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Abstract

Let L(n) = max{r|n can be partitioned into r > 1 distinct primes, i.e.
n can be written as the sum of r >1 distinct primes} for all
sufficiently large positive integers n. We show that L(n) is defined
for all n>12, i.e. every integer n > 12 can be partitioned into two
or more distinct primes, and we find a nontrivial initial lower bound
£(n) approaching log, n, and an integer ny such that L(n) > ¢(n)
for all n > nyg. We pose finding an optimal lower bound ¢(n) for

L(n) as a challenge to the research community.

1. Introduction

The literature is very rich with works on expressing integers as sums of a
small number of primes. The following are conjectured by Goldbach: Every
even integer greater than 2 can be expressed as the sum of two primes
(Goldbach’s strong conjecture); every odd number greater than 7 can be

expressed as the sum of three odd primes (Goldbach’s weak conjecture).
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Schnirelmann proved [12, 13] that any natural number greater than 1 can
be written as the sum of not more than a constant C prime numbers. The
lowest such constant C is called Schnirelmann’s constant which
Schnirelmann calculated to be less than 800000. There have been many
improvements on decreasing this constant. Ramaré and Saouter showed that
every even number n > 4 is in fact the sum of at most six primes [10]. In
2012, Tao [16] proved that every integer larger than 1 can be written as the
sum of at most five primes. Recently, Helfgott [5, 6] claimed to have fully
proved Goldbach’s weak conjecture for all odd integers greater than 7.
Significant progress has been achieved for proving that integers larger than 1
can be expressed as sums of a small number of primes.

Definition 1. Let f and g be two functions defined over the set of positive
integers. We say that f is a lower bound for g if there exists a positive integer
Ng such that forall n > ny, f(n) < g(n).

In the current work, if f is a function defined on reals, we still use f as a
lower bound for g, if for all integers n > ng, f(n) < g(n). One can always
define a new function f', only on integers, using f such that f'(n) = f(n)
for all integers n > ny.

In expressing integers as sums of primes, we change the direction, and
set the following objective: partition a given positive integer n into maximum
number of distinct primes. Naturally, one wonders first if every sufficiently

large positive integer can be partitioned into two or more distinct primes
(please see Question 1 below). More formally, let L(n) = max{r|n can be

partitioned into r >1 distinct primes} for all sufficiently large positive
integers n. We ask the following questions:

Q.1.1s L(n) defined for all n > nq for some integer ng > 1?

Q.2. What are some lower bounds #(n), integers ng such that L(n) >
/(n)>1forall n>ng >1?

Q.3. What is an optimal lower bound /(n) such that L(n) > /¢(n) for all
n > ng for some integer ng > 1?
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We analyze Questions 1 and 2 and answer them together. We show that
L(n) is defined for all integers n > ng > 12, and find several lower bounds
/(n) >1 for L(n). We pose Question 3 as a challenge for the research
community.

For all n >17, the number of primes smaller than n is =(n) > n/Inn

[11]. We note that in our gquestions, the distinctness requirement for primes in
partitioning n makes finding a lower bound ¢(n) for L(n) challenging.

The contributions of the current work are the following: we show that
L(n) is actually a function defined for all integers n > 12. We prove that,

for every real K > 5,

L(n) > {Iogﬁ n+ [I095/2U KK—1 nO(K)D +3-logs/, 50 - Iog&(Zno(K))ﬂ

K-1 K-1

for all integers n > K-1

no(K), where ny(K) > 25. Parameters K and

no(K) are as described in the following implication of the Prime Number
Theorem: for every real K > 1, there exists a positive integer ny(K) such
that there is always a prime in (n, (1+1/K)n) for all n > ny(K). Two
particular corollaries from our results are the following: (1) Every integer
n > 14 can be partitioned into at least 3 distinct prime numbers (without
repeating primes); (2) Every integer n > 4021520 can be expressed as the
sum of at least [10g5 gpp120511 N — 6.9375] distinct primes (no prime is used
more than once in the sum).

The outline of this paper is the following: we summarize the literature on
existence of primes in precalculated intervals in Section 2. We give
nontrivial lower bounds ¢(n) for function L(n) in Section 3. We have

concluding remarks in Section 4.
2. Existence of Primes in Precalculated Intervals

Calculating small intervals which are guaranteed to contain prime
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numbers has been a topic of research in the literature. For example,
Ramanujan [9] shows that there exists a prime number in (n, 2n) for every

integer n larger than 1. The Bertrand-Chebyshev Theorem states that for
every integer n > 3, there always exists at least one prime number p in

(n, 2n — 2). Existence of primes in different intervals has been shown by
many researchers (e.g. in [2n, 3n] by El Bachraoui [4], in (3n, 4n) by Loo

[7]). There has been a race for proving existence of primes in smaller
intervals. In 1952, Nagura proved that for n > 25, there is always a prime in

(n, (1+1/5)n) [8]. Schoenfeld [15] proved that (n, (1 + 1/16597)n) contains
a prime for n>2010760. Ramaré and Saouter [10] showed that
[n(1—1/28314000), n] contains a prime for n >10726905041. There are

also results involving intervals whose sizes are not a constant fraction of n,
but a small function of n. Existence of primes is shown in

(n, @+1/(2 In? n))n) for n > 3275 by Dusart [1]. Currently, the best result

in this direction belongs to Dusart [2]: for n > 396738, there is at least one

prime between nand (1+1/(25 In? n))n.

The Prime Number Theorem implies that for every real ¢ > 0, there
exists a positive integer ny such that there is always a prime between n and

(1 + ¢)n forall n > ny. We use the following corollary of this statement.

Corollary 1. For every real K > 1, there exists a positive integer ny(K)

such that there is always a prime in (n, (1+1/K)n) for all integers n >
no (K).

3. Expressing an Integer as the Sum of Many Distinct Primes

Definition 2. Let L(n) = max{r|n can be partitioned into r > 1 distinct
primes, i.e. n can be written as the sum of r > 1 distinct primes} for all
sufficiently large positive integers n. For a given positive integer n, L(n)

would be undefined if n cannot be partitioned into two or more distinct
primes.
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We note that L(n) is not defined for some n < 12. For example, 6 cannot

be partitioned into distinct prime numbers. The prime number 11 can only be
partitioned into one prime (itself) when the summands have to be distinct.
L(12) = 3 since 12 can be partitioned into maximum three distinct primes

(12=2+3+7), and L(13) = 2 since 13 can be partitioned into maximum
two distinct primes (13 = 2 +11). All integers n > 14 can be expressed as
the sum of at least three distinct primes. We state this claim in the following

lemma.

Lemma 1. Let /1(x) = [ logg/, X + (3 — logs, 50)| for all real x > 14.
For all integers n > 14, L(n) is defined, and L(n) > ¢4(n). That is, for all
integers n > 14, n can be partitioned into at least /;(n) > 1 distinct primes.

Proof. We prove this by induction on n. We also use the fact that for any
real x > 14,

([ x) = [ logs/o[ X+ (3 = logsy» 50) | > [ 10gs/ X + (3 — logs 50) 1.

For all integers n e [14, 50], from Table 1, we see that L(n) is defined (i.e.
n can be partitioned into two or more distinct primes), and L(n) > 3 and
32 (1(n) 2 [3 + (logs/, n — logs/, 50) | because n < 50 in this case. Also,

in this interval,
?3(n) 2 [3+ (logs/, n —logs/, 50) | 2 [3 + (logs/, 14 — logs/, 50) |
=2>1

This proves the claims in the lemma for these special (base) cases (i.e. when
n € [14, 50]). Consider n > 50, and assume that for all integers m < [14, n),
L(m) is defined, and L(m) > /4(m), i.e. m can be expressed as the sum of at
least /1(m) = [logs/, m + (3 - logs/ 50)] > 1 distinct primes (no prime is
used more than once in the sum). Due to Nagura [8], for n > 25, there is
always a prime between (n, (1+ 1/5)n). We apply this result by using | n/2 |
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for n. If n is even, we choose a prime p in (% %n) that we know exists
when n > 50. In this case, n — p isin [%n %} and since it is an integer,

n—pisin H% nw, %} The prime number p that we chose in this case is
strictly larger than all integers in this interval for n — p (therefore distinct)
since p is in (

g, %n) If n is odd, we choose a prime p that we know exists

in (nT—l %(n—l)) when n > 50. Since p is an integer, the smallest

possible p in this interval is nT+1 for odd n. In this case, n— p is in
2n+3 n+1 . . . .
5 | and since n—-p is an integer, n—p is in

H2n5+ 31, n=s ; 1}. The prime number p that we chose in this case is either

larger than all integers in the interval HZn; 3], nT—lJ containing possible
n+1 . .

valuesfor n—p, orn—-p=p= 5 However, the latter is not possible

because n — p = p implies that n is even, which is a contradiction. In this

case, n — p must be in U 2N + 3], n_—l} and the prime number p must be

5 2

larger (therefore distinct) than all the integers in this interval. An alternate
way to see this is that by the induction hypothesis, n — p (< p in this case)
is partitioned into two or more distinct primes. Each of these primes must be
strictly less than n — p (therefore, they are also strictly less than p since
n—p<p). Thatis, in all cases (whether n is even or odd), p is distinct
from all the integers used in partitioning n — p, and from the interval limits,

we see that n—p > [é n-‘. If n— p <50, then since n— p >[2n/5], it
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must be the case that n— p > 21 since n > 50, and therefore, n— p e
[21, 50]. That is, the integer n — p in this case falls in [14, 50], and we

already proved the claims of Lemma 1 using Table 1 for these special cases.
Therefore, in this case L(n — p) is defined (i.e. n — p can be partitioned

into two or more distinct primes), and
L(n - p) = /1(n = p) = ¢1([2n/5]) = [logs/2(2n/5) + (3 - logs/» 50) | > 1.

If n— p >50, by our induction hypothesis, L(n— p) is defined (i.e. n— p can
be partitioned into two or more distinct primes), and L(n — p) > /4(n — p)
> (1(]2n/5]) = [logs/2(2n/5) + (3 - logs/ 50)| > 1. In other words, in all
possible cases for n — p, L(n— p) is defined and n — p can be expressed as
the sum of at least ¢y(n - p) = ¢([2n/57) > [logs/>(2n/5) + (3 - logs) 50) |

> 1 distinct primes. Hence, including p, n can be expressed as the sum of at
least

(1([2n/51) +1 = [logs/»(2n/5) + (3 — logs/> 50) | +1
= [logs/> n + 10gs5/2(2/5) + (3 - logs/, 50) +1]
= [logs/o n =1+ (3 - logs/, 50) +1]
= [logs/ n + (3 - logs/, 50)] > 1

distinct primes since n > 50. Therefore, the claims in Lemma 1 are correct.
When we consider the partitioning of n done recursively in the above proof,
we note that by a series of found primes p, and updates of n to n— p,
eventually n will become an integer in the special cases, i.e. in [14, 50]. Then

summations in Table 1 will complete the partitioning of n into distinct
primes.
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Table 1. A list of summation expressions that we use to prove that for all n in
[14, 50], L(n) is defined (i.e. n can be partitioned into two or more distinct

primes), and L(n) >3 >[3+ (Iog5/2 n —logs/; 50)] > 1

n | L(n) > | summation n | L(n) > | summation

14 3 24547 33 4 24-3+5+23

15 3 3+5+7 34 5 243+5+7+17

16 3 243411 35 4 24-3+7+23

17 4 2434547 36 5 24+3+5+7+19

18 3 24+3+13 37 4 247+11417

19 3 3+5+11 38 b) 245+T+11+13
20 3 24+7+11 39 5 3+5+7+11+13
21 4 24345411 40 5 2434547423

22 3 247+13 41 6 243+5+7+11+13
23 4 24+3+5+13 42 5 24345413419
24 3 2+3+19 43 5 3+5+T+11+17
25 4 243+4+7+13 44 5 24+3+5+11+23
26 4 3+5+7+11 45 6 2434+54+T+11417
27 4 24-3+5+17 46 5 2+4-3+5+7+29

28 5] 24+3+54+T+11 ||| 47 6 24-3+45+74+11+4+19
29 4 24-345+19 48 5 243+5+T7+31

30 5 243454+7+13 ||| 49 6 243+5+7+13+19
31 4 24347419 50 5 24+3+5+11+29
32 4 3+54+T7+17

The following corollary is due to Lemma 1 and Table 1.

Corollary 2. Every integer n > 14 can be expressed as the sum of at
least 3 distinct prime numbers (no prime is used more than once in the sum).
Thatis, L(n) is defined and L(n) > 3 for all integers n > 14.

Since we know that L(n) is defined for all integers n > 12, we focus on
finding a better lower bound ¢(n) for L(n).
Theorem 1. For any real K > 5, let /(x) =/ (x) =[log ok X+ (T —

K-1
K-1

log ok (2ng(K)))] for all real x > no(K), where

K-1
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T = flUKK_l no(K)D = [|095/2GKK_1 no(K)D + (3 - logs)> 50)}-

Then n can be partitioned into two or more distinct primes, and L(n) > ¢(n)

K
as described in Corollary 1, and K > 5, ng(K) > 25.

> 1 for all integers n >

No(K), where K and ng(K) are the numbers

Proof. We prove this theorem by induction on n. It is important for the
K-1
—No(K), £
=[log ok [X]+(T —log 2k (2ng(K)))|=[log ok X+ (T —log 2k (2n(K)))].
K-1 K-1 K-1 K-1
The proofs of Theorem 1 and Lemma 1 are similar. For all integers n e

correctness of implications to note that for any real x >

[KK_l N (K), ZnO(K)}, by Lemma 1, and by the definition of T, L(n) >

K-1

(4(n) > 51(( ”o(K)D =T >[T +(log ok n —log 2k (2ng(K)))] =
K-1 K-1

¢(n)>[T —1] because Iogﬁn - Iog&(Zno(K)) > Iogz_(KK_lno(K)j

K-1 K-1 K1
—log 5k (2np(K)) = log » (%) =-1forne [KK_an(K), 2n0(K)},
K-1 K-1
K >5, and ng(K) > 25. Also, by Lemma 1, by the definition of T, and

since K >5, 25(§_1) > 20, (25%_1)]2 21, and T :flg%n()(K)—D:

[Iogs/z G KK_ ! nO(K)D +(3~logs/, 50)-‘ > [logsy, 21+ (3~ logs/, 50) | = 3.

In this interval, since we found that ¢(n) > [T —1], and since T >3, we
conclude that #(n) > 1. These verify the inequality in the theorem for these

special (base) cases. Consider n > 2ny(K) > 50, and assume that for all

m e [KK—l no(K), n}, L(m) > ¢(m), i.e. m can be expressed as the sum of
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at least /(m) =[log ok m+ (T —log >k (2ng(K)))] > 1 distinct primes (no
K-1 K-1
prime is used more than once in the sum). Corollary 1 states that there is

always a prime in (n, K+1 nj when n > ny(K). We apply this result by

K
. . . . (n K+1
using | n/2 | for n. If n is even, we choose a prime p in (5, Tn) that
we know exists since n > 2ny(K)>50. In this case, n—p is in
K-1_n . - . . K-1 n
[T n, ﬂ, and since it is an integer, n — p is in UT nw, ﬂ. The

prime number p that we chose in this case is strictly larger than all integers in

this interval for n — p (therefore distinct) since p is in (ﬂ K+1 nj. Ifnis

2’ 2K

odd, then we choose a prime p that we know exists in (nT—l KZIJE 1 (n— 1))

since n > 2ng(K) > 50. Since p is an integer, the smallest possible p

in this interval is n;l for odd n. In this case, n—p is in
(K-D)n+K+1 n+1 . . . -

TR C T | and since n— p is an integer, n—p is in
H(K _1)2”K+ K +11, n;—l} The prime number p that we chose in this case

is either larger than all integers in the interval U(K “Yn+ K+ 1—‘, n _1}

2K 2
containing possible values for n—p, or n—p=p = nT+1 However, the
latter is not possible because n — p = p implies that n is even, which is a
(K=1)n+K +11 n —1}
2K 2]
and the prime number p must be larger (therefore distinct) than all the
integers in this interval. An alternate way to see this is that by the induction
hypothesis, n — p (< p in this case) is partitioned into two or more distinct

contradiction. In this case, n — p must be in H

primes. Each of these primes must be strictly less than n — p (therefore, they
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are also strictly less than p since n— p < p). That is, in all cases (whether n
is even or odd), p is distinct from all integers used in partitioning n — p, and

2K

from the interval limits, we see that n — p > { n—‘. If n—p < 2ny(K),

then since n — p > {szlnw, it must be the case that n — p > KK_l no(K)

K-1

since n > 2ny(K) > 50, and therefore, n — p e ( Ny (K), 2n0(K)}. That

is, the integer n — p falls in the set of the special cases (i.e. integers in

[KK_ ! Ny (K), ZnO(K)}) for which we verified the claims of Theorem 1 by

using Lemma 1. Therefore, in this case,

L(n—p)=/4(n-p)= EU KZIElnD

> {Iogz_(szln) +(T - Iog&(Zno(K)))w > 1.

K-1 K-1

If n— p > 2ny(K), by using our induction hypothesis, we see that

L(n—p)>4n-p)=> KU K2|21 nD

> {Iog&(% nj +(T - Iogﬁ(ZnO(K)))w > 1.
K-1 K-1

In other words, in all possible cases, n — p can be expressed as the sum of at

/(n-p)> zq K2|zl nD

> {Iogz_K(% n) +(T - Iogz_K(ZnO(K)))w >1
K-1 K-1

least
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distinct primes. Hence, including p, n can be expressed as the sum of at least
K-1
KU—ZK nD +1

K-1
> {Iog ok N+ log ok (TJ + (T —log 7k (2ng(K))) | +1
K-1 K-1 K-1

= ﬂogz_K n-1+(T - Iogz_K(ZnO(K)))+ﬂ

K-1 K1
=[log ok N+ (T —log 2k (2np(K)))| >1
K-1 K-1

distinct primes as claimed since n > 2ny(K) and T > 1. Considering the
recursive partitioning of n in the above proof, we note that by a series of
found primes p, and updates of n to n — p, eventually n will become an
K-1
K

successful completion of the partitioning of n into distinct primes is
guaranteed by Lemma 1 when n is in this interval.

integer in the special cases, i.e. in [ Ny (K), 2n0(K)}. Then the

We also note that in Theorem 1, the constant T can be replaced by any
value less than or equal to the minimum /y-(n) value where n is an integer

in [K _1nO(K'), 2n0(K')} and 5 < K’ < K. We can choose

K
T - EK/UK;(_an(K')D.

The value of T can be improved by applying Theorem 1 using larger
parameters K’ (approaching, from below, the actual value of K in Theorem
1).

If we use Schoenfeld’s [15] proof of existence of a prime in
(n, (1 +1/16597)n) for n > 2010760 in Theorem 1, with K = 16597, and

2ny(K) = 4021520, then we obtain the following:
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T = {logs/zq% 2010760—D +(3-logs/ 50)}

=[15.83991 + (3 — 4.269413) | = 15,

and using this as a lower bound value for T,

L(n) = £(n) =[log33104 N + (15 — log 33104 4021520)]
16596 16596

> [1092,000120511 N + 15 — 21.9375 |

= [1092 000120511 N — 6.9375].
We summarize this result in the following corollary:

Corollary 3. Every integer n > 4021520 can be expressed as the sum of
at least [ 109, goo120511 N — 6.9375] distinct primes (no prime is used more

than once in the sum).

Theorem 1 gives [ 1095 goo120511 N — 6-9375] as a lower bound for L(n)
for all n > 4021520. With larger values of K in Theorem 1, this lower bound
approaches log, n —c for some positive real constant ¢ for all sufficiently
large n. Naturally the next question we ask is how good a lower bound this is

for L(n). We note that the number of distinct naturals yielding the sum n
cannot be more than ¥2n because Z:/ZZTI > n. Therefore, L(n) < +/2n. For
every integer n > 17, there are more than n/Inn primes smaller than n [11].
This makes us believe that there is hope for improving the lower bound ¢(n)

in Theorem 1 for L(n) to functions asymptotically larger than log n.
4. Conclusion

We have introduced L(n)= max{r|n can be partitioned into r >1
distinct primes} for all sufficiently large positive integers n. We showed that

L(n) is defined for all integers n > 12, and for every real K > 5,
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L(n) > /(n) =

{Iog& n+ {Iogg,/zq KK_ ! nO(K)D +3—logs/, 50 — Iog&(Zno(K))ﬂ

K-1 K-1

for all integers n >

no(K), where ng(K)> 25. In particular, one

corollary of our results is that every integer n > 14 can be partitioned into at
least 3 distinct prime numbers (without repeating primes). Another one is
that every integer n > 4021520 can be expressed as the sum of at least

[1095 000120511 N — 6.9375] distinct primes. Finding an optimal lower bound
/(n) for L(n) will be an interesting challenge that calls for further research.

The distinctness requirement of the primes in partitioning n is one major
source of difficulty in attaining an optimal bound.
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