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Abstract 

A statistical method is proposed for assessing agreement between two 
clinical methods of measuring an unknown quantity. Its value is a 
function of the difference between measurements of the same sample 
by the two methods and their arithmetic and geometric means. The 
proposed method is motivated by the J-divergence rate and can be 
viewed as a measure of the distance between two distributions defined 
by measurements by the two methods. The paper concludes with a 
discussion regarding the simultaneous use of this and Bland-Altman 
methods. 
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Introduction 

Medical researchers often need to compare two methods of measuring an 
unknown quantity. A widely used method developed by Bland and Altman 
plots the difference of measurements against their arithmetic mean (Altman 
and Bland [1, 3]). Liao and Capen [4] have tried to improve Bland-Altman 
method by defining an agreement interval for each individual pair and 
assessing the overall concordance. In what follows, we suggest a different 
approach and point out its strength. 

Suppose that 1w  and 2w  are measurements on the same subject using  

the reference standard and a novel method, respectively. Here both the 

arithmetic mean ( ) 221 ww +  and the geometric mean 21ww  provide 

estimates of the true but unknown quantity of interest. The following facts 
provide insight regarding these estimates: 

Fact 1. 

( ) .2 2121 wwww ≥+  

Fact 2. The arithmetic mean ( ) ,221 ww +  the geometric mean ,21ww  

and difference 12 wwd −=  have the following relationship: 
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Moreover, 
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These facts shed light on the appropriateness of plotting the difference 
against the mean of two measurements. Using these facts, we may consider 
working with the difference and geometric mean, or the arithmetic mean and 
geometric mean, noting that d is a function of the sum and difference of the 
arithmetic mean and geometric mean. Additionally, if we consider a right 

triangle with legs 21ww  and ( ) 212 ww −  ( )12if ww >  or ( ) 221 ww −  

( )21if ww >  and let θ  denote the angle opposite the shorter leg, ( ) ,212 ww −  
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then we have ( ) ( ),Sin 1212 wwww +−=θ  ( ),2Cos 1221 wwww +=θ  and 

( ) .2Tan 2112 wwww −=θ  Thus, the comparison can also be made using 

these functions or just θ  itself. The closer the θ  is to 0 the better the 
agreement. We can also develop a method in line with Liao and Capen [4] 
using θ  values in place of their differences. This would improve their 
method since statistics based on θ  are scale invariant. 

A Measure of Agreement 

The measure (J‐measure) for assessing the agreement given below is 
motivated by the above facts and the J‐divergence rate. We suggest using the 
following: 
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We think this is a reasonable approach as the agreement problem can be 
viewed as a discrimination problem. Note that the J-measure is a function       
of the arithmetic mean, geometric mean, their ratio, and the normalized 
differences. For example, for a fixed value of the geometric mean, it 
increases directly with the differences (d). Thus, for data with fixed 
geometric mean, plotting J against the arithmetic mean produces the same 
information as a Bland-Altman plot. 

The use of J-measure has similarity with the Bland-Altman method in 
that their method involves the difference and arithmetic mean, whereas the J-
measure involves the difference and geometric mean. Rather than plotting d 
against the arithmetic mean, we can plot the ratio of the two measurements 
against the geometric mean. The closer the ratio is to 1, the better the 
agreement. Clearly, plotting the latter in log-scale is the same as Bland-
Altman method. When applying their method to a set of real data, Bland and 
Altman [3] have noted that results related to differences between log 
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percentages are not easy to interpret. They have suggested back-transforming 
(antilog) the results to get values relating the ratios of measurements by the 
two methods. We can make the transformation process more transparent by 
working directly with the ratios. Instead of taking logs and calculating 
differences, we can simply calculate the ratio of the two values for each 
subject and calculate limits of agreement based on the mean and standard 
deviation of these or, as is suggested here, work with the J-measure. 

We end this section by noting that, using the above relationships, we 
could estimate the proportional bias using either of the following: 
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Why J-measure 

The scale-dependent limits of agreement, dsd 96.1±  (where d  is the 

mean of the differences and ds  is their standard deviation), suggested by 

Bland and Altman assigns equal weight to all measured differences. 
However, it may be reasonable to think that a difference of 20=d  resulting 
from the measurements, ,6001 =w  1202 =w  is a “stronger” indicator of 

disagreement between the two methods than the same difference resulting 
from the measurements ,6001 =w  .6202 =w  Transformations such as 

square-root or logarithm can help this problem when data values are positive. 
For the above measurements, the difference of 20 translates to square-root 
differences of 0.954 and 0.405 and log-differences of 0.079 and 0.014, 
respectively. In fact, since 

( ) ( ),121212 wwwwww −+=−  

we see that d weights the transformed data by the sum of their sizes. 

The J-measure accounts for the above in a reasonable fashion. For the 
measurements quoted above, the J values are 0.033 and 0.001, respectively. 
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Here 95% limits of agreement using the J-measure is 

.96.1 jsJ ±  

A 95% confidence interval for limits of agreement can also be 
constructed following the same derivation as the Bland-Altman method.       
We note that if measurements were proportional, that is ,12 kww =  then 

21 −+= kkJ  for all measurements and no limit of agreement can be 

constructed. 

Values of this measure provide us with quantities indicating the 
contribution of pairs of measurements to the J-measure. In fact, if we 
consider the problem as a discrimination issue, then we can identify which 
specific pair or which group of pairs contributes most to the disagreement. 

Threshold Agreement Using J-measure 

Though researchers are typically interested in assessing agreement 
throughout the entire range of measurements, one may be particularly 
interested in agreement relative to a clinical threshold of interest. For these 
cases, we can just consider J values in the vicinity of the threshold. In such a 
scenario, the J-measure could prove useful, noting that for a fixed difference 
between measurements on the same subject, J is larger for smaller values of 
w than for larger values. That is, it gives a bigger weight to a fixed difference 
occurring in lower ranges than the high ranges. Using this, we can either 
subtract the threshold value from both 1w  and 2w  and move the origin to the 

threshold of interest or just consider J values in vicinity of the threshold. 

J-measure and Information 

Recall that if ,12 kww =  then J‐measure has a fixed value 21 −+= kkJ  

independent of the size of the measurements. This is a useful special case 
since 1>k  can be related to the situation where the novel method may be 
more variable than the reference standard. Note that the larger the ,1w  the 
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bigger the difference d. This case is also related to the situation where one 
may approach the problem using the so-called Lehman alternatives described 
below. 

Suppose that 1w  and 2w  are random variables representing measurements 

from the reference and novel technologies with cumulative distribution 
functions, ( )xFw1  and ( ),2 xFw  respectively. Since measurements are taken 

on the same patient, it is reasonable to assume that ( ) ( ),12 xFxF k
ww =  where 

k is a positive constant. For this case, we may use an information theoretic 

concept and define a divergence measure between ( )xFw1  and ( ).1 xFkw  Let 

( )xfw2  and ( )xfw1  denote the probability density functions of 2w  and ,1w  

respectively, and consider the expressions 
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These are Kullback‐Leibler discrimination information rates for 
discriminating in favor of ( )xfw1  over ( )xfw2  and ( )xfw2  over ( ),1 xfw  

respectively. Their sum 21 IIJ +=  is the J‐divergence rate and measures 

the degree of separation between ( )xFw1  and ( ).2 xFw  For distributions 

( )xFw1   and ( ),1 xF kw  the divergence rate is given by 

.21 −+= kkJ  

This is a monotonic increasing function of k with a minimum of zero 
occurring at .1=k  Note that for this situation 

( ) ( ) ( ) ( )∫
∞

+==>=ρ
0 2112 1 kkxdFxFwwP ww  

is a measure for bias ( ).21whenbiasno =ρ  Also, since ( ) ,1 k
k
+

=ρ  we 
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have 

( ) ( ).121 2 ρ−ρρ−=J  

This function attains its minimum for ,21=ρ  and its maximum at 1=ρ  

and is monotonic increasing in .121 ≤ρ≤  This shows that the agreement 

between two technologies can also be defined on the basis of divergent rate 
between their distributions. 

Concluding Remarks 

Suppose that dww =− 12  is constant for all pairs indicating a fixed 

bias. Using the method developed by Bland-Altman no limits of agreement 
can be constructed for this case as dd =  with no variability. Similarly  
when 12 kww =  (proportional bias), the J-measure has a fixed value =J  

21 −+ kk  independent of the size of the measurements and no limits of 

agreement can be constructed for the J-measure. Thus, for cases with 
systematic bias, no limits of agreement can be constructed. Considering 
these, it may be beneficial to use Bland-Altman and J-measure methods 
simultaneously. This is particularly useful when measurements come from 
normal distribution, as for this case, .12 baww +=  If a or b or both show 

significant changes over the range of possible values, then we may construct 
several limits of agreement and utilize results of piecewise regression. 
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