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Abstract

The present article continues the classification of the correlations of
PG(2, g?"), q an even prime number.

As in the case in which q is odd, some matrices with four
nonvanishing entries are equivalent to diagonal matrices. When

this equivalence does not take place, a correlation defined by an
upper triangular matrix with four nonzero entries, with companion

automorphism (q™), where (m, 2n) =1, can have the following
numbers of absolute points:

g2 — g™ +10r ¢ +q" +1 or g?" +1 for n odd,

"+ g™ +10r g>" —g" +1 or g°" +1 for n even.

We also discuss the equivalence classes into which these correlations
fall, as well as the configurations of their sets of absolute points.

Received: October 9, 2014; Accepted: November 14, 2014

2010 Mathematics Subject Classification: 51E15.

Keywords and phrases: companion automorphism, absolute set of a correlation, q"-

equivalence, residue class, full secant, short secant.



128 Barbu C. Kestenband
1. Introduction and Algebraic Preliminaries

The present article is the ninth, and penultimate, in a series devoted to
the classification of correlations of finite Desarguesian planes.

Our plane now is PG(2, qzn), where g is a power of two, and

the companion automorphism is always (¢™), where (m, 2n) =1, so m is

invariably an odd number.

We assume familiarity on the part of the reader with basic definitions
and results in previous papers in this series; we will refer to them whenever
necessary.

Furthermore, many of the lemmas, propositions and theorems in the
present article differ only slightly (and in some cases not at all), both in
statement and in proof, from their counterparts in [4]. In these situations, we
shall state the result in full, with the obvious understanding that ¢ is a power
of two, but if the proofs differ only in minor details, then we will omit them.
Whenever this happens, next to each result we include in parentheses its

original source and its number there.

The following symbols and abbreviations will be used, all in agreement
with the notation, we used in previous papers devoted to the classification of
correlations:

F: GF(¢*"), q an even prime power,

F': the GF(q) subfield of F,

Q: the subset of F comprising the nonvanishing (¢ + 1)th powers,
ZQ: the subset of F comprising the nonvanishing (¢ — 1)th powers,
TQ: the subset of F comprising the nonvanishing (¢ — 1)th powers,

w: a primitive root of F,

*: a matrix entry that may or may not be zero,
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*': a matrix entry that cannot be zero,

_ 2n-1 2n-2
Ex)=x?  +x7 +--+x?+x overF,

D (x) = x4 e+ oover F, (m, 2n) = 1.

Whenever a + or a F is used, it will be understood that the top sign
pertains to » odd, and the bottom sign, to n even. The one exception to this

rule occurs in the proof of Proposition 26, where the &+ and F are used in a

slightly different way, as explained there.

Lemma 1. In the field F,t € Q < e 0.

Proof. Let ¢ = w*. Then ¢* € 0 = 2k = (g+1)i+ (an —1)j for some
integers i, j. This implies ¢ + 1|2k, whence ¢ + 1|k, because g is even by

assumption. OJ
We need to discuss the zeros of the trinomials @, . As always, they

can have ¢ + 1, two, one, or no zeros, and, for a fixed u, the number of
values of  for which @, , possesses each of the four possible numbers of

zeros depends solely upon whether p € Q or u ¢ Q. Hence we introduce, as

in the past, the following symbol, where p is fixed and i € {g + 1, 2, 1, 0}:

u€; ¢ the set of elements © € F° for which @, |, possesses i zeros.
Before we can calculate the numbers | ,Q;|, we need two lemmas.

Let ¢>2. For every (e {l,2,..,q—2}, let /-ZQ denote the set
obtained upon multiplying the members of ZQ by w'.

Lemma 2. Let ¢ > 2 and (€{l,2,...,q—2} be fixed. Then, as \y ranges

through (-ZQ, so does the expression \y(\y+l)qm_l.
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Proof. By definition, ZQ = {w(q_l)i i=1,2, . (¢*" =1)/(g-1)}. We
will show that ZQ can also be represented as ZQ = {w(qm_l)i =12, ..,
(@ = 1)/(q -1} It WD = @"DJ then ¢ —1)(i - j)(¢™ - 1). But
(m, 2n) =1 by assumption, which implies (¢>" -1, g™ —=1)=g—1, by [1,
Lemma 12], and thus, (¢>" —1)/(g —1)|i — j. As 1<i, j<(¢*" =1)/(¢—1), we

have |i— j| < (¢*" —=1)/(q —1), hence i = j.
Let now y = wiwtd"Di ¢y Z0Q. Then
vy + 1)‘1m_1 = wgw(qm_l)i[wfw(qm_l)i + l]qm_1
= w((w£+qnzi + wi)qm_1 el-ZQ.

In order to demonstrate that y(y + l)qm -1 ranges through ¢ - Z0Q, we have to
show that

m . com_ m. Loom_
(WHT 4wyl ! = (W' 4 W) L=
The last equation implies

W Ll = (W W), e F (1)

. . . . . m - m .- m m.-

Let w/™ =r+u, sothat w/ =m' +uw' and w? 7/ =m? " +u? w? '
. . . ¢ q™i q" g™ i i

Substitute these expressions into (1): w'(rw? ' +u? w? ")+ ' +un' =

l+q™i W€+qmi

r(w +w'), whence ul” = uw'. This equation shows that u # 0
= e ZQ. But we know that w' ¢ ZQ (because 0 < /¢ <g—-1), so
u=0and w ' =rekF

Now the same argument as above leads to the conclusion that i = j. [
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For any fixed integer ¢, let QO be the set obtained upon multiplying the
members of O by w'. There are ¢ + | distinct sets 0, corresponding to ¢ =
0,1,..,4q.

For each ¢ e {l, 2, .., g — 2}, we partition the set /-ZQ into ¢ +1

(2
equicardinal subsets ¥p,1,....V,, as follows: Vj = {w“k(q_l)”(q -1
. 2 2 2
Jj=0,1.., (q 8 —-q )/(q _1)}
The ratio of any two members of /- ZQ is an element of Q if and only if

they belong to the same V; subset, obviously.

We have, thus, proved the following lemma:

Lemma 3. For every { € {1, 2, ..., ¢ — 2} and every t € {0, 1, ..., q}, we
have | (- ZQ N1Q| = (¢°" =1/(g* - 1).

Theorem 4. Consider the field F. Then:

A. For a fixed n = ¢qm+1 €0,

@ |, Q1] = (®" 1+ " 14" =1)/(¢% =1). This count includes
n=0. For a fixed me [Qg,,,, the ratio of any two zeros of @ is
a (q—1)th power. If a is a zero of D . for some me Q. y, then
alb e ZQ. If a = d)sqm_l is a zero, then E(l/aqu) = 0. Conversely, if
l/eqm s a zero of E, then (I)aqm 1 is a zero of a trinomial @\, which

has g +1 zeros.
(b) [\ Q] = %(q ~2)(¢*" =1)/(q=1). If a, b are the two zeros of
D, for some T €,Qy, then ald, b/, a/b ¢ ZQ.

© [ =¢*"" 54"
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If a is the unique zero of @ |, for some 1 €,C), then ald € ZQ.
1 2

@) [ Q0 = 5 a(¢" £1)7/(g +1).

B. For a fixed n ¢ Q,

© [ Qg1 = (@ 4" £ 4" ~1)/(g ~1). Forafixed me 0.,

the ratio of any two zeros of @ is a (g —1)th power. If a is a zero

of @y, for some me Q. then az/u € ZQ. If a is a zero and

az/u = qu_l, then Z(1/ad) = 0. Conversely, if 1/a8 is a zero of E, where

m
a’ = ud? _1, then a is a zero of a trinomial @, which has q +1 zeros.

0 [, Q] = %(q - 2)(¢*" —=1)/(q —1). If a, b are the two zeros of Dy

for some T e,Qy, then a’/n, b*/u, a/b ¢ 70.

(2) |qu| = an—l + qn_l. If a is the unique zero of ®  for some
T €,Q), then az/u € ZQ.
(h) [, Q0| = %(qznﬂ ¥ 29" + q)/(q +1). This count includes = 0.

Proof. Let a, b be two distinct zeros of @ . Then

m=(ura? a= (e b e, 2)
If we let v = b/a, then equation (2) yields

m
d o B

—. (3)
yly + 17!
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Hence a necessary condition for the existence of (at least) two zeros is that

—FE <o 4)
wly + D)7

Conversely, assume that this condition is met and let a be any of the g + 1

solutions of equation (3). Then

m
q " +1
+a
obta’ T p
a

m
1
p :E{H y+1 }u(\vq 2
ay(y +1)7 y(y +1)7 ay(y +1)7

and it is a straightforward verification that

m m m
b1 +1+nb+u=\yq g +1+n\|/a-|—|.t

q"+1 q"+1
S A T ) B

wly + D7 ay(y + )7

Therefore, equation (4) is a necessary and sufficient condition for the

existence of at least two zeros, a and avy.

If there is a third zero (y +/)a, ¢ #0, y+1, then we have

(v + é)a]qurl +n(y + ()a+p=0. Since ay is a zero of @, this
equation reduces to
(\|1qmaqm+1 +ma)l + waquEqm + 04" "+ g, Q)

As ma = u+aqm+1 (by (2)) and a? ! s given by equation (3), the
coefficient of ¢ in (5) reduces to p/y. Thus, since ¢ # 0, we rewrite
equation (5) as

1

FENEE E— (6)
(y+ 17!

1 _ U

A T
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This equation has the unwanted solution ¢ = y + 1. If v ¢ ZQ, then this is
the only solution, by [1, Theorem 19(ii)]. If vy € ZQ, let v = éqm_l (by [2,
Result 10], y € ZQ entails that y is a (¢" —1)th power). Then equation (6)
is of the form required by [1, Theorem 19]: x4 =+ 0, where x = 1//,
r=[E/(v+ 1)]qm 1a= /(v + 1)qm ~! In the notation of that theorem,
o = &/(y + 1), whence

0 _ (\|/+1)‘1m :\y+1:§qm_1+1_

of (e g e

Since E(1/€) = E(1/ Eflm ), we infer that Z(6/ coqm) = 0, and, in virtue of the
above mentioned theorem, equation (6) will possess ¢ roots (one of which is
¢ =y +1). Hence we have obtained ¢ —1 values ¢ # 0, y + 1.

We conclude that @, has g + 1 zeros if and only if y € ZQ.
For y = ol e ZQ, we have
wy + 1) = (ay ) =@ )

As o ranges through F\{0}, vy takes on (¢*" —1)/(¢ —1) distinct

values, and they give rise to the same number of values for y(y + l)qm -1

But the latter are not distinct, as we shall now prove.

By [1, Lemma 13], the equation a?" +a =0 has g solutions; they are

the members of F' and we do not consider them.

Ifad +o=t= 0, then Z(7) = 0, in virtue of [1, Theorem 19(i)] (with

A =w=1 and 0 =1¢). Then, according to the same theorem, the equation

m
a? +a =t possesses ¢ solutions, therefore, as a ranges through F\{0},
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2

t=a? +a takeson é(an —gq)=¢*""" ~1 distinct nonvanishing values,

each repeated ¢ times.

But [awd”" D/ @Dp" 4 (@ D=1 _ (0" 4 g)la®" -D/a-D),
which shows that if we let S stand for the set of distinct values of 7 (so
|S|= qzn -1 1), the number of distinct exponents of w, reduced modulo
(¢*" —=1)/(q —1), in the elements of S, is (¢>"~' —1)/(g —1). Denote this
(¢"" =1)/(g = 1)-set by D.

The foregoing argument also implies that as o ranges through F\{0}, the
expression y(y+1)7 =(a? +a)? ! takes on (¢>" ' =1)/(g-1) values,
each repeated ¢ times.

The set D has been defined as the set of exponents of w in the set
of nonzero solutions of the equation Z(¢) = 0, reduced modulo (¢2" — 1)/
(g —1). But Z is an additive function, whence it follows that D is a Singer

difference set with parameters

2 2n—-1 2n-2
v=_(¢" -Dqg-1, k=(¢7""" -D/(g-1, L =(¢""" = D/(g - D).
The following facts are immediate consequences of the Theorem in [3]

(with » =1):

The set D comprises (g2 + ¢" 1 5 4" - l)/(q2 —1) numbers divisible
by g +1. Then, for each i =1, 2, ..., g, the set D contains (qzn_1 Fq"

+q" ! - 1)/(q2 — 1) numbers congruent to i modulo g + 1.

Since g is even and m is odd, we have (¢ +1, ¢"" —1) = 1, by Result 6 in

[2]. Therefore, upon multiplying each element of D by ¢™ —1, the numbers

in the preceding paragraph do not change. As \|/(\|/+1)qm_1 =(0Lqm +oc)qm_1
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m—1

=17 ", we sce that those numbers also apply to the (¢>"~' —1)/(g —1)

distinct exponents of w in the set {w(y + l)qm_l}, as o ranges through
F\{0}, i.e., as y ranges through ZQ\{1}.

In conclusion, as y ranges through ZQ\{l}, among the exponents of w in

the set {y(y + l)qm ) there are (¢2" + ¢"% 7 4" - ¢)/(¢* - 1) numbers
divisible by g + 1. Then, foreach i =1, 2, ..., ¢, there are

@ 74" +q" - 9))g* 1)

numbers congruent to i modulo ¢ + 1.

Let u € O be fixed. Then equation (3) requires that y(y + 1)qm leo

as well. Each y meeting this requirement produces ¢ +1 a’s and the same

number of 5’s. We have, thus, obtained (¢%" + ¢"*% 7 ¢"*! - q)/(g-1)
pairs (a, b). Each pair leads to a unique 7, by (2). But, for each of these s,

) must have g +1 zeros, which produce ¢(g + 1) different ratios .

m,

Consequently, each n is arrived at g(g + 1) times, so that the numbers of
distinct ©’s (including © = 0) are those given in the statement of this

theorem (Part A(a)).

The same reasoning produces the numbers in Part B(e).

m
Let now a be a zero of @, for some me Qg ,;, p =067 1 Then

equation (3) becomes (a/¢)2(a/¢)qm =1 y(y + l)qm+1. As y € Z0, we

have (a/ ¢)2 € ZQ, too. By Lemma 1, this implies a/¢ € ZQ as well, as the
present theorem claims (Part A(a)).

Let now a = ¢&? ! be a zero. Then, upon using equation (3) with

Y = &qm_l and p = d)qu, we have
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m m
aqm+1 _ (I)qm+18q2m_1 B ¢q +1 _ (I)q +1

R N A A

whence 1/8’]erl = c(?,qm +&) for some c e F'. As E(ca) = c-Z(a) for

any ae F and any ce F’, and E(Effm = 2(E), we see that E(l/sqm M=o,

as claimed in Part A(a).

To conclude the proof of Part A(a), assume that 1/ e ! is a zero of
=2 for some €. Then, by virtue of [1, Theorem 19(i)], the equation E_,qm =

£+ l/sqm+1 possesses solutions. Thus, g7 ' = 1/(Z;qm + &) for some E.
Let a = (I)sqm _1, so that
m 2m_1 m m_q m_q
a® 7 =pe? T = /€T 48T T = plyly+ )T T

where y = &qm_l.

Hence equation (3) holds, with y € ZQ, which entails that a is a zero of

a trinomial O M which has ¢ + 1 zeros, the desired conclusion.

We pass now to Part A(b).

Let uw#0 be fixed. There is a unique 7€ {0, 1, ..., g} such that
p € tQ. Our trinomial will possess two zeros if and only if there exists a

v g Z0 (ie, y e (-ZQ for some /) such that (4) holds (i.e., such that
vy +1)‘7m_1 € t0). By Lemma 2, as y ranges through ZO\{0! (i.c.
through all the sets ¢ - ZQ), so does y(y + l)qm ! Since each of the ¢ — 2

sets /- ZQ includes (¢>" —1)/(g*> — 1) members of O - sece Lemma 3 - we

infer that there are (¢ — 2)(¢>" —1)/(g> —1) y’s that need to be considered.
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Each such vy gives g + 1 triples (a, b, ). But y and 1/y produce the same
pair (a, b) - and hence the same 7 - because w/(1/y)(1/y + l)qm_1 = qum+1/
vy D7 = (pa) =0

Therefore,

Q2] = 36~ 2) (@ = D)(g +D/g® =) = 3 (g~ 2)(¢* =1/ (¢ - 1)

for every p # 0. This is the number that appears in Parts A(b), B(f).

Observe now the following:

If u= ¢qm+1 and a/¢ € ZQ, where a is a zero of @ and there is

T, |2

one more zero, then equation (3) shows that y € ZQ, whence it follows

that mwe Q. Therefore, if a is a zero of @, with p = ¢? 1 then

ald & ZQ, as Part A(b) claims.

Moreover, the converse is also true, i.e., if a is a zero of CD,T’u with

W= q)qm+1 and a/¢ ¢ ZQ, then m €, Q,:

Let a be a zero of some ® where u = ¢qm+1 and a/¢ ¢ ZQ. Then

T,
(a/(i))2 ¢ ZQ, either (in virtue of Lemma 1). This, in turn, shows that
(a/ ¢)qm+1 ¢ ZQ. As a consequence, the equation

q"+1 q"+1
L (ﬁj TR ™
04 ¢ 28

in the unknown ¢ has a unique solution and that solution is clearly not
=1

Equation (7) is equivalent to p/ = a?" +1(£q’" e 1), 1t follows that
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(L+ ¢)a is another zero of @ because

AT
[+ 0)al ™ + 2l + a +p

=a? M+ 0400 409"t g+ nla +

= aqm+1(1 +0)+w+ma+mnla+p=~1+ f)(aqurl +ma+p) = 0.

Conversely, if (1+ ¢)a is another zero, then equation (7) must hold true.
As said equation has a unique solution /, we infer that @ and (1 + ¢)a are the

only zeros of @ and thus, e HQZ, as claimed. This concludes the

T, U
proof of Part A(b).

Next, we obviously have
|MQ1|=q2”—1—(q+1)|qu+1|—2|qul, ®)

1. Q0] = ¢ =1 Q1| = | u | = | ,l. ©))
These equations produce the numbers in Parts A(c), A(d).
The proof of Part A is now complete.
Let pe Q.

If a and b = ya are two zeros of @ then equation (3) must hold.

T, W
This equation shows that a?" ! /u e ZO = vy € ZQ as well, in which case
equation (6) yields g values for /, i.e., m €,Q, . Hence, if ad” +1/p e ZQ

(or, equivalently, a? /pn € ZQ) for some zero a, then 7 e u$oor (Q

whence we deduce that 7 € ,Q, = a’/u, b/ ¢ Z0.

We shall now prove the converse: at” +1/u g ZQ and @y (a)=0

imply © €,Q,. Consider the equation l/zqm = (aqm H/H) (1/0) + aq’"+1/“’
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which is the analogue of equation (7). Exactly as there, this equation yields

a unique solution for ¢ (which is again not ¢ =1) and thus, (1+ {)a is

another zero, proving that © € |, Q.

Next we demonstrate the last paragraph of Part B(e).

Let az/u = 37" 7! whence a? *!' = u(aS)qm ~! Upon comparing this
equation with equation (3), where y = &qm _1, we obtain

1 ~ 1
N N G

(aﬁ)qm -1 -

so that 1/ad = c(E_,qm + &) for some ¢ € F'. This shows that Z(1/ad) = 0.

Conversely, assume that 1/a8, where a* = uéqm ~1 s a zero of =.
Then, in virtue of [1, Theorem 19(i)], the equation &qm =E+1/ad has

solutions for &, so that a8 = 1/ (&qm + &) for some &,
Hence (aS)qm -1 1/(Z;qm + Z;)qm 1 or
a"a? o =1/e0" e Tyt
which is equation (3) with y = Eflm e ZQ. As y € ZQ, we conclude that
a is a zero of a trinomial @, , with g +1 zeros.

One now uses equations (8), (9) to arrive at the numbers in Parts B(g),
B(h). L

As in [4], we devote the next four sections (one for each possible number
of zeros) to the classification of correlations defined by upper triangular

matrices of the form
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r p 0
A=10 s 0]
0 0

The absolute points of the correlation (4) satisfy the equation rx? 1y

q" q"+1 q"+1 : :
pxy?  + sy +z = 0. As such, the number of zeros of the trinomial

m
pd g px +s (which is clearly analogous to @ ) represents the number

of absolute points of (4) on the line z = 0.

2. Correlations with g + 1 Absolute Points on the Line z = 0

Proposition 5. If the correlation (A) possesses q + 1 absolute points on

the line z = 0, then A ~ diag(1, 1, t) for some t # 0.

Proof. We have seen in Theorem 4 Parts A(a) and B(e) that whenever

the trinomial @, has g +1 zeros, the ratio of any two of them is in ZQ,

and the same obviously holds true for our trinomial rx? y px + S.

Then Lemma 6 in [4] - which is valid for ¢ odd or even - states that if the

ratio of two zeros is a member of ZQ, then 4 ~ diag(l, 1, t) for some ¢ # 0.

O
3. Correlations with One Absolute Point on the Line z = 0

The character of an absolute point of the correlation (4) is given by
Definition 8 in [4].

Result 6 (Proposition 9 [4]). Assume that the absolute point (a b I)T of

(A) has character o relative to (4). Then
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1 o O
cTac™) =0 s 0], (10)
0 0 1
a b 0
where C =|b  rad + pqu 0| and J = wl@”"-D/(g+D).
0 0 J

a ¢ 0
Conversely, if there exists a matrix C=|b d 0| with ad +
0o o0 J

be =1 and such that equation (10) holds, then (a b I)T is an absolute point

of (4) and has character o relative to (4). Moreover, ¢ = sb9" and d =
ra? + pqu.

Result 7 (Lemma 11 [4]). Consider the field F' and the exponents of w

in the set of solutions of the equation =(x) = a, where a is any nonzero

element of F’.
Among these exponents, there are (¢>"~' F4")/(g+1) which are

multiples of ¢ +1, and, for each i e {1, 2, .., ¢}, (¢*" ' +¢" /(g +1)

exponents which are congruent to i modulo ¢ + 1.

Exactly, as in [4], from Theorem 4, we infer that if a correlation (4) has a

unique absolute point (¢ 1 0)! on the line z = 0, then ra’/s e ZO.

Result 8 (Theorem 12 [4]). If the trinomial md Ly px +s has a

m
unique zero a in F, let ra’ /s =84 ~! Then the correlation (A) possesses

the following number of absolute points:

qzn F q"+1 +1if rad € Q,

qznianrl if rad ¢ Q.
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!

roop roop
Result 9 (Theorem 13 [4]). Let A=|0 s 0|, A/=|0 s 0
0 0 1 0 0 1

be such that the correlations (A), (4') have a unique absolute point on the
line z=0:(a 1 0)7, (¢’ 1 0)7, respectively. Then 4 ~ A’ if and only if

!

(r'a'p’)*/rad e Q for some automorphism o of the field, where 5" =
raz/s, 59" = r'a'z/s'.

The preceding two results imply, as in the case in which ¢ was odd, the
next corollary.

Corollary 10. All the correlations with qzn - q”Jrl +1 or q2” + an
+ 1 absolute points are q" -equivalent.
In [4], where ¢ was odd, Theorem 13 was the “last word” regarding

the ¢™ -equivalence of correlations (4) with one absolute point on the line

z = 0. If ¢ is even, Lemma 1 (which has no analogue for ¢ odd) enables us

to give a simpler criterion for the ¢™ -equivalence of these correlations:
Theorem 11. Let A, A" be as in Result 9. Then A ~ A" if and only if
(r's"\* /rs € Q for some automorphism o. of F.

Proof. We shall demonstrate that (r'a'8")* /rad € Q < (r's")* /rs € Q.

We have seen (see the paragraph preceding Result 8) that r'a? /s’ € ZQ.
Thus, we can write
) g3 2 2502
a/ — ! ’ 8!

— < r'Ca

; =550 o (Fad) () = 8l e

and likewise (rad)? /rs = 59" *!. Thus,
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(rrsr)(l _ (rrarsr)za ‘[iqu-i—l. (11)

s (rad)’ 5
Hence ('a'8')* /rad e Q = (¥'s')* /rs € O.

Conversely, equation (11) shows that (r's')*/re 0= (Fa's')** / (rad)?
€ @, and the conclusion follows from Lemma 1. 0

Result 12 (Theorem 16 [4]). Let a be the unique zero of the trinomial

rxqm” +px+s, (m,2n)=1, and consider the correlation (4). Then,

regardless of the cardinality of the absolute set:

(i) All the secants through the absolute point (a 1 O)T are full.

(ii) Each of the other absolute points is incident with (¢*"*1 —2¢%*"+4)/
(g —1) short secants.

4. Correlations with Two Absolute Points on the Line z = 0

As in [4], and for exactly the same reasons, from now on we will use,
instead of 4, the matrix

Il
S O =
S
—_ O

Result 13 (Theorem 17 [4]). For p €,Q,, the correlation (M) possesses

¢>" +1 absolute points.

Result 14 (Theorem 18 [4]). Let p € (Q,, p' € ¢Q,, and consider the

matrices

1 p O 1 p
M=|0 0|, M={0 s 0
0 1 0 0 1
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Let the two absolute points on the line z = 0 be (a 1 O)T ,(b 1 0) for

the correlation (M), and (a' 1 0), (b' 1 0)T for (M").
Then M ~ M' if and only if there exists an automorphism o of F

such that either #/i'® € TQ or hi'® e TQ, where h = s/b¥b or s/a’ a,
B =s[b b ors')aVa'

Result 15 (Theorem 19 [4]). If the correlation (M) has two absolute

points on the line z = 0, then:

(1) All the secants through those two points are short.

(i) Each of the other absolute points is incident with ¢>" —¢>"~! —

...—g* — g short secants, (¢>" ' =1)/(¢—1) full secants, and ¢>"~" tangents.
5. Correlations without Absolute Points on the Line z = 0

Result 16 (Lemma 20 [4]). Let p, s € F, ps # 0. If there exist two distinct

t 11 p\[g" 4.
elements ¢, u € F such that the product is a
u 1)\0 s){ 1

diagonal matrix, then the ratio 9 = u/¢ satisfies the equation

i(q"+1)
82+WTS+1:O. (12)
Result 17 (Lemma 21 [4]). Let i and s # 0 be fixed in such a way that

equation (12) possesses solutions, and let 3 denote one of them. Then let # be

a root of the equation
ooom
Wl(q +1)

tqm +1 _ ‘
(9 +1)7

(13)
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Further, let u = 9¢ and calculate p from one of the equations
_ qm i _ qm i 14
p=t1 + il + g (14)
Let & = W(qzn -1)/(g+1)
Then there are 2(g + 1) distinct ordered pairs (¢;, u;), (u;,¢;), j =
0,1, ..., g, giving rise to 2(g +1) triples (¢;, uj, pj), (uj, tjs pj), where

;= te’, u; = ue’ p; = ps_j such that

(Zf 1}[1 pfj(f?m ”;]'mJ=diag(t(t+u)qm,u(t+u)qm)
1

u; 10 s )|

and

(“j 1)(1 ij[u?m ’?mj:diag(u(wu)“m,f(f +u)),
1

Zj 1){0 s

The same collection of 2(g + 1) triples is arrived at regardless of which

one of the solutions of (12) and (13) and which one of equations (14) are
used.

Moreover, if the two solutions of (12) are not members of F', then

p = 0. If they are, then s € Q and p = 0.

Result 18 (Lemma 22 [4]). Let s € O be fixed. Then there are %(q -2)

integers i modulo (¢>" — 1)/(g + 1) for which the solutions of equation (12)
entail, via equations (13), (14), that p = 0.

1
Result 19 (Lemma 23 [4]). Let B = (0 pj, p € (Qu.1\{0}. Then
s
t
there exist at most q2 — ¢ matrices of the form E = (1 ZIJ, t # u such

that ETBE\") is a diagonal matrix.
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Result 20 (Lemma 24 [4]). The correlation (/) possesses q3 — g absolute
points with character zero.
Result 21 (Corollary 25 [4]). The collineation (/ )2 leaves invariant

q3 + 1 absolute points of the correlation (/).
Result 22 (Lemma 26 [4]). If s ¢ O, then the correlation (diag(1, s, 1))

2
has g + 1 absolute points with character zero, namely (w’(q "=/ (q+1), 0, l)T ,

i=01,..4q.

Result 23 (Lemma 27 [4]). If s ¢ O and the correlation (M) has absolute
points with character zero, then it has g + 1 such absolute points, which are
collinear, and p € Q.

If s € O and the correlation (M) has absolute points with character zero,
then it has q3 — ¢ such points, and p € Q.

Result 24 (Lemma 28 [4]). (i) If p €,0Q\{0} and the absolute set of
the correlation (M) comprises points with character zero, then there exists a

unique unordered pair (¢, u) such that ET MEW") = diag(¥, ¥, 1), where

t u O
E=|1 1 0]
0O 0 1

(i) If p e,Q\{0} and the absolute set of (M) has no points with

character zero, then there exists at most one pair (¢, u) as described above.
We leave to the reader the simple proof of the next lemma.

Lemma 25. Let a, be F\0,1}. If e=a+a', f=b+b"!, g7l =

e+ 7 then g = ¢+ ¢, where c=(ab+1)/(a+b) or (a+b)/(ab+1).
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Letnow a # 1. Then a + a~' # 0. Therefore, for each
e {1, 2., %(qz’f - 2)},

we can write w' +w™ = w'i. These sums (i.e., the exponents /;) are all
distinct, because a+a ' =b+b' = a=b or b\, But, for any i, j €

{1, 2,...,%(q2” —2)},1’7&]', we have 0 < i+ j < ¢*" — 2, so that w/ = w™".

Let ¢=2%, so that F is GF(2>™) and we have %(qQ” —2)=2%m 1
different ¢;’s. Our field F is generated by a polynomial f(x) of degree 2n,
primitive irreducible over F'. Then the polynomial fl(éj :% f(x) is

x

also of degree 2n, in the variable 1/x, primitive irreducible over F’, and, as

1

such, it generates a field F; ~ F' in which w " is a primitive root.

It follows from Lemma 25 that the elements w™"i make up a subspace of

the vector space F. Consequently, the numbers ¢; form a (v, k, 1.)-Singer

difference set with parameters v = g2 —1= 22" _1, k=2?""1_1 3=

22}’”/{—2 _ 1
Proposition 26. p € Qg = M ~ diag(¥, ¥, ¥).

Proof. The number of equations (12) with roots in F is the number of

integers i modulo (¢>" —1)/(g+1) for which

i(g" +1)
9+97! :WT. (15)

Casel. s € Q.

In this case, equation (15) requires that 9 + 97!e Q. In order to
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determine the number of possible i’s, we need to appeal to some results in

[3]. It was shown there that one can adopt the view that Singer’s theorem
concerns the exponents of the primitive root w of GF (qzn ) in the set of

nonvanishing zeros of E. It was also shown in that paper (Propositions 1(ii),

2n—-1 n+r — n+r-1
+ — .
q ~9 +9 which

7) that among those exponents there are p
qg +1

are multiples of ¢” + 1, where r is any divisor of n; the top sign applies for

n/r odd, and the bottom sign, for n/r even.

As our field is GF (22””), we replace ¢, n and r in the above expression

with 2, nu and u, respectively. We, thus, arrive at the number

22nu—1 4 pnutu T 2nu+u—1 1

2" +1
B 22nu—1 + 2nu+u—l -1 22nu 4 phutu o ~ q2n + qn+1 )

2 41 224 +1) 2Ag+1)

We let N stand for the number of i’s (i.e., the number of equations (12)) that
correspond to nonzero values of p. In virtue of Result 18, we have
Zniqn+1—2 g-2 aniqn+l_q2+q

_q _
N = 20q+1) 2 2(g +1) ' (16)

Since one equation (12) gives rise to g + 1 values of p, the number of p’s is

2n + qn+1

%(q - q2 + q). But they are not necessarily distinct, because two

or more equations (12) can lead to the same (g + 1) -set of values of p.
Let Ng, Ny stand for the number of equations (12) that correspond
to elements p € (Qq, p € (1 \{0}, respectively. Then Ny + Ny, = N,

because p € (O U Qy = M + diag(¥, ¥, ). Reasoning as in the proof

of Proposition 30 in [4], one arrives at the following inequalities, which



150 Barbu C. Kestenband

are similar to (49), (50) in said article: (¢ +1)Ng <|Qq|, (¢ +1) Ny <

%(q2 ~q)(| sQ4+1] — 1). Denote the right hand sides of these inequalities by

U, V, respectively. Upon substituting the numbers | Q| and |Q, ], as
given by Theorem 4 Parts (a), (d), it turns out that U + ¥V = (¢ + )N (see
(16)).

Therefore, we have: (¢ +1)Ng <U, (g+ )Ny <V, (¢ +1)Ng +
(q+DNgyy =(g+ )N =U +V. 1t follows that (q+1)Ny=U =|,Q|,
which demonstrates our claim that every matrix M with s € Q and p € ,Q,

is ¢"" -equivalent to a diagonal matrix.

Casell. 5 ¢ 0.
In this case, equation (15) requires that 3 + 9le 0.

It was shown in [3] (Propositions 1(ii), 7 again) that in GF(¢>"), among

the exponents of w in the set of nonvanishing zeros of Z, there are

2n—1 — n n—1
+ -
4 +9 —4 ! which are congruent to i modulo ¢” + 1, where i is
q +1
any element of the set {1, 2, ..., qr} and r is any divisor of n; the sign rule is

the same as in Case 1.

Proceeding as in Case I, i.e., using 2, nu, u instead of ¢, n, r in the

fraction in the preceding paragraph, said fraction becomes

22nu—1 oM 4 2nu—1 1
2" +1

~ 22nu—1 T 2nu—l -1 22nu T _ ) ~ an T qn )
24 +1 22" +1) 2q +1)
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It follows now from Result 17 that the total number of nonzero p’s is
%(qzn T ¢" —2). The same argument as in Case I leads to (¢ +1)Ny <

(1s9Q9|—1) (because s € Q = 0 € Q) and

1.2
(q+1)Nq+l SE(Q _Q)lquHl'

Using the same notation as in Case I, we have U +V =|,Qy| -1+

%(q2 ~q)| sQ441, into which we substitute the numbers |Qg| and

| sQq11 |, as given by Theorem 4 Parts B(h), B(e), to arrive, as in Case 1, at

U+V =(g+1)N.

We infer, as in that case, that every matrix M with s ¢ O and p €,Q is

q"" -equivalent to a diagonal matrix. O

6. Synopsis of the Results

In GF (q2"), g even, the classification of correlations (4) defined by

matrices
r p 0
A=10 s O
0 0 1

with companion automorphism (¢™), (m, 2n) = 1, depends upon the number
m

of zeros of the trinomial mx¢ !+ px + s. This trinomial can have ¢ +1 or

two, or one, or no zeros (Theorem 4). If said trinomial possesses ¢ + 1 zeros,

or no zeros, then 4 is ¢"" -equivalent to a diagonal matrix (Propositions 5,

26). These correlations have been classified in [2].
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If the trinomial under consideration has one zero, then the number of

absolute points of the correlation (4) is (Result 8):

qzn —q"+1 +1 or qzn +q" +1 ifnis odd,

" +q" 1 or ¢ —¢" +1ifnis even.

These correlations fall into several equivalence classes (Theorem 11). The
configuration of their absolute sets is given by Result 12.
If the above trinomial has two zeros, then the corresponding correlation

has g2 +1 absolute points (Result 13).

There are several equivalence classes in this case, too (Result 14).

The configuration of the absolute sets is given by Result 15.
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