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Abstract

In this paper, the complete system of affine global differential

invariants of affine curves in R? is obtained. The problem of affine
equivalence of affine curves is reduced to that of paths. Conditions of
affine-equivalence of curves are given in terms of the affine invariants.
It is obtained that the generating affine invariants are independent.

1. Introduction

Invariants in differential geometry have received a great deal of attention
from the mathematical communities since earlier times. Invariant functions
are absolute invariant if the derivatives of the included functions are taken
with respect to an invariant parameter.

The theory of affine differential invariants dates back to the 1920’s,
see [3, 4, 11], for further historical remarks and a modern exposition
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[2, 5, 7, 8, 12]. In recent years, geometrical image processing applications
based on curvature and arc length have received a lot of attention.

The theory of curves in centroequi-affine, equi-affine and centro-affine
(respectively, SL(n, R), EA(n, R), GL(n, R)) was studied in [5, 9, 10, 13].
In most papers named affine theory of curves was studied equi-affine theory

of curves.

The construction of affine invariants of curves was studied in [1, 2]. But,
in these papers, they used equi-affine invariant parameter instead of affine.

They worked with this parametrization and formed the affine theory of

curves in R?. In our approach, the affine arc length parametrization must be
affine invariant under the full affine group. In [2], it was introduced invariant
parametrization, but not affine invariant and examined local theory of affine

curves, but we globally.

This paper is concerned with the basic theory of affine geometry of

curves in R? and related questions of affine differential invariants. Motivated
such questions, we introduced the affine invariant parametrization which is
invariant under the full affine group. This parametrization is quite useful for

the study of affine invariants of curves and congruence of two affine curves

in R%. In the second part of this paper, we give the definitions of affine
curve, affine arc length and affine types of an affine curve. And we show
that the type of an affine curve is an affine invariant of a curve. Later,
we introduce affine invariant parametrization of an affine curve which is
invariant under the affine group. Then we reduced the problem of the affine
equivalence of curves to that of paths. In the third part, we give the complete
system of affine differential invariants for affine plane curves and show that

these invariants are independent. So this is the smallest generating system of
R(x)A(z’ R) The conditions of equivalence of two affine curves are obtained

in terms of affine differential invariants.
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2. Affine Curve and Affine Arc Length of a Affine Curve in R?

Let R be the field of real numbers and I = (a, b) be an open interval of
R.

We denote the group {F : R? > R?: Fx = gx+b, g e GL(2,R), b e
R?} of all affine transformations of R? by A4(2, R), where GL(2, R) is the
general linear group.

Definition 2.1. A C*-map x : [ — R? will be called an I-path in R

Definition 2.2. An /;-path x(¢) and an I,-path y(r) in R? will be

called D-equivalent if there exists a C* -diffeomorphism ¢ : I, — I; such

that ¢'(r) > 0 and y(r) = x(o(r)) for all r € I,. A class of D-equivalent

paths in R? will be called a curve in R%. A path x € a will be called a

parametrization of a curve o.

Remark 2.1. This definition is the same as the definition of a curve in
[9, p. 2]. There exist different definitions of a curve [6, p. 2], [8].

If x(f) is an I-path in R?, then Fx(¢) is an I-path in R? for any
F e A2, R).

Definition 2.3. Two I-paths x and y in R? will be called A(2, R)-

A(2,R)
equivalent and written x ~ "y if there exists F € A(2, R) such that y(¢)

= Fx(t).

Let a = {h,, T € O} bea curve in R?, where h, is a parametrization of

a. Then Fo = {Fh,, T € Q} isacurve in R? forany F e A(2, R).

Definition 2.4. Two curves o and B in R? will be called A(2, R)-
equivalent if B = Fa. for some F € A(2, R).
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Let x(f) be an I-path in R? and [x'(¢)x"(f)] be the determinant of the

vectors x'(¢), x"(¢).

Definition 2.5. An [-path x(¢) in R? will be called affine regular if for
all 1 e I, [x'(¢)x"(¢)] # 0 and
3 ()OI ()" (0)] + 120 ()" O] 0)x"(0)] = S )"(OF # 0.
A curve will be called regular if it contains a regular path.
Example 2.1. x : (0, 1) > R?, x(¢) = (¢, £) is affine regular.
For I(a, b), p, q € I, put (see [11, p. 54]):
3 ()" O] (0x"(0)] ?

_ [+ 120X O] (O2"(0)] = S (02" (P
I(p, q) = jp O OF dt

and [ (a, g) = lim [ .(p, q), L.(p,b) = lim [ (p, q). There are only four
p—a q—b
possible cases:
(1) Z)C(aa Q) < 0, lx(pa b) < 0,
(11) lx(aa q) < OO: Zx(pa b) = OO’
(111) lx(aa q) = o, lx(pa b) < 0,
(iv) Zx(aa CI) = o, lx(pa b) = .

In case of (i), we say that x belongs to the finite affine type, in case of
(i), (iii) and (iv), we say that x belongs to the affine types of (0, ), (—o0, 0)
and (—oo, +), respectively. There exist paths of all types. The affine type of
a path x will be denoted by T'(x).
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Example 2.2. We consider the -path x: 7 —> R?, x(¢) =(z, ¢'), I =

1
(a, b), a,beR. Then I .(p, q) = (%)2 (g — p). So x(¢) has the finite

affine type. If we take I = (0, o), (—o0, 0) and (—oo, ), respectively, in
this example, then x(¢) has the (0, ), (—o, 0) and (-, o)-affine types,

respectively.
. A(2,R)
Proposition 2.1. (i) If x ~ "y, then T(x) = T(y).

(ii) Let o be a curve and x, y € o. Then T(x) = T(y).

Proof. (i) is obvious. We show (ii). Let x, y € a. Then there exists a

¢:(c,d)— (a,b), ¢'(r)>0, C*-diffeomorphism such that y(r) = x(¢(r))
for all r € (c, d). Let x has the finite affine type. So we get

ly(c, q)

= lim 1,(p, q)
p—>c

1
30 )y AL ()" ()] 2
i (7] 120y N )y )] = S )y ()F
poedp 3'(r)y"(r)P

dr

1
3[(x(0)) (+(@)™[(x(0) (x(0)) ] | :
=i (7] 120(0) (x(0) TM(x(@) (x(0))”] = S[(x(e)) (@) T | ;.

poed 3l(x(e)) (x(9) T
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We put in order

(. 9)

1
3x(0)x " (@) [x'(0)x"()] 2
+ 12[x'(9)x"(@)][x"(0)x"(9)] = Sx'(@)x"(@)F |
3[x'(9)x"(9)]

7
= lim | _ ¢'(r)
p—>cYp

If we take @(r) = ¢, ¢'(r)dr = dt, then we obtain

3 ()™ O] (0)"(¢)] 2
= gm [O@] 12O OIY ) x"(0] = S () x" ()
hle ) cp(%»ajm(p) 3[x' () x" (1) a

= llm lx((P(ﬁ)’ (P(CY)) = lx(aa (P(CY))
o(p)—a

We get 1,,(p, d) = 1 (¢(p), b) similarly. Therefore,

Iy(c’ q) = lx(a’ (p(c7)) < @, ly(]_?a d) = lx((p(]_?)a b) < .

So y has the finite affine type. Then T(x) = T(y). The proofs of other types

are proved similarly. O

The affine type of a path x € a will be called the affine type of the curve
o and denoted by T(a). According to Proposition 2.1, T(a) is an affine

invariant of a curve o.

Let x(f) be a regular I-path in R?. We define the affine arc length
function s,(¢) for each affine type as follows. We put s,(¢) = [, (a, t) for
the cases finite affine type and 7'(x) = (0, o) and s,(¢) = —1,.(¢, b) for the

case T(x) = (-0, 0). We choose a fixed point in every interval I = (a, b)
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of R and denote it by a;. Let a; =0 for [ = (-0, +0). We set s,(¢) =
I(az, t).

Since s, (¢) # 0 for all ¢ € I, the inverse function of s, (¢) exists. Let us

denote it by ¢,(s). The domain of 7.(s) is 7T(x) and #.(s)> 0 for all
s € T(x).

Proposition 2.2. Let I = (a, b), J = (¢, d) and x be a regular I-path in
R2. Then

(i) spy(t) = 5,(2), tpe(s) =t,(s) forall F € A2, R).

(ii) The equalities sy(¢)(r) = sx(@(r)) + s and @(ty()(s +50)) = 1,(s)

hold for any C-diffeomorphism ¢ :J —> I such that ¢'(r) >0 for all

red, where sy =0 for T(x)# (-, +0) and sy =1 (o(ay), a;) for
T(x) = (~o0, +).

Proof. The proof (i) is obvious. So we prove (ii). Let T'(x) = (—o0, +).

Then we have

Sx((p)(r )
1
3[(x(@)) (x(0) ™ )[(x(9) (x(e)) ] ' ’
_ [ | 1200 (o)) Jlto) (o)) S{to) (o) P |
Z 3[(x(0) (x(e)) T

= L(e(ay), o(r)) = L (ar, o(r)) + Ly(e(ay), ar).
80 5y(g)(r) = 5.(9(r)) + 59, where sy =I.(¢(as), ar). This implies that
(P(Zx((p)(s + SO)) = Zx(s)'

It is easy to see that sy = 0 for 7(x) # (—o0, +0). O
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Remark 2.2. Let o be a regular curve and x € o. Then x(7,(s)) is a

parametrization of a.

Definition 2.6. The parametrization x(¢,(s)) of a regular curve o will be

called an invariant parametrization of o.. We denote the set of all invariant

parametrizations of oL by ¢, .

Proposition 2.3. Let o be a regular curve, x € o. and x be an I-path,

where I = T(o). Then the following conditions are equivalent:

(1) x is an invariant parametrization of o

2

3[x'(5)x ") ()] (5)2"(5)] 2
iy | 12 () @)]3[[2’((?);23}2_5[35 OO | ) for ait s T

(iil) s,(s) = s forall s € T(a).
Proof. (i) = (ii) Let x € ¢,. Then there exists y € o such that x(s) =
¥(t,(s)). By Proposition 2.2, s,(s) = sy(,y)(s) + 59 = s+ 59, where sq is

as in Proposition 2.2. Since s, does not depend on s,

30 (s) ™) ()] [x'(s)x"(5)] 2
¢ (s) = || OIS EGF || )
3[x(s)x"(s)P

Hence, for all s € T(a), we have

3 ()™ ()] ¥ () x"(s)]
+12[¢() ¥ (][ ()x" ()] = S )" | _
3[x(s)x"(s)P
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(il) = (iii) By the definition of s,(¢), for the affine type (0, «), we

have

Sx(s) = lx(a’ S)

30 ()< ()] ¥ () x"(s)]
. IS + 12[¢() ([ (5)x"(5)] = S ()" () ||
P 3[x(s)x"(s)P

p—a

S
= lim ds = lim(s—p)=s-—a.
p—>aYp p—>a

We put a = 0, it is obtained that s,(s) = s. The proofs of the other types are

proved similarly.

(iii) = (i) The equality s,(s) = s implies #,(s) = s. Therefore, x(s) =
xX(1x(s)) € dg. O

Proposition 2.4. Let o be a regular curve and T(a.) # (-, +). Then
there exists the unique invariant parametrization of d.

Proof. Let x, y € a, x be an /;-path and y be an [, -path. Then there
exists a C* -diffeomorphism ¢ : I, — I; such that ¢'() >0 and y(r) =
x(o(r)) for all r € I,. By Proposition 2.2 and T(a) # (—o0, +0), we obtain

Wty (5)) = x(@lty(g)(5))) = x(t:(s)). m

Proposition 2.5. Let o be a regular curve, T(a)= (-0, +o) and

x € §y. Then
bo =1y :y(s)=x(s + "), s" € (-0, +0)}.
In particular, the set ¢, is not countable.

Proof. Let x, y € ¢,. Then there exists 4, k € o such that x(s) =



506 Yasemin Sagiroglu

h(t,(s)), ¥(s) = k(¢;(s)), where A be an I; -path and & be an I, -path. Since

h, k € o, there exists ¢ : I, — [; such that ¢'(») > 0 and k(r) = h(p(r))
for all » € /;. By Proposition 2.2,

¥(s) = k(tx(s)) = m(@(tp(g)(5))) = hlt (s = 59)) = x(s = 59)-

Let x € ¢y, s € (-0, +0) and z(s) = x(s + s") € ¢,. By Proposition
2.3,

3 ()™ ()] [/ (5) (5] ’
120 ()" ()] [ () "(5)] = ST (5)3" ()P
3 ()" ()

forall s € T(a). For s’ € (-0, +0), since s + 5" € (—o0, +0), we have

L))" 6)] 2
+12[(5) 2" (I["() 2" ()] = S[Z() 2" )P | _ |
32(5)2"(s)P
for all s € T(a). By Proposition 2.3, z(s) € ¢y. O

Theorem 2.1. Let a, B be regular curves and x € ¢, y € ¢g. Then

A(2,R) A(2,R)

(i) for T(a) = T(B) # (o0, +), o ~ B if and only if x(s) " ~
y(s);

.. A(2,R) A(2,R)

(i) for T(a) = T(B) = (-0, ®), o ~ "B if and only if x(s) ~
y(s + s") for some s" € (—o, +0).

A(2,R)

Proof. (i) Let &« ~ P and % € a. Then there exists F € A(2, R)

such that B = Foa. This implies Fh €. Using Proposition 2.2 and
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Proposition 2.4, we get x(s) = h(t,(s)), y(s) = (Fh)(tg,(s)) and Fx(s) =

A(2,R)
F(h(ty(s))) = (Fh)(¢t71,(s)) = y(s). Thus, x(s) ~ " y(s). Conversely, let

A(2,R
x(s) (~ )y(s), that is, there exists F € A(2, R) such that Fx = y. Then

A(2,R)
a ~

A(2,R)
(i) Let o ~ P. Then there exist /-paths hea, kP and F e

A2, R) such that k() = Fh(t). We have k(1 (s)) = k(g (s)) = k(15 (5)) =

(Fh)(t,(s)). By Proposition 2.5, x(s) = k(t;(s + s7)), y(s) = h(t;,(s + s57))
for some s, s, € (-0, ). Therefore, x(s—s7)= Fy(s —s5). This

A2,R)

implies that x(s) ~ p(s+s'), where s =s;—s5. Conversely, let

A(2,R)
x(s) ~ " y(s+s") for some s’ € (—oo, +0). Then there exists F € 4(2, R)

A(2,R)
such that y(s + s') = Fx(s). Since y(s +s)eB, o ~ B. O

Theorem 2.1 reduces the problem of the 4(2, R)-equivalence of regular
curves to that of paths.

3. The Solution of Equivalence Problem of Paths

Let x(¢) be an I-path in R?.

Definition 3.1. A polynomial p(x, x/, ..., <k )) of x and a finite number

of derivatives x/, ..., x(k) of x with the coefficients from R will be called a

differential polynomial of x. It will be denoted by p{x}.

We denote the set of all differential polynomials of x by R{x}. It is a
differential R -algebra.

Proposition 3.1. The differential R -algebra R{x} is an integral domain.

Proof. In [14, p. 11]. O
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Since R{x} is an integral domain, there exists a division field containing

it. This division field will be denoted by R(x). An element f(x) of the R(x)

has the form f(x) = %, qi{x} =0, p{x}, ¢{x} € R{x}. The elements of

the R(x) will be called differential rational functions. R{x) is a differential
field.

Definition 3.2. A differential rational function f(x) will be called
A2, R) -invariant if f(Fx) = f(x) forall F € A(2, R).

The set of all 4(2, R) -invariant differential rational functions of x will
be denoted by R(x)A(Z’R). It is a differential R -subalgebra of R(x).

Definition 3.3. A subset S of R(x)/®®) will be called a generating
system of R(x)A(Z’R)

R(X)A(z’ R).

if the smallest differential subfield containing S is

Theorem 3.1. The system

[xV x"]' [x" xW
[x! x”] 9 [x! x"] (3'1)

is a generating system of R(x>A(2’R),

Proof. Let {x;, T € A} be vectors in R. For the group G = GL(n, R),

the generating system of R(x,, T € A)G is

[x, mxi[_)il xT ;’Tl .--x,,]’ i=1,.,nteA, .., n
n

in [14]. So for n = 2, this generating system is the form

b ] [xe ]
P R
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Therefore, if we take ]R(x)G =R(x, ..., x(”), ...)A(z’ R), then we obtain

[xr x(r)] [x(‘t‘) xn]
[xl x”] b [xl x”] b

T e A/{L, 2}.

But this set is generated by the formulas (3.1). We want to show this. Let
[x! x" ! _ [x/ xm]

[x! x"] - [x! x” N

! L4 " "
For t = 3, the generating system is [[))Cc' );,,]], % and the assumption

m

T = 3. Since [x' X = [x" x

], we have

1s true for © = 3.

Let the system (3.1) be the generating system for t — 1 and we show this
for . [ D] = [x" D4 v x9] and so [x xD] =[x V] -

[x" x(T_l)]. Dividing this equation into [x" x"], we obtain

[x' x('c)] ~ [x' x('c—l)]' [x" x(‘[—l)]

EEU Y R

” (‘E —1)
Therefore, % is generated by the formulas (3.1) by induction. Since

!

([x' x“—”]J _ G ) e ] - ][ )

[ ] T

[x" x

[x" x(‘r—l)] [xr x(‘r)] [x' xm] [x' x(r—l)]

[x" x"] * X x"T  [x x"] . [x" x"]

[x" x"] * [ xT  [x x"]

[x' x(r)] 3 [[x’ x(T_l)]J' [x" x(T_l)] [x" x"] [x' x(T_l)]
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and similarly, since

!

[)C” x(‘t)] 3 ([xﬂ x(T—l)]J B [xm x(‘[—l)] [xr xm] [xll x(‘t—l)]

[>T [ ] ] "] AT

[xr x(‘t)] [X” x(‘t)]

[xV x”] b [xf x”]
induction hypothesis, the system (3.1) is the generating system of

R(x)42R), O

are generated by the formulas (3.1). According to

Theorem 3.2. Let o, B be regular curves in R? and x e ba> ¥ € dp.

Then

A(2,R)
(i) for T(a) = T(B) # (-0, +0), oo~ B ifand only if

30 (s)x ™ ()] [ (5)x"(s)]
+ 12 (s)x"()][¥"(5) x"(5)] = S[x'(s)x"(s)]
3[x(s)x"(s)F

sgn

30 (s) ™ ()" (5)]
+12[y'(s) y"()] ()" ()] = 5L'(s) y"(s))* ,
3/ (s)y"(s)F

= sgn

[x'(s)x"()] _ [V ()y"(s)]  [¥"(s)x"(s)] _ [¥"(s)y"(s)]
[X'()x"(s)] D/ ()y"()] [¥()x"()]  [(s)y"(9)]

forall s € T(a) = T(B);

s

(ii) for T(a) = T(B) = (-0, +), « A(~R)B if and only if there exists

a € (—oo, +o) such that
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3 () ()] [x' ()2 (5)]

sgn| 712X Ix(s)x"(5)] - SLx'(s)x"(s)F
3 (s)x"(s)

30/ YO () ()]
+ 120y (") y" (1" ()" ()] = 5L ()" (s )P
3[y'(s)y"(s")F

= sgn

b

where s' = s + a,

[x'(s)x"(s)] _ ['(s +a)y"(s + a)]

[X'(s)x"(s)] — ['(s +a)y"(s + a)]”

[x"()x"(s)] _ [y"(s + a)y"(s + a)]

[¥()x"()] — ['(s +a)y"(s + a)]

forall s € T(a) = T(B).

. A(2,R) o A(2,R)
Proof. (i) Let o ~ (. By claim (i) of Theorem 2.1, x ~ y. So

y=gx+b for some g € GL(2, R), b e R?. Therefore, using this equality,
we obtain above formulas easily.
Conversely, the above equalities hold for all s € T(a) = T(B). Let
4= {x,{(s) x'i,'(s)} s = [x,i:(s) xli:S)} (3.2)
x(s)  x3(s) x3(s)  x3(s)

for all s € T(a) = T(B). Since [x'(s)x"(s)] =0 for all s € T(a) = T(B),
there exists the inverse A;l of the matrix A4,. Let 4, L. Ay, =C and C =

|| Cij ||, i, j=1,2. Thus, 4, = 4, - C. Thatis,

xi(s)  xs)] _[xils)  x(s)] [en e
o ol salla G

x(s)  x5(s)] [x(s)  x5(s)] [eap  em
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Therefore,
x{(s) = ey1 - xi(s) + a1 - x{(s),
x3(s) = cpp - x3(s) + cp1 - %5 (),
x{(s) = g - x1(s) + cz2 - x{(s),
x5(s) = e - x5(s) + epp - X5(s).
We obtain
(=0, oy =1, _ ["(s)x"(s)] _ ()x"(s)]

R EOR0) N OO
In view of above equalities A;l -4}, = C, thus A;l Ay = A;l A4y, =C.
So
-1y ' -1 -1y -1 -1 4 -1 '
(Ay A7) = Ay A7 4 Ay - (A7) = Ay A7 (4 - A ) =0,
that is, 4, - A;l =g, g constant. Since det(4, -A;l) =0, detg =0.
Therefore, 4, = g+ 4,, g € GL(2, R). We get y'(s) = gx'(s) for all s

T(a) = T(B) # (—oo, +0). Integrating we obtain y(s) =g - x(s)+ b for

A(2,R)

some b € R?. Thus, x ~ y. This, in view of claim (i) of Theorem 3.1, it
L A(2,R)
implies o~

The proof of (ii) follows similarly from claim (ii) of Theorem 3.1. O

Theorem 3.3. Let hy(s), hy(s) be C* -functions on T, where

2
(1) + 3ha(5) - 3 25) | =1

for all s € T. Then there exists an invariant parametrization y of a regular
curve such that
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)y )] _ D)y ]
o)) - O Ty -

forall s eT.

Proof. Put y'(s) = x(s). Then we have

PG, ) PG,
[x(s)x'(s)]_hl( ) [x(s)x'(s)] hy(s) (3.3)

forall s e T. We take

IR S e ol] S ]

Then A;l - A, = B andso 4, = A, - B. Thatis,

{Xi(S) Xi'(S)} _ [M(S) Xi(S)} . [0 —hz(S)}
x(s)  xa(s)] Lxals)  xa(s)) L1 Als)
_ {Xi(S) —hy(s)x(s) + h1(S)Xi(S)}
x5(s)  —hy(s)xa(s) + Iy(s)xa(s)]
Hence, we get the following differential equation system:
xX{(s) + hy(s)xy(s) = Iy (s)xi(s) = 0,
x3(s) + hy(s)xa(s) = by(s)x3(s) = 0.
Here, x;(s), x,(s) are solutions of the following differential equation:
z"+ hhz — hz' = 0. (3.4)

It is known from the theory of differential equations that there exists a
solution of the differential equation (3.4) which these solutions are ky, k,,
k ki k

1(s) II(S)} #0. Put x(s)= { 1(s)
ka(s)  ka(s) ka(s)
provides equations (3.3) and [x(s)x'(s)] # 0. Since y'(s) = x(s), integrating

where det[ } Then the curve x(s)

we have for some b € RZ,
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N
y(s) = .[ x(s)ds + b.
50

Therefore,
(1§61 +30005) - 25|

3D (5)y"(5)]
+120y/(9) Y ()D"() 0" ()] = S ()" P |
3[y'(s)y"(s)

[1'(s)y"(s)] = [x(s)x'(s)] # 0 and

30 (s) () (s) 7" ()] + 1200 (5) " ()] () ()] = 1/ (5) () # 0.

Then by Proposition 2.3, y € ¢, for some regular curve a. O
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