JP Journal of Algebra, Number Theory and Applications
© 2015 Pushpa Publishing House, Allahabad, India
Published Online: March 2015
http://dx.doi.org/10.17654/JPANTAFeb2015_001_015

EXPRESSING INTEGERS AS SUMS OF MANY DISTINCT PRIMES

Abdullah N. Arslan
Computer Science and Information Systems
Texas A\&M University - Commerce
TX 75428, U. S. A.
e-mail: abdullah.arslan@tamuc.edu

Abstract

Let $L(n)=\max \{r \mid n$ can be partitioned into $r>1$ distinct primes, i.e. n can be written as the sum of $r>1$ distinct primes $\}$ for all sufficiently large positive integers n. We show that $L(n)$ is defined for all $n \geq 12$, i.e. every integer $n \geq 12$ can be partitioned into two or more distinct primes, and we find a nontrivial initial lower bound $\ell(n)$ approaching $\log _{2} n$, and an integer n_{0} such that $L(n) \geq \ell(n)$ for all $n \geq n_{0}$. We pose finding an optimal lower bound $\ell(n)$ for $L(n)$ as a challenge to the research community.

1. Introduction

The literature is very rich with works on expressing integers as sums of a small number of primes. The following are conjectured by Goldbach: Every even integer greater than 2 can be expressed as the sum of two primes (Goldbach's strong conjecture); every odd number greater than 7 can be expressed as the sum of three odd primes (Goldbach's weak conjecture).

Keywords and phrases: prime numbers, partitions.

Schnirelmann proved $[12,13]$ that any natural number greater than 1 can be written as the sum of not more than a constant C prime numbers. The lowest such constant C is called Schnirelmann's constant which Schnirelmann calculated to be less than 800000 . There have been many improvements on decreasing this constant. Ramaré and Saouter showed that every even number $n \geq 4$ is in fact the sum of at most six primes [10]. In 2012, Tao [16] proved that every integer larger than 1 can be written as the sum of at most five primes. Recently, Helfgott [5, 6] claimed to have fully proved Goldbach's weak conjecture for all odd integers greater than 7. Significant progress has been achieved for proving that integers larger than 1 can be expressed as sums of a small number of primes.

Definition 1. Let f and g be two functions defined over the set of positive integers. We say that f is a lower bound for g if there exists a positive integer n_{0} such that for all $n \geq n_{0}, f(n) \leq g(n)$.

In the current work, if f is a function defined on reals, we still use f as a lower bound for g, if for all integers $n \geq n_{0}, f(n) \leq g(n)$. One can always define a new function f^{\prime}, only on integers, using f such that $f^{\prime}(n)=f(n)$ for all integers $n \geq n_{0}$.

In expressing integers as sums of primes, we change the direction, and set the following objective: partition a given positive integer n into maximum number of distinct primes. Naturally, one wonders first if every sufficiently large positive integer can be partitioned into two or more distinct primes (please see Question 1 below). More formally, let $L(n)=\max \{r \mid n$ can be partitioned into $r>1$ distinct primes\} for all sufficiently large positive integers n. We ask the following questions:
Q.1. Is $L(n)$ defined for all $n \geq n_{0}$ for some integer $n_{0}>1$?
Q.2. What are some lower bounds $\ell(n)$, integers n_{0} such that $L(n) \geq$ $\ell(n)>1$ for all $n \geq n_{0}>1$?
Q.3. What is an optimal lower bound $\ell(n)$ such that $L(n) \geq \ell(n)$ for all $n \geq n_{0}$ for some integer $n_{0}>1$?

We analyze Questions 1 and 2 and answer them together. We show that $L(n)$ is defined for all integers $n \geq n_{0} \geq 12$, and find several lower bounds $\ell(n)>1$ for $L(n)$. We pose Question 3 as a challenge for the research community.

For all $n \geq 17$, the number of primes smaller than n is $\pi(n)>n / \ln n$ [11]. We note that in our questions, the distinctness requirement for primes in partitioning n makes finding a lower bound $\ell(n)$ for $L(n)$ challenging.

The contributions of the current work are the following: we show that $L(n)$ is actually a function defined for all integers $n \geq 12$. We prove that, for every real $K>5$,
$L(n) \geq\left\lceil\log _{\frac{2 K}{K-1}} n+\left(\log _{5 / 2}\left(\left\lceil\frac{K-1}{K} n_{0}(K)\right\rceil\right)+3-\log _{5 / 2} 50-\log _{\frac{2 K}{K-1}}\left(2 n_{0}(K)\right)\right)\right\rceil$ for all integers $n \geq \frac{K-1}{K} n_{0}(K)$, where $n_{0}(K) \geq 25$. Parameters K and $n_{0}(K)$ are as described in the following implication of the Prime Number Theorem: for every real $K>1$, there exists a positive integer $n_{0}(K)$ such that there is always a prime in $(n,(1+1 / K) n)$ for all $n \geq n_{0}(K)$. Two particular corollaries from our results are the following: (1) Every integer $n \geq 14$ can be partitioned into at least 3 distinct prime numbers (without repeating primes); (2) Every integer $n \geq 4021520$ can be expressed as the sum of at least $\left\lceil\log _{2.000120511} n-6.9375\right\rceil$ distinct primes (no prime is used more than once in the sum).

The outline of this paper is the following: we summarize the literature on existence of primes in precalculated intervals in Section 2. We give nontrivial lower bounds $\ell(n)$ for function $L(n)$ in Section 3. We have concluding remarks in Section 4.

2. Existence of Primes in Precalculated Intervals

Calculating small intervals which are guaranteed to contain prime
numbers has been a topic of research in the literature. For example, Ramanujan [9] shows that there exists a prime number in ($n, 2 n$) for every integer n larger than 1 . The Bertrand-Chebyshev Theorem states that for every integer $n>3$, there always exists at least one prime number p in $(n, 2 n-2)$. Existence of primes in different intervals has been shown by many researchers (e.g. in [2n, 3n] by El Bachraoui [4], in (3n, 4n) by Loo [7]). There has been a race for proving existence of primes in smaller intervals. In 1952, Nagura proved that for $n \geq 25$, there is always a prime in $(n,(1+1 / 5) n)$ [8]. Schoenfeld [15] proved that $(n,(1+1 / 16597) n)$ contains a prime for $n \geq 2010760$. Ramaré and Saouter [10] showed that [$n(1-1 / 28314000), n]$ contains a prime for $n \geq 10726905041$. There are also results involving intervals whose sizes are not a constant fraction of n, but a small function of n. Existence of primes is shown in $\left(n,\left(1+1 /\left(2 \ln ^{2} n\right)\right) n\right)$ for $n \geq 3275$ by Dusart [1]. Currently, the best result in this direction belongs to Dusart [2]: for $n \geq 396738$, there is at least one prime between n and $\left(1+1 /\left(25 \ln ^{2} n\right)\right) n$.

The Prime Number Theorem implies that for every real $\varepsilon>0$, there exists a positive integer n_{0} such that there is always a prime between n and $(1+\varepsilon) n$ for all $n>n_{0}$. We use the following corollary of this statement.

Corollary 1. For every real $K>1$, there exists a positive integer $n_{0}(K)$ such that there is always a prime in $(n,(1+1 / K) n)$ for all integers $n \geq$ $n_{0}(K)$.

3. Expressing an Integer as the Sum of Many Distinct Primes

Definition 2. Let $L(n)=\max \{r \mid n$ can be partitioned into $r>1$ distinct primes, i.e. n can be written as the sum of $r>1$ distinct primes $\}$ for all sufficiently large positive integers n. For a given positive integer $n, L(n)$ would be undefined if n cannot be partitioned into two or more distinct primes.

We note that $L(n)$ is not defined for some $n<12$. For example, 6 cannot be partitioned into distinct prime numbers. The prime number 11 can only be partitioned into one prime (itself) when the summands have to be distinct. $L(12)=3$ since 12 can be partitioned into maximum three distinct primes ($12=2+3+7$), and $L(13)=2$ since 13 can be partitioned into maximum two distinct primes ($13=2+11$). All integers $n \geq 14$ can be expressed as the sum of at least three distinct primes. We state this claim in the following lemma.

Lemma 1. Let $\ell_{1}(x)=\left\lceil\log _{5 / 2} x+\left(3-\log _{5 / 2} 50\right)\right\rceil$ for all real $x \geq 14$. For all integers $n \geq 14, L(n)$ is defined, and $L(n) \geq \ell_{1}(n)$. That is, for all integers $n \geq 14$, n can be partitioned into at least $\ell_{1}(n)>1$ distinct primes.

Proof. We prove this by induction on n. We also use the fact that for any real $x \geq 14$,

$$
\ell_{1}(\lceil x\rceil)=\left\lceil\log _{5 / 2}\lceil x\rceil+\left(3-\log _{5 / 2} 50\right)\right\rceil \geq\left\lceil\log _{5 / 2} x+\left(3-\log _{5 / 2} 50\right)\right\rceil .
$$

For all integers $n \in[14,50]$, from Table 1, we see that $L(n)$ is defined (i.e. n can be partitioned into two or more distinct primes), and $L(n) \geq 3$ and $3 \geq \ell_{1}(n) \geq\left\lceil 3+\left(\log _{5 / 2} n-\log _{5 / 2} 50\right)\right\rceil$ because $n \leq 50$ in this case. Also, in this interval,

$$
\begin{aligned}
\ell_{1}(n) & \geq\left\lceil 3+\left(\log _{5 / 2} n-\log _{5 / 2} 50\right)\right\rceil \geq\left\lceil 3+\left(\log _{5 / 2} 14-\log _{5 / 2} 50\right)\right\rceil \\
& =2>1 .
\end{aligned}
$$

This proves the claims in the lemma for these special (base) cases (i.e. when $n \in[14,50])$. Consider $n>50$, and assume that for all integers $m \in[14, n)$, $L(m)$ is defined, and $L(m) \geq \ell_{1}(m)$, i.e. m can be expressed as the sum of at least $\ell_{1}(m)=\left\lceil\log _{5 / 2} m+\left(3-\log _{5 / 2} 50\right)\right\rceil>1$ distinct primes (no prime is used more than once in the sum). Due to Nagura [8], for $n \geq 25$, there is always a prime between $(n,(1+1 / 5) n)$. We apply this result by using $\lfloor n / 2\rfloor$
for n. If n is even, we choose a prime p in $\left(\frac{n}{2}, \frac{3}{5} n\right)$ that we know exists when $n>50$. In this case, $n-p$ is in $\left[\frac{2}{5} n, \frac{n}{2}\right]$, and since it is an integer, $n-p$ is in $\left[\left[\frac{2}{5} n\right\rceil, \frac{n}{2}\right]$. The prime number p that we chose in this case is strictly larger than all integers in this interval for $n-p$ (therefore distinct) since p is in $\left(\frac{n}{2}, \frac{3}{5} n\right)$. If n is odd, we choose a prime p that we know exists in $\left(\frac{n-1}{2}, \frac{3}{5}(n-1)\right)$ when $n>50$. Since p is an integer, the smallest possible p in this interval is $\frac{n+1}{2}$ for odd n. In this case, $n-p$ is in $\left[\frac{2 n+3}{5}, \frac{n+1}{2}\right]$, and since $n-p$ is an integer, $n-p$ is in $\left\lceil\left\lceil\frac{2 n+3}{5}\right\rceil, \frac{n+1}{2}\right]$. The prime number p that we chose in this case is either larger than all integers in the interval $\left[\left\lceil\frac{2 n+3}{5}\right\rceil, \frac{n-1}{2}\right]$ containing possible values for $n-p$, or $n-p=p=\frac{n+1}{2}$. However, the latter is not possible because $n-p=p$ implies that n is even, which is a contradiction. In this case, $n-p$ must be in $\left[\left\lceil\frac{2 n+3}{5}\right\rceil, \frac{n-1}{2}\right\rceil$, and the prime number p must be larger (therefore distinct) than all the integers in this interval. An alternate way to see this is that by the induction hypothesis, $n-p$ ($\leq p$ in this case) is partitioned into two or more distinct primes. Each of these primes must be strictly less than $n-p$ (therefore, they are also strictly less than p since $n-p \leq p$). That is, in all cases (whether n is even or odd), p is distinct from all the integers used in partitioning $n-p$, and from the interval limits, we see that $n-p \geq\left\lceil\frac{2}{5} n\right\rceil$. If $n-p \leq 50$, then since $n-p \geq\lceil 2 n / 5\rceil$, it
must be the case that $n-p \geq 21$ since $n>50$, and therefore, $n-p \in$ [21,50]. That is, the integer $n-p$ in this case falls in $[14,50]$, and we already proved the claims of Lemma 1 using Table 1 for these special cases. Therefore, in this case $L(n-p)$ is defined (i.e. $n-p$ can be partitioned into two or more distinct primes), and

$$
L(n-p) \geq \ell_{1}(n-p) \geq \ell_{1}(\lceil 2 n / 5\rceil) \geq\left\lceil\log _{5 / 2}(2 n / 5)+\left(3-\log _{5 / 2} 50\right)\right\rceil>1 .
$$

If $n-p>50$, by our induction hypothesis, $L(n-p)$ is defined (i.e. $n-p$ can be partitioned into two or more distinct primes), and $L(n-p) \geq \ell_{1}(n-p)$ $\geq \ell_{1}(\lceil 2 n / 5\rceil) \geq\left\lceil\log _{5 / 2}(2 n / 5)+\left(3-\log _{5 / 2} 50\right)\right\rceil>1$. In other words, in all possible cases for $n-p, L(n-p)$ is defined and $n-p$ can be expressed as the sum of at least $\ell_{1}(n-p) \geq \ell(\lceil 2 n / 5\rceil) \geq\left\lceil\log _{5 / 2}(2 n / 5)+\left(3-\log _{5 / 2} 50\right)\right\rceil$ >1 distinct primes. Hence, including p, n can be expressed as the sum of at least

$$
\begin{aligned}
\ell_{1}(\lceil 2 n / 5\rceil)+1 & \geq\left\lceil\log _{5 / 2}(2 n / 5)+\left(3-\log _{5 / 2} 50\right)\right\rceil+1 \\
& =\left\lceil\log _{5 / 2} n+\log _{5 / 2}(2 / 5)+\left(3-\log _{5 / 2} 50\right)+1\right\rceil \\
& =\left\lceil\log _{5 / 2} n-1+\left(3-\log _{5 / 2} 50\right)+1\right\rceil \\
& =\left\lceil\log _{5 / 2} n+\left(3-\log _{5 / 2} 50\right)\right\rceil>1
\end{aligned}
$$

distinct primes since $n>50$. Therefore, the claims in Lemma 1 are correct. When we consider the partitioning of n done recursively in the above proof, we note that by a series of found primes p, and updates of n to $n-p$, eventually n will become an integer in the special cases, i.e. in [14,50]. Then summations in Table 1 will complete the partitioning of n into distinct primes.

Table 1. A list of summation expressions that we use to prove that for all n in $[14,50], L(n)$ is defined (i.e. n can be partitioned into two or more distinct primes), and $L(n) \geq 3 \geq\left\lceil 3+\left(\log _{5 / 2} n-\log _{5 / 2} 50\right)\right\rceil>1$

n	$L(n) \geq$	summation	n	$L(n) \geq$	summation
14	3	$2+5+7$	33	4	$2+3+5+23$
15	3	$3+5+7$	34	5	$2+3+5+7+17$
16	3	$2+3+11$	35	4	$2+3+7+23$
17	4	$2+3+5+7$	36	5	$2+3+5+7+19$
18	3	$2+3+13$	37	4	$2+7+11+17$
19	3	$3+5+11$	38	5	$2+5+7+11+13$
20	3	$2+7+11$	39	5	$3+5+7+11+13$
21	4	$2+3+5+11$	40	5	$2+3+5+7+23$
22	3	$2+7+13$	41	6	$2+3+5+7+11+13$
23	4	$2+3+5+13$	42	5	$2+3+5+13+19$
24	3	$2+3+19$	43	5	$3+5+7+11+17$
25	4	$2+3+7+13$	44	5	$2+3+5+11+23$
26	4	$3+5+7+11$	45	6	$2+3+5+7+11+17$
27	4	$2+3+5+17$	46	5	$2+3+5+7+29$
28	5	$2+3+5+7+11$	47	6	$2+3+5+7+11+19$
29	4	$2+3+5+19$	48	5	$2+3+5+7+31$
30	5	$2+3+5+7+13$	49	6	$2+3+5+7+13+19$
31	4	$2+3+7+19$	50	5	$2+3+5+11+29$
32	4	$3+5+7+17$			

The following corollary is due to Lemma 1 and Table 1.
Corollary 2. Every integer $n \geq 14$ can be expressed as the sum of at least 3 distinct prime numbers (no prime is used more than once in the sum). That is, $L(n)$ is defined and $L(n) \geq 3$ for all integers $n \geq 14$.

Since we know that $L(n)$ is defined for all integers $n \geq 12$, we focus on finding a better lower bound $\ell(n)$ for $L(n)$.

Theorem 1. For any real $K>5$, let $\ell(x)=\ell_{K}(x)=\left\lceil\log _{\frac{2 K}{K-1}} x+(T-\right.$ $\left.\left.\log _{\frac{2 K}{K-1}}\left(2 n_{0}(K)\right)\right)\right\rceil$ for all real $x \geq \frac{K-1}{K} n_{0}(K)$, where

$$
T=\ell_{1}\left(\left\lceil\frac{K-1}{K} n_{0}(K)\right\rceil\right)=\left\lceil\log _{5 / 2}\left(\left\lceil\frac{K-1}{K} n_{0}(K)\right\rceil\right)+\left(3-\log _{5 / 2} 50\right)\right\rceil .
$$

Then n can be partitioned into two or more distinct primes, and $L(n) \geq \ell(n)$ >1 for all integers $n \geq \frac{K-1}{K} n_{0}(K)$, where K and $n_{0}(K)$ are the numbers as described in Corollary 1, and $K>5, n_{0}(K) \geq 25$.

Proof. We prove this theorem by induction on n. It is important for the correctness of implications to note that for any real $x \geq \frac{K-1}{K} n_{0}(K)$, $\ell(\lceil x\rceil)$ $=\left\lceil\log _{\frac{2 K}{K-1}}\lceil x\rceil+\left(T-\log _{\frac{2 K}{K-1}}\left(2 n_{0}(K)\right)\right)\right\rceil \geq\left\lceil\log _{\frac{2 K}{K-1}} x+\left(T-\log _{\frac{2 K}{K-1}}\left(2 n_{0}(K)\right)\right)\right\rceil$. The proofs of Theorem 1 and Lemma 1 are similar. For all integers $n \in$ $\left[\frac{K-1}{K} n_{0}(K), 2 n_{0}(K)\right]$, by Lemma 1 , and by the definition of $T, L(n) \geq$ $\ell_{1}(n) \geq \ell_{1}\left(\left[\frac{K-1}{K} n_{0}(K)\right\rceil\right)=T \geq\left\lceil T+\left(\log _{\frac{2 K}{K-1}} n-\log _{\frac{2 K}{K-1}}\left(2 n_{0}(K)\right)\right)\right\rceil=$ $\ell(n) \geq\lceil T-1\rceil$ because $\log _{\frac{2 K}{K-1}} n-\log _{\frac{2 K}{K-1}}\left(2 n_{0}(K)\right) \geq \log _{\frac{2 K}{K-1}}\left(\frac{K-1}{K} n_{0}(K)\right)$ $-\log _{\frac{2 K}{K-1}}\left(2 n_{0}(K)\right)=\log _{\frac{2 K}{K-1}}\left(\frac{K-1}{2 K}\right)=-1$ for $n \in\left[\frac{K-1}{K} n_{0}(K), 2 n_{0}(K)\right]$, $K>5$, and $n_{0}(K) \geq 25$. Also, by Lemma 1 , by the definition of T, and since $K>5, \frac{25(K-1)}{K}>20,\left\lceil\frac{25(K-1)}{K}\right\rceil \geq 21$, and $T=\ell_{1}\left(\left\lceil\frac{K-1}{K} n_{0}(K)\right\rceil\right)=$ $\left\lceil\log _{5 / 2}\left(\left\lceil\frac{K-1}{K} n_{0}(K)\right\rceil\right)+\left(3-\log _{5 / 2} 50\right)\right\rceil \geq\left\lceil\log _{5 / 2} 21+\left(3-\log _{5 / 2} 50\right)\right\rceil=3$.

In this interval, since we found that $\ell(n) \geq\lceil T-1\rceil$, and since $T \geq 3$, we conclude that $\ell(n)>1$. These verify the inequality in the theorem for these special (base) cases. Consider $n>2 n_{0}(K) \geq 50$, and assume that for all $m \in\left[\frac{K-1}{K} n_{0}(K), n\right], L(m) \geq \ell(m)$, i.e. m can be expressed as the sum of
at least $\ell(m)=\left\lceil\log _{\frac{2 K}{K-1}} m+\left(T-\log _{\frac{2 K}{K-1}}\left(2 n_{0}(K)\right)\right)\right\rceil>1$ distinct primes (no prime is used more than once in the sum). Corollary 1 states that there is always a prime in $\left(n, \frac{K+1}{K} n\right)$ when $n \geq n_{0}(K)$. We apply this result by using $\lfloor n / 2\rfloor$ for n. If n is even, we choose a prime p in $\left(\frac{n}{2}, \frac{K+1}{2 K} n\right)$ that we know exists since $n>2 n_{0}(K) \geq 50$. In this case, $n-p$ is in $\left[\frac{K-1}{2 K} n, \frac{n}{2}\right]$, and since it is an integer, $n-p$ is in $\left[\left[\frac{K-1}{2 K} n\right], \frac{n}{2}\right]$. The prime number p that we chose in this case is strictly larger than all integers in this interval for $n-p$ (therefore distinct) since p is in $\left(\frac{n}{2}, \frac{K+1}{2 K} n\right)$. If n is odd, then we choose a prime p that we know exists in $\left(\frac{n-1}{2}, \frac{K+1}{2 K}(n-1)\right)$ since $n>2 n_{0}(K) \geq 50$. Since p is an integer, the smallest possible p in this interval is $\frac{n+1}{2}$ for odd n. In this case, $n-p$ is in $\left[\frac{(K-1) n+K+1}{2 K}, \frac{n+1}{2}\right]$, and since $n-p$ is an integer, $n-p$ is in $\left[\left\lceil\frac{(K-1) n+K+1}{2 K}\right\rceil, \frac{n+1}{2}\right]$. The prime number p that we chose in this case is either larger than all integers in the interval $\left[\left\lceil\frac{(K-1) n+K+1}{2 K}\right\rceil, \frac{n-1}{2}\right]$ containing possible values for $n-p$, or $n-p=p=\frac{n+1}{2}$. However, the latter is not possible because $n-p=p$ implies that n is even, which is a contradiction. In this case, $n-p$ must be in $\left[\left[\frac{(K-1) n+K+1}{2 K}\right\rceil, \frac{n-1}{2}\right]$, and the prime number p must be larger (therefore distinct) than all the integers in this interval. An alternate way to see this is that by the induction hypothesis, $n-p$ ($\leq p$ in this case) is partitioned into two or more distinct primes. Each of these primes must be strictly less than $n-p$ (therefore, they
are also strictly less than p since $n-p \leq p$). That is, in all cases (whether n is even or odd), p is distinct from all integers used in partitioning $n-p$, and from the interval limits, we see that $n-p \geq\left\lceil\frac{K-1}{2 K} n\right\rceil$. If $n-p \leq 2 n_{0}(K)$, then since $n-p \geq\left\lceil\frac{K-1}{2 K} n\right\rceil$, it must be the case that $n-p>\frac{K-1}{K} n_{0}(K)$ since $n>2 n_{0}(K) \geq 50$, and therefore, $n-p \in\left(\frac{K-1}{K} n_{0}(K), 2 n_{0}(K)\right]$. That is, the integer $n-p$ falls in the set of the special cases (i.e. integers in $\left[\frac{K-1}{K} n_{0}(K), 2 n_{0}(K)\right]$) for which we verified the claims of Theorem 1 by using Lemma 1 . Therefore, in this case,

$$
\begin{aligned}
L(n-p) & \geq \ell(n-p) \geq \ell\left(\left[\frac{K-1}{2 K} n\right\rceil\right) \\
& \geq\left\lceil\log _{\frac{2 K}{K-1}}\left(\frac{K-1}{2 K} n\right)+\left(T-\log _{\frac{2 K}{K-1}}\left(2 n_{0}(K)\right)\right)\right]>1 .
\end{aligned}
$$

If $n-p>2 n_{0}(K)$, by using our induction hypothesis, we see that

$$
\begin{aligned}
L(n-p) & \geq \ell(n-p) \geq \ell\left(\left\lceil\frac{K-1}{2 K} n\right\rceil\right) \\
& \geq\left\lceil\log _{\frac{2 K}{K-1}}\left(\frac{K-1}{2 K} n\right)+\left(T-\log _{\frac{2 K}{K-1}}\left(2 n_{0}(K)\right)\right)\right]>1 .
\end{aligned}
$$

In other words, in all possible cases, $n-p$ can be expressed as the sum of at least

$$
\begin{aligned}
\ell(n-p) & \geq \ell\left(\left[\frac{K-1}{2 K} n\right\rceil\right) \\
& \geq\left\lceil\log _{\frac{2 K}{K-1}}\left(\frac{K-1}{2 K} n\right)+\left(T-\log _{\frac{2 K}{K-1}}\left(2 n_{0}(K)\right)\right)\right]>1
\end{aligned}
$$

distinct primes. Hence, including p, n can be expressed as the sum of at least

$$
\begin{aligned}
& \ell\left(\left\lceil\frac{K-1}{2 K} n\right\rceil\right)+1 \\
\geq & \left\lceil\log _{\frac{2 K}{K-1}} n+\log _{\frac{2 K}{K-1}}\left(\frac{K-1}{2 K}\right)+\left(T-\log _{\frac{2 K}{K-1}}\left(2 n_{0}(K)\right)\right)\right]+1 \\
= & \left\lceil\log _{\frac{2 K}{K-1}} n-1+\left(T-\log _{\frac{2 K}{K-1}}\left(2 n_{0}(K)\right)\right)+1\right\rceil \\
= & \left\lceil\log _{\frac{2 K}{K-1}} n+\left(T-\log _{\frac{2 K}{K-1}}\left(2 n_{0}(K)\right)\right)\right\rceil>1
\end{aligned}
$$

distinct primes as claimed since $n>2 n_{0}(K)$ and $T>1$. Considering the recursive partitioning of n in the above proof, we note that by a series of found primes p, and updates of n to $n-p$, eventually n will become an integer in the special cases, i.e. in $\left[\frac{K-1}{K} n_{0}(K), 2 n_{0}(K)\right]$. Then the successful completion of the partitioning of n into distinct primes is guaranteed by Lemma 1 when n is in this interval.

We also note that in Theorem 1, the constant T can be replaced by any value less than or equal to the minimum $\ell_{K^{\prime}}(n)$ value where n is an integer in $\left[\frac{K^{\prime}-1}{K^{\prime}} n_{0}\left(K^{\prime}\right), 2 n_{0}\left(K^{\prime}\right)\right]$ and $5<K^{\prime}<K$. We can choose

$$
T=\ell_{K^{\prime}}\left(\left[\frac{K^{\prime}-1}{K^{\prime}} n_{0}\left(K^{\prime}\right)\right]\right)
$$

The value of T can be improved by applying Theorem 1 using larger parameters K^{\prime} (approaching, from below, the actual value of K in Theorem 1).

If we use Schoenfeld's [15] proof of existence of a prime in (n, $(1+1 / 16597) n$) for $n \geq 2010760$ in Theorem 1, with $K=16597$, and $2 n_{0}(K)=4021520$, then we obtain the following:

$$
\begin{aligned}
T & =\left\lceil\log _{5 / 2}\left(\left\lceil\frac{16596}{16597} 2010760\right\rceil\right)+\left(3-\log _{5 / 2} 50\right)\right\rceil \\
& =\lceil 15.83991+(3-4.269413)\rceil=15
\end{aligned}
$$

and using this as a lower bound value for T,

$$
\begin{aligned}
L(n) & \geq \ell(n)=\left\lceil\log _{\frac{33194}{16596}} n+\left(15-\log _{\frac{33194}{16596}} 4021520\right)\right\rceil \\
& \geq\left\lceil\log _{2.000120511} n+15-21.9375\right\rceil \\
& =\left\lceil\log _{2.000120511} n-6.9375\right\rceil .
\end{aligned}
$$

We summarize this result in the following corollary:
Corollary 3. Every integer $n \geq 4021520$ can be expressed as the sum of at least $\left\lceil\log _{2.000120511} n-6.9375\right\rceil$ distinct primes (no prime is used more than once in the sum).

Theorem 1 gives $\left\lceil\log _{2.000120511} n-6.9375\right\rceil$ as a lower bound for $L(n)$ for all $n \geq 4021520$. With larger values of K in Theorem 1, this lower bound approaches $\log _{2} n-c$ for some positive real constant c for all sufficiently large n. Naturally the next question we ask is how good a lower bound this is for $L(n)$. We note that the number of distinct naturals yielding the sum n cannot be more than $\sqrt{2 n}$ because $\sum_{i=1}^{\sqrt{2 n}} i>n$. Therefore, $L(n)<\sqrt{2 n}$. For every integer $n \geq 17$, there are more than $n / \ln n$ primes smaller than n [11]. This makes us believe that there is hope for improving the lower bound $\ell(n)$ in Theorem 1 for $L(n)$ to functions asymptotically larger than $\log _{2} n$.

4. Conclusion

We have introduced $L(n)=\max \{r \mid n$ can be partitioned into $r>1$ distinct primes\} for all sufficiently large positive integers n. We showed that $L(n)$ is defined for all integers $n \geq 12$, and for every real $K>5$,
$L(n) \geq \ell(n)=$
$\left\lceil\log _{\frac{2 K}{K-1}} n+\left(\log _{5 / 2}\left(\left[\frac{K-1}{K} n_{0}(K)\right\rceil\right)+3-\log _{5 / 2} 50-\log _{\frac{2 K}{K-1}}\left(2 n_{0}(K)\right)\right)\right\rceil$
for all integers $n \geq \frac{K-1}{K} n_{0}(K)$, where $n_{0}(K) \geq 25$. In particular, one corollary of our results is that every integer $n \geq 14$ can be partitioned into at least 3 distinct prime numbers (without repeating primes). Another one is that every integer $n \geq 4021520$ can be expressed as the sum of at least $\left\lceil\log _{2.000120511} n-6.9375\right\rceil$ distinct primes. Finding an optimal lower bound $\ell(n)$ for $L(n)$ will be an interesting challenge that calls for further research. The distinctness requirement of the primes in partitioning n is one major source of difficulty in attaining an optimal bound.

References

[1] P. Dusart, Autour de la fonction qui compte le nombre de nombres premiers, 1998 (in French).
[2] P. Dusart, Estimates of some functions over primes without R.H., 2010, arXiv:1002.0442.
[3] T. O. e Silva, Goldbach conjecture verification, Retrieved 20 July 2013.
[4] M. El Bachraoui, Primes in the interval [2n, 3n], Int. J. Contemp. Math. Sci. 1(13) (2006), 617-621.
[5] H. A. Helfgott, Major arcs for Goldbach's theorem, 2013, arXiv:1305.2897.
[6] H. A. Helfgott, Minor arcs for Goldbach’s problem, 2012, arXiv:1205.5252.
[7] A. Loo, On the primes in the interval (3n, 4n), Int. J. Contemp. Math. Sci. 6(38) (2011), 1871-1882.
[8] J. Nagura, On the interval containing at least one prime number, Proceedings of the Japan Academy, Series A 28 (1952), 177-181.
[9] S. Ramanujan, A proof of Bertrand's postulate, J. Indian Math. Society 11 (1919), 181-182.
[10] O. Ramaré and Y. Saouter, Short effective primes containing primes, J. Number Theory 98 (2003), 10-33.
[11] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 6494.
[12] L. G. Schnirelmann, On the additive properties of numbers, First Published in Proceedings of the Don Polytechnic Institute in Novocherkassk (in Russian), Vol. XIV (1930), 3-27, and reprinted in Uspekhi Matematicheskikh Nauk (in Russian), (6) (1939), 9-25 (1930).
[13] L. G. Schnirelmann, Über additive Eigenschaften von Zahlen, Mathematische Annalen (in German), Vol. 107 (1933), 649-690, and also reprinted as, On the additive properties of numbers, Uspekhi Matematicheskikh Nauk (in Russian) 7 (1940), 7-46 (1933).
[14] M. K. Sinisalo, Checking the Goldbach conjecture up to 4×10^{11}, Math. Comp. 61(204) (1993), 931-934.
[15] L. Schoenfeld, Sharper bounds for the Chebyshev functions $\theta(x)$ and $\psi(x)$, II, Math. Comp. 30(134) (1976), 337-360.
[16] T. Tao, Every odd number greater than 1 is the sum of at most five primes, 2012, arXiv:1201.6656v4 [math.NT]. Bibcode 2012arXiv1201.6656T.

