum of two primes 
(Goldbach’s strong conjecture); every odd number greater than 7 can be 
expressed as the sum of three odd primes (Goldbach’s weak conjecture). 
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Schnirelmann proved [12, 13] that any natural number greater than 1 can 
be written as the sum of not more than a constant C prime numbers. The 
lowest such constant C is called Schnirelmann’s constant which 
Schnirelmann calculated to be less than 800000. There have been many 
improvements on decreasing this constant. Ramaré and Saouter showed that 
every even number 4≥n  is in fact the sum of at most six primes [10]. In 
2012, Tao [16] proved that every integer larger than 1 can be written as the 
sum of at most five primes. Recently, Helfgott [5, 6] claimed to have fully 
proved Goldbach’s weak conjecture for all odd integers greater than 7. 
Significant progress has been achieved for proving that integers larger than 1 
can be expressed as sums of a small number of primes. 

Definition 1. Let f and g be two functions defined over the set of positive 
integers. We say that f is a lower bound for g if there exists a positive integer 

0n  such that for all ( ) ( ).,0 ngnfnn ≤≥  

In the current work, if f is a function defined on reals, we still use f as a 
lower bound for g, if for all integers ( ) ( ).,0 ngnfnn ≤≥  One can always 

define a new function ,f ′  only on integers, using f such that ( ) ( )nfnf =′  

for all integers .0nn ≥  

In expressing integers as sums of primes, we change the direction, and 
set the following objective: partition a given positive integer n into maximum 
number of distinct primes. Naturally, one wonders first if every sufficiently 
large positive integer can be partitioned into two or more distinct primes 
(please see Question 1 below). More formally, let ( ) { nrnL |= max  can be 

partitioned into 1>r  distinct }primes  for all sufficiently large positive 

integers n. We ask the following questions: 

Q.1. Is ( )nL  defined for all 0nn ≥  for some integer ?10 >n  

Q.2. What are some lower bounds ( ),n  integers 0n  such that ( ) ≥nL  

( ) 1>n  for all ?10 >≥ nn  

Q.3. What is an optimal lower bound ( )n  such that ( ) ( )nnL ≥  for all 

0nn ≥  for some integer ?10 >n  
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We analyze Questions 1 and 2 and answer them together. We show that 
( )nL  is defined for all integers ,120 ≥≥ nn  and find several lower bounds 

( ) 1>n  for ( ).nL  We pose Question 3 as a challenge for the research 

community. 

For all ,17≥n  the number of primes smaller than n is ( ) nnn ln>π  

[11]. We note that in our questions, the distinctness requirement for primes in 
partitioning n makes finding a lower bound ( )n  for ( )nL  challenging. 

The contributions of the current work are the following: we show that 
( )nL  is actually a function defined for all integers .12≥n  We prove that, 

for every real ,5>K  

( ) ( ) ( )( )
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−+⎟

⎠
⎞⎜

⎝
⎛

⎥⎥
⎤

⎢⎢
⎡ −+≥

−−
KnKnK

KnnL
K

K
K

K 0
1

225025
1

2 2log50log31loglog  

for all integers ( ),1
0 KnK

Kn −≥  where ( ) .250 ≥Kn  Parameters K and 

( )Kn0  are as described in the following implication of the Prime Number 

Theorem: for every real ,1>K  there exists a positive integer ( )Kn0  such 

that there is always a prime in ( )( )nKn 11, +  for all ( ).0 Knn ≥  Two 

particular corollaries from our results are the following: (1) Every integer 
14≥n  can be partitioned into at least 3 distinct prime numbers (without 

repeating primes); (2) Every integer 4021520≥n  can be expressed as the 
sum of at least ⎡ ⎤9375.6log 000120511.2 −n  distinct primes (no prime is used 

more than once in the sum). 

The outline of this paper is the following: we summarize the literature on 
existence of primes in precalculated intervals in Section 2. We give 
nontrivial lower bounds ( )n  for function ( )nL  in Section 3. We have 

concluding remarks in Section 4. 

2. Existence of Primes in Precalculated Intervals 

Calculating small intervals which are guaranteed to contain prime 
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numbers has been a topic of research in the literature. For example, 
Ramanujan [9] shows that there exists a prime number in ( )nn 2,  for every 

integer n larger than 1. The Bertrand-Chebyshev Theorem states that for 
every integer ,3>n  there always exists at least one prime number p in 

( ).22, −nn  Existence of primes in different intervals has been shown by 

many researchers (e.g. in [ ]nn 3,2  by El Bachraoui [4], in ( )nn 4,3  by Loo 

[7]). There has been a race for proving existence of primes in smaller 
intervals. In 1952, Nagura proved that for ,25≥n  there is always a prime in 

( )( )nn 511, +  [8]. Schoenfeld [15] proved that ( )( )nn 1659711, +  contains 

a prime for .2010760≥n  Ramaré and Saouter [10] showed that 
( )[ ]nn ,2831400011 −  contains a prime for 1.1072690504≥n  There are 

also results involving intervals whose sizes are not a constant fraction of n, 
but a small function of n. Existence of primes is shown in 

( ( ( )) )nnn 2ln211, +  for 3275≥n  by Dusart [1]. Currently, the best result 

in this direction belongs to Dusart [2]: for ,396738≥n  there is at least one 

prime between n and ( ( )) .ln2511 2 nn+  

The Prime Number Theorem implies that for every real ,0>ε  there 

exists a positive integer 0n  such that there is always a prime between n and 

( )nε+1  for all .0nn >  We use the following corollary of this statement. 

Corollary 1. For every real ,1>K  there exists a positive integer ( )Kn0  

such that there is always a prime in ( )( )nKn 11, +  for all integers ≥n  

( ).0 Kn  

3. Expressing an Integer as the Sum of Many Distinct Primes 

Definition 2. Let ( ) { nrnL |= max  can be partitioned into 1>r  distinct 

primes, i.e. n can be written as the sum of 1>r  distinct }primes  for all 

sufficiently large positive integers n. For a given positive integer n, ( )nL  

would be undefined if n cannot be partitioned into two or more distinct 
primes. 
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We note that ( )nL  is not defined for some .12<n  For example, 6 cannot 

be partitioned into distinct prime numbers. The prime number 11 can only be 
partitioned into one prime (itself) when the summands have to be distinct. 
( ) 312 =L  since 12 can be partitioned into maximum three distinct primes 

( ),73212 ++=  and ( ) 213 =L  since 13 can be partitioned into maximum 

two distinct primes ( ).11213 +=  All integers 14≥n  can be expressed as 

the sum of at least three distinct primes. We state this claim in the following 
lemma. 

Lemma 1. Let ( ) ( )kj 50log3log 25251 −+= xx  for all real .14≥x  

For all integers ( )nLn ,14≥  is defined, and ( ) ( ).1 nnL ≥  That is, for all 

integers nn ,14≥  can be partitioned into at least ( ) 11 >n  distinct primes. 

Proof. We prove this by induction on n. We also use the fact that for any 
real ,14≥x  

⎡ ⎤( ) ⎡ ⎤ ( ) ( ) .50log3log50log3log 252525251 kjk j −+≥−+= xxx  

For all integers [ ],50,14∈n  from Table 1, we see that ( )nL  is defined (i.e. 

n can be partitioned into two or more distinct primes), and ( ) 3≥nL  and 

( ) ( )kj 50loglog33 25251 −+≥≥ nn  because 50≤n  in this case. Also, 

in this interval, 

( ) ( ) ( )kjkj 50log14log350loglog3 252525251 −+≥−+≥ nn  

.12 >=  

This proves the claims in the lemma for these special (base) cases (i.e.  when 

[ ]).50,14∈n  Consider ,50>n  and assume that for all integers [ ),,14 nm ∈  

( )mL  is defined, and ( ) ( ),1 mmL ≥  i.e. m can be expressed as the sum of at 

least ( ) ( ) 150log3log 25251 >−+= kj mm  distinct primes (no prime is 

used more than once in the sum). Due to Nagura [8], for ,25≥n  there is 

always a prime between ( )( ).511, nn +  We apply this result by using ⎣ ⎦2n  
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for n. If n is even, we choose a prime p in ⎟
⎠
⎞⎜

⎝
⎛ nn

5
3,2  that we know exists 

when .50>n  In this case, pn −  is in ,2,5
2

⎥⎦
⎤

⎢⎣
⎡ nn  and since it is an integer, 

pn −  is in .2,5
2

⎥⎦
⎤

⎢⎣
⎡

⎥⎥
⎤

⎢⎢
⎡ nn  The prime number p that we chose in this case is 

strictly larger than all integers in this interval for pn −  (therefore distinct) 

since p is in .5
3,2 ⎟

⎠
⎞⎜

⎝
⎛ nn  If n is odd, we choose a prime p that we know exists 

in ( )⎟
⎠
⎞⎜

⎝
⎛ −− 15

3,2
1 nn  when .50>n  Since p is an integer, the smallest 

possible p in this interval is 2
1+n  for odd n. In this case, pn −  is in 

,2
1,5

32
⎥⎦
⎤

⎢⎣
⎡ ++ nn  and since pn −  is an integer, pn −  is in 

.2
1,5

32
⎥⎦
⎤+

⎢⎣
⎡

⎥⎥
⎤

⎢⎢
⎡ + nn  The prime number p that we chose in this case is either 

larger than all integers in the interval ⎥⎦
⎤

⎢⎣
⎡ −

⎥⎥
⎤

⎢⎢
⎡ +

2
1,5

32 nn  containing possible 

values for ,pn −  or .2
1+==− nppn  However, the latter is not possible 

because ppn =−  implies that n is even, which is a contradiction. In this 

case, pn −  must be in ,2
1,5

32
⎥⎦
⎤

⎢⎣
⎡ −

⎥⎥
⎤

⎢⎢
⎡ + nn  and the prime number p must be 

larger (therefore distinct) than all the integers in this interval. An alternate 
way to see this is that by the induction hypothesis, pn −  ( )casethisinp≤  

is partitioned into two or more distinct primes. Each of these primes must be 
strictly less than pn −  (therefore,  they are also strictly less than p since 

).ppn ≤−  That is, in all cases (whether n is even or odd), p is distinct 

from all the integers used in partitioning ,pn −  and from the interval limits, 

we see that .5
2

⎥⎥
⎤

⎢⎢
⎡≥− npn  If ,50≤− pn  then since ⎡ ⎤ ,52npn ≥−  it 
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must be the case that 21≥− pn  since ,50>n  and therefore, ∈− pn  

[ ].50,21  That is, the integer pn −  in this case falls in [ ],50,14  and we 

already proved the claims of Lemma 1 using Table 1 for these special cases. 
Therefore, in this case ( )pnL −  is defined (i.e. pn −  can be partitioned 

into two or more distinct primes), and 

( ) ( ) ⎡ ⎤( ) ( ) ( ) .150log352log52 252511 >−+≥≥−≥− kj nnpnpnL  

If ,50>− pn  by our induction hypothesis, ( )pnL −  is defined (i.e. pn −  can 

be partitioned into two or more distinct primes), and ( ) ( )pnpnL −≥− 1  

⎡ ⎤( ) ( ) ( ) .150log352log52 25251 >−+≥≥ kj nn  In other words, in all 

possible cases for ,pn −  ( )pnL −  is defined and pn −  can be expressed as 

the sum of at least ( ) ⎡ ⎤( ) ( ) ( )kj 50log352log52 25251 −+≥≥− nnpn  

1>  distinct primes. Hence, including p, n can be expressed as the sum of at 
least 

⎡ ⎤( ) ( ) ( ) 150log352log152 25251 +−+≥+ kj nn  

( ) ( ) kj 150log352loglog 252525 +−++= n  

( ) kj 150log31log 2525 +−+−= n  

( ) 150log3log 2525 >−+= kj n  

distinct primes since .50>n  Therefore, the claims in Lemma 1 are correct. 
When we consider the partitioning of n done recursively in the above proof, 
we note that by a series of found primes p, and updates of n to ,pn −  

eventually n will become an integer in the special cases, i.e. in [ ].50,14  Then 

summations in Table 1 will complete the partitioning of n into distinct 
primes. 
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Table 1. A list of summation expressions that we use to prove that for all n in 
[ ],50,14  ( )nL  is defined (i.e. n can be partitioned into two or more distinct 

primes), and ( ) ( ) 150loglog33 2525 >−+≥≥ kj nnL  

 

The following corollary is due to Lemma 1 and Table 1. 

Corollary 2. Every integer 14≥n  can be expressed as the sum of at 
least 3 distinct prime numbers (no prime is used more than once in the sum). 
That is, ( )nL  is defined and ( ) 3≥nL  for all integers .14≥n  

Since we know that ( )nL  is defined for all integers ,12≥n  we focus on 

finding a better lower bound ( )n  for ( ).nL  

Theorem 1. For any real ,5>K  let ( ) ( ) ( −+==
−

Txxx
K

KK
1

2logj  

( )( ))kKn
K

K 0
1

2 2log
−

 for all real ( ),1
0 KnK

Kx −≥  where 
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( ) ( ) ( ) .50log31log1
2502501 ⎥⎥

⎤
⎢⎢
⎡ −+⎟

⎠
⎞⎜

⎝
⎛

⎥⎥
⎤

⎢⎢
⎡ −=⎟

⎠
⎞⎜

⎝
⎛

⎥⎥
⎤

⎢⎢
⎡ −= KnK

KKnK
KT  

Then n can be partitioned into two or more distinct primes, and ( ) ( )nnL ≥  

1>  for all integers ( ),1
0 KnK

Kn −≥  where K and ( )Kn0  are the numbers 

as described in Corollary 1, and ,5>K  ( ) .250 ≥Kn  

Proof. We prove this theorem by induction on n. It is important for the 

correctness of implications to note that for any real ( ),1
0 KnK

Kx −≥  ⎡ ⎤( )x  

⎡ ⎤ ( ( )( )) ( ( )( )) .2loglog2loglog 0
1

2
1

20
1

2
1

2 kjkj KnTxKnTx
K

K
K

K
K

K
K

K
−−−−

−+≥−+=  

The proofs of Theorem 1 and Lemma 1 are similar. For all integers ∈n  

( ) ( ) ,2,1
00 ⎥⎦

⎤
⎢⎣
⎡ − KnKnK

K  by Lemma 1, and by the definition of ( ) ≥nLT ,  

( ) ( ) ( ( )( )) =−+≥=⎟
⎠
⎞⎜

⎝
⎛

⎥⎥
⎤

⎢⎢
⎡ −≥

−−

kj KnnTTKnK
Kn

K
K

K
K 0

1
2

1
2011 2loglog1  

( ) ⎡ ⎤1−≥ Tn  because ( )( ) ( )⎟
⎠
⎞⎜

⎝
⎛ −≥−

−−−
KnK

KKnn
K

K
K

K
K

K 0
1

20
1

2
1

2
1log2loglog  

( )( ) 12
1log2log

1
20

1
2 −=⎟

⎠
⎞⎜

⎝
⎛ −=−

−−
K

KKn
K

K
K

K  for ( ) ( ) ,2,1
00 ⎥⎦

⎤
⎢⎣
⎡ −∈ KnKnK

Kn  

,5>K  and ( ) .250 ≥Kn  Also, by Lemma 1, by the definition of T, and 

since ( ) ( ) ,21125,20125,5 ≥⎥⎥
⎤

⎢⎢
⎡ −>−> K

K
K
KK  and ( ) =⎟

⎠
⎞⎜

⎝
⎛

⎥⎥
⎤

⎢⎢
⎡ −= KnK

KT 01
1  

( ) ( ) ( ) .350log321log50log31log 252525025 =−+≥⎥⎥
⎤

⎢⎢
⎡ −+⎟

⎠
⎞⎜

⎝
⎛

⎥⎥
⎤

⎢⎢
⎡ − kjKnK

K  

In this interval, since we found that ( ) ⎡ ⎤ ,1−≥ Tn  and since ,3≥T  we 

conclude that ( ) .1>n  These verify the inequality in the theorem for these 

special (base) cases. Consider ( ) ,502 0 ≥> Knn  and assume that for all 

( ) ( ) ( ),,,1
0 mmLnKnK

Km ≥⎥⎦
⎤

⎢⎣
⎡ −∈  i.e. m can be expressed as the sum of 
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at least ( ) ( ( )( )) 12loglog 0
1

2
1

2 >−+=
−−

kj KnTmm
K

K
K

K  distinct primes (no 

prime is used more than once in the sum). Corollary 1 states that there is 

always a prime in ⎟
⎠
⎞⎜

⎝
⎛ + nK

Kn 1,  when ( ).0 Knn ≥  We apply this result by 

using ⎣ ⎦2n  for n. If n is even, we choose a prime p in ⎟
⎠
⎞⎜

⎝
⎛ + nK

Kn
2

1,2  that 

we know exists since ( ) .502 0 ≥> Knn  In this case, pn −  is in 

,2,2
1

⎥⎦
⎤

⎢⎣
⎡ − nnK

K  and since it is an integer, pn −  is in .2,2
1

⎥⎦
⎤

⎢⎣
⎡

⎥⎥
⎤

⎢⎢
⎡ − nnK

K  The 

prime number p that we chose in this case is strictly larger than all integers in 

this interval for pn −  (therefore distinct) since p is in .2
1,2 ⎟

⎠
⎞⎜

⎝
⎛ + nK

Kn  If n is 

odd, then we choose a prime p that we know exists in ( )⎟
⎠
⎞⎜

⎝
⎛ −+− 12

1,2
1 nK

Kn  

since ( ) .502 0 ≥> Knn  Since p is an integer, the smallest possible p                 

in this interval is 2
1+n  for odd n. In this case, pn −  is in 

( ) ,2
1,2

11
⎥⎦
⎤+

⎢⎣
⎡ ++− n

K
KnK  and since pn −  is an integer, pn −  is in 

( ) .2
1,2

11
⎥⎦
⎤+

⎢⎣
⎡

⎥⎥
⎤

⎢⎢
⎡ ++− n

K
KnK  The prime number p that we chose in this case 

is either larger than all integers in the interval ( )
⎥⎦
⎤

⎢⎣
⎡ −

⎥⎥
⎤

⎢⎢
⎡ ++−

2
1,2

11 n
K

KnK  

containing possible values for ,pn −  or .2
1+==− nppn  However, the 

latter is not possible because ppn =−  implies that n is even, which is a 

contradiction. In this case, pn −  must be in ( ) ,2
1,2

11
⎥⎦
⎤

⎢⎣
⎡ −

⎥⎥
⎤

⎢⎢
⎡ ++− n

K
KnK  

and the prime number p must be larger (therefore distinct) than all the 
integers in this interval. An alternate way to see this is that by the induction 
hypothesis, pn −  p≤(  in this case) is partitioned into two or more distinct 

primes. Each of these primes must be strictly less than pn −  (therefore, they 
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are also strictly less than p since .)ppn ≤−  That is, in all cases (whether n 

is even or odd), p is distinct from all integers used in partitioning ,pn −  and 

from the interval limits, we see that .2
1

⎥⎥
⎤

⎢⎢
⎡ −≥− nK

Kpn  If ( ),2 0 Knpn ≤−  

then since ,2
1

⎥⎥
⎤

⎢⎢
⎡ −≥− nK

Kpn  it must be the case that ( )KnK
Kpn 0

1−>−  

since ( ) ,502 0 ≥> Knn  and therefore, ( ) ( ) .2,1
00 ⎥⎦

⎤⎜
⎝
⎛ −∈− KnKnK

Kpn  That 

is, the integer pn −  falls in the set of the special cases (i.e. integers in 

( ) ( ) )2,1
00 ⎥⎦

⎤
⎢⎣
⎡ − KnKnK

K  for which we verified the claims of Theorem 1 by 

using Lemma 1. Therefore, in this case, 

( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛

⎥⎥
⎤

⎢⎢
⎡ −≥−≥− nK

KpnpnL 2
1  

( ( )( )) .12log2
1log 0

1
2

1
2 >

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
−+⎟

⎠
⎞⎜

⎝
⎛ −≥

−−
KnTnK

K

K
K

K
K  

If ( ),2 0 Knpn >−  by using our induction hypothesis, we see that 

( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛

⎥⎥
⎤

⎢⎢
⎡ −≥−≥− nK

KpnpnL 2
1  

( ( )( )) .12log2
1log 0

1
2

1
2 >

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
−+⎟

⎠
⎞⎜

⎝
⎛ −≥

−−

KnTnK
K

K
K

K
K  

In other words, in all possible cases, pn −  can be expressed as the sum of at 

least 

( ) ⎟
⎠
⎞⎜

⎝
⎛

⎥⎥
⎤

⎢⎢
⎡ −≥− nK

Kpn 2
1  

( ( )( )) 12log2
1log 0

1
2

1
2 >

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
−+⎟

⎠
⎞⎜

⎝
⎛ −≥

−−

KnTnK
K

K
K

K
K  
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distinct primes. Hence, including p, n can be expressed as the sum of at least 

12
1 +⎟

⎠
⎞⎜

⎝
⎛

⎥⎥
⎤

⎢⎢
⎡ − nK

K  

( ( )( )) 12log2
1loglog 0

1
2

1
2

1
2 +

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
−+⎟

⎠
⎞⎜

⎝
⎛ −+≥

−−−
KnTK

Kn
K

K
K

K
K

K  

( ( )( )) kj 12log1log 0
1

2
1

2 +−+−=
−−

KnTn
K

K
K

K  

( ( )( )) 12loglog 0
1

2
1

2 >−+=
−−

kj KnTn
K

K
K

K  

distinct primes as claimed since ( )Knn 02>  and .1>T  Considering the 

recursive partitioning of n in the above proof, we note that by a series of 
found primes p, and updates of n to ,pn −  eventually n will become an 

integer in the special cases, i.e. in ( ) ( ) .2,1
00 ⎥⎦

⎤
⎢⎣
⎡ − KnKnK

K  Then the 

successful completion of the partitioning of n into distinct primes is 
guaranteed by Lemma 1 when n is in this interval. 

We also note that in Theorem 1, the constant T can be replaced by any 
value less than or equal to the minimum ( )nK ′  value where n is an integer 

in ( ) ( )⎥⎦
⎤

⎢⎣
⎡ ′′

′
−′ KnKnK

K
00 2,1  and .5 KK <′<  We can choose 

( ) .1
0 ⎟

⎠
⎞⎜

⎝
⎛

⎥⎥
⎤

⎢⎢
⎡ ′

′
−′= ′ KnK

KT K  

The value of T can be improved by applying Theorem 1 using larger 
parameters K ′  (approaching, from below, the actual value of K in Theorem 
1). 

If we use Schoenfeld’s [15] proof of existence of a prime in 
( )( )nn 1659711, +  for 2010760≥n  in Theorem 1, with ,16597=K  and 

( ) ,40215202 0 =Kn  then we obtain the following: 
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( )⎥⎥
⎤

⎢⎢
⎡ −+⎟

⎠
⎞⎜

⎝
⎛

⎥⎥
⎤

⎢⎢
⎡= 50log3201076016597
16596log 2525T  

( )⎡ ⎤ ,15269413.4383991.15 =−+=  

and using this as a lower bound value for T, 

( ) ( ) ( )kj 4021520log15log
16596
33194

16596
33194 −+=≥ nnnL  

kj 9375.2115log 000120511.2 −+≥ n  

.9375.6log 000120511.2 kj −= n  

We summarize this result in the following corollary: 

Corollary 3. Every integer 4021520≥n  can be expressed as the sum of 
at least kj 9375.6log 000120511.2 −n  distinct primes (no prime is used more 

than once in the sum). 

Theorem 1 gives kj 9375.6log 000120511.2 −n  as a lower bound for ( )nL  

for all .4021520≥n  With larger values of K in Theorem 1, this lower bound 
approaches cn −2log  for some positive real constant c for all sufficiently 

large n. Naturally the next question we ask is how good a lower bound this is 
for ( ).nL  We note that the number of distinct naturals yielding the sum n 

cannot be more than n2  because ∑ = >n
i ni2

1 .  Therefore, ( ) .2nnL <  For 

every integer ,17≥n  there are more than nn ln  primes smaller than n [11]. 

This makes us believe that there is hope for improving the lower bound ( )n  

in Theorem 1 for ( )nL  to functions asymptotically larger than .log2 n  

4. Conclusion 

We have introduced ( ) { nrnL |= max  can be partitioned into 1>r  

distinct }primes  for all sufficiently large positive integers n. We showed that 

( )nL  is defined for all integers ,12≥n  and for every real ,5>K  
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( ) ( ) =≥ nnL  

( ) ( )( )
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−+⎟

⎠
⎞⎜

⎝
⎛

⎥⎥
⎤

⎢⎢
⎡ −+

−−
KnKnK

Kn
K

K
K

K 0
1

225025
1

2 2log50log31loglog  

for all integers ( ),1
0 KnK

Kn −≥  where ( ) .250 ≥Kn  In particular, one 

corollary of our results is that every integer 14≥n  can be partitioned into at 
least 3 distinct prime numbers (without repeating primes). Another one is      
that every integer 4021520≥n  can be expressed as the sum of at least 

kj 9375.6log 000120511.2 −n  distinct primes. Finding an optimal lower bound 

( )n  for ( )nL  will be an interesting challenge that calls for further research. 

The distinctness requirement of the primes in partitioning n is one major 
source of difficulty in attaining an optimal bound. 
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