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Abstract 

Let S be an analytically finite Riemann surface of type ( )np,  with 

,43 >+ np  which is equipped with a hyperbolic metric and contains 

at least one puncture x. Let ( )SC  be the curve complex endowed with 

a path metric .Cd  It is known that a point-pushing pseudo-Anosov 

mapping class f on S determines a filling closed geodesic c on { },xS ∪  

and that every non-preperipheral vertex u in ( )SC  determines a simple 

curve u~  on { }.xS ∪  In this paper, we consider the action of f on 

( ).SC  We describe all geodesic segments in ( )SC  that connect u and 

( )uf  when ( )( ) .2, =ufudC  We also give sufficient conditions with 

respect to the intersection points between c and u~  for the path distance 

( )( )ufud ,C  to be larger. 
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1. Introduction 

Let S be an analytically finite Riemann surface of type ( )np,  with 

,43 >+ np  where p is the genus and n is the number of punctures on S. 

Assume that S is equipped with a hyperbolic metric and contains at least one 
puncture x. In [5], Harvey introduced a curve complex ( )SC  on S, which is a 

simplicial complex where vertices are simple closed geodesics and a kth 
dimensional simplex, denoted by ( ),SkC  is a collection of 1+k  disjoint 

simple closed geodesics on S. 

Let ( )S0C ′  be the subset of ( )S0C  consisting of boundary geodesics of 

twice punctured disks enclosing x ( ( )S0C′  is not empty if and only if ).2≥n  

Let ( )SĈ  denote the subcomplex of ( )SC  which consists of non-preperipheral 

simplexes, where a simplex { }kuu ...,,0  is called non-preperipheral if none 

of iu  belongs to ( ).0 SC ′  It is easily seen that ( ) ( )SS 00 ĈC =  if S is of type 

( )np,  with 2≥p  and .1,0=n  Otherwise, we have ( ) ( ) ( ).ˆ\ 000 SSS CCC ′=  

Note that any two vertices in ( )S0C ′  intersect, which means that ( )S0C ′  is 

totally disconnected. 

Write { },~ xSS ∪=  and let S~  be equipped with a hyperbolic metric. 

The curve complex ( )S~C  can be similarly defined so that there is a natural 

projection: 

 ( ) ( ).~ˆ: SS CC →ε  (1.1) 

According to Birman and Series [3], we may choose a point x that misses 

every simple closed geodesic on ,~S  which means that a vertex in ( )S~C  can 

also be regarded as a vertex on ( )SC  (by simply removing the point x). Hence 

(1.1) admits a global section. 

For any ( ),, 0 Svu C∈  the distance ( )vud ,C  between u and v is defined 

as the minimum number of edges in ( )S1C  joining u and v, thereby ( )SC  is 

equipped with the path metric .Cd  Clearly, ( ) 1, =vudC  if and only if u,          
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v are disjoint, and ( ) 3, ≥vudC  if and only if ( )vu,  fills S in the sense       

that every closed geodesic intersects u or v. It is well-known that ( )SC  is 

connected and is δ-hyperbolic in the sense of Gromov [4]. See Masur and 
Minsky [8] for a detailed explanation. 

Let F  be the set of pseudo-Anosov mapping classes of S onto itself  

that fix the puncture x and are isotopic to the identity on S~  (see Thurston 
[10] for the definition and basic properties of pseudo-Anosov maps). Let 

[ ] SSI ~1,0~: →×  denote the associated isotopy between an element F∈f  

and the identity, i.e., ( ) fI =⋅ 0,  and ( ) .id1, =⋅I  Then ( ),, txI  [ ],1,0∈t  

defines an oriented closed curve c on S~  passing through x. It was shown in 
Kra [7] that c is freely homotopic to an oriented filling closed geodesic (call 
it c also) and every such a geodesic determines a conjugacy class ( )cK  of c 

in .F  Let S  denote the set of primitive oriented filling closed geodesics on 

.~S  Obviously, F  can be partitioned into conjugacy classes and there is a 
bijection between the set of these conjugacy classes and the set .S  

By Proposition 3.6 of [8], there exists a constant ,0>a  which depends 

only on ( )np,  such that for all pseudo-Anosov maps ,: SSf →  all 

positive integers m, and all ( ),0 Su C∈  it holds that ( ( )) ., amufud m ≥C  By 

contrast, it was shown in [14, 16] that if ,F∈f  then ( ( )) mufud m ≥,C   

for .41 ≤≤ m  In [15], we showed that ( )( ) 3, ≥ufudC  provided that 

( ).0 Su C′∈  

The purpose of this paper is to study some questions on the distance 

( )( )ufud ,C  for ( ),ˆ
0 Su C∈  which is related to the set { }cu ,~#  of intersection 

points between ( )Su ~~
0C∈  and ,S∈c  where and throughout the rest of the 

paper, we use the symbol u~  to denote ( ),uε  which is the geodesic homotopic 

to u on S~  if u is also viewed as a curve on .~S  The main results will be stated 
in the next section. 
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This paper is organized as follows: In Section 2, we state our main 
results. In Section 3, we collect some background information on the 

fibration ( ) ( )SS ~: 0CC →ε  between curve complexes; we then investigate 

the fibers uF~  of the fibration and discuss some properties by means of a 

tessellation of H. We show that there is an intimate relationship between uF~  

and a tessellation of H. In Section 4, we study the distance between vertices 
in each fiber uF~  in terms of the intersection numbers between the filling 

geodesics and vertices, and prove Theorem 2.1 and Theorem 2.2. The proof 
of Theorem 2.3 is given in Section 5. 

2. Main Theorems 

Fix ( )Su ~~
0C∈  and .S∈c  The geometric intersection number ( )uci ~,  

between c and u~  is defined as the number of points in { },,~# cu  which is also 

given by 
( ) ,~min~, ucuci ′′= ∩  

where c′  and u ′~  are in the homotopy classes of c and ,~u  respectively. 

It is known that ( ) 1~, =uci  if and only if ( )( ) 1, =ufudC  for some 

( )cKf ∈  and { ( )}uu ~1−ε∈  (Lemma 4.3). 

Consider the case where ( )( ) 2, =ufudC  for ( ).ˆ
0 Su C∈  Denote by 

( ) { ( ) ( ) ( )( ) }.1,and1,:, 0 ==∈= vufdvudSvfuV CCC  

For ( ),~ uu ε=  we define a subset ( )cuW ,~  of ( )S~0C  as follows. Let 

( )ucik ~,=  and let { }kQQ ...,,1  be the intersection points between u~  and c. 

Let ( )Sv ~~
0C∈  be such that .~~ uv ≠  Let { }rPP ...,,1  denote the intersection 

points between c and .~v  With the aid of a parametrization ( )τ= cc  for 

[ ],1,0∈τ  we can write ( )1
ii cP τ=  and ( )2

jj cQ τ=  for some ∈ττ 21, ji  

( ).1,0  We call u~  and v~  are separated by c if there is a parametrization 

( )τ= cc  such that 21
ji τ<τ  for all ri ≤≤1  and .1 kj ≤≤  Let ( )cuW ,~∗  
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denote the set of vertices ( )Sv ~~
0C∈  such that v~  and u~  are separated by c. 

It is clear that ( ) ( )ScuW ~,~
0C=

∗  if ( ) .1,~ =cui  Also, if ( ) ,1,~ =cvi  then 

( ).,~~ cuWv ∗∈  

Let ( )cuW ,~  be the subset of ( )cuW ,~∗  consisting of vertices v~  disjoint 

from .~u  We first prove the following result. 

Theorem 2.1. Let F∈f  and let S∈c  be determined by f. Let 

( ).ˆ
0 Su C∈  Assume that ( )( ) .2, =ufudC  Then ( ) ( ) ∅=′ SfuV 0, C∩  and 

the puncture-forgetting projection (1.1) restricts to a bijection ( ) −~, fuV  

( ).,~ cuW  

We now study the problem of when ( )( ) .3, ≥ufudC  It seems likely 

that the distance between u and ( )uf  is proportional to the number of 

intersections between u~  and c. Unfortunately, this is not true. In fact, from 
the discussion in Section 3, there exist geodesics S∈c  that intersect some 
u~  as many times as we expect, yet the distance ( )( )ufud ,C  remains small. 

Nevertheless, with respect to a vertex ( ),~~
0 Su C∈  any S∈c  with 

( ) 1~, >uci  can be written as a curve concatenation 21 cc ⋅  (from left to 

right), where 1c  and 2c  are constructed as follows. Given an orientation for 

u~  and recall that { } { }....,,~# 1 kQQuc =∩  Let ( ),τ= cc  [ ],1,0∈τ  be a 

parametrization and let ( ).2
ii cQ τ=  Assume that .22

2
2
1 kτ<<τ<τ  Let α 

be the path in c connecting 1Q  and ,kQ  and let β be the path in u~  joining 

kQ  and .1Q  Then the complement α=γ \c  is also a path in c that joins    

kQ  and .1Q  Let 1c  be the path α followed by β, and 2c  be the path 1−β  

followed by γ. Obviously, we have ( ) ( ) .21
1 ccc ⋅=γ⋅β⋅β⋅α=γ⋅α= −  

Let ,1δ  2δ  be the geodesics freely homotopic to 1c  and ,2c  respectively, 

and let ∗S  be the subset of S  consisting of geodesics that intersect each 
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( )Su ~~
0C∈  at least twice. It is easy to see that S∈δδ 21,  implies ,∗∈Sc  

this particularly implies that ∗S  is not empty. Let uF~  denote the set 

{ ( )}u~1−ε  which consists of vertices u in ( )S0C  with ( ) .~uu =ε  Theorem 2.1 

leads to the following result. 

Theorem 2.2. Let S∈c  be determined by an element .F∈f  Let 

( ).~~
0 Su C∈  Suppose that ( ) 3~, ≥uci  and with respect to ,~u  the filling 

geodesic c can be expressed as ,21 cc ⋅  where 1c  and 2c  are freely 

homotopic to nontrivial geodesics 1δ  and 2δ  which satisfies the condition 

that .1 S∈δ  Then ( )( ) 3, ≥ufudC  for all .~uFu ∈  

Remark. In the case where ( ) ,2,~ =cui  Lemma 3.3 together with 

Lemma 4.1 asserts that ( )( ) 3, ≥ufudC  for most ,~uFu ∈  but for the 

remaining ones in ,~uF  we have ( )( ) .2, =ufudC  

Let f, c and u~  be as in Theorem 2.2. Then ,21 ccc ⋅=  where 1c  can 

further be written as the concatenation ,1,1111 −= kccc  where 11c  is 

obtained from the path in c joining 1Q  and ,2Q  followed by the path 1β  in 

u~  joining 2Q  and .1Q  Inductively, for each ,11 −≤≤ ki  let ic1  be the 

closed curve obtained from the path 1−βi  in u~  joining 1Q  and ,iQ  followed 

by the path in c joining iQ  and ,1+iQ  then followed by the path 1+βi  in u~  

joining 1+iQ  and .1Q  Let i1δ  be the geodesic representative in the homotopy 

class of .1ic  

Theorem 2.3. Let f, c and u~  be as above. Assume that ( ) .4~, ≥= ucik  

If c can be expressed as ( ) ,21,111 ccc k ⋅−  where at least two curves ic1  

and ,1 jc  1,1 −≤≤ kji  and ,2≥− ji  are homotopic to filling closed 

geodesics, then there are uFu ~∈  such that ( )( ) .4, ≥ufudC  

There arises the following question: 
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Question. Is there a primitive F∈f  such that ( )( )ufud ,C  is arbitrarily 

large for ( )?Su C∈  

3. Background and Tree Structures of Fibers in the Curve Complex 

Let H denote the upper half plane that is endowed with the hyperbolic 

metric ( ) .ydzdzz =ρ  Let S~: →H  be the universal covering map 

with the covering group G. Then G is a finitely generated Fuchsian group of 
the first kind and acts on H as a group of isometries with respect to ( ).zρ  

The group G is torsion free and contains infinitely many hyperbolic Möbius 
transformations. G also contains parabolic Möbius transformations if and 

only if S~  contains punctures ( ).1>n  

Choose H∈x̂  with ( ) .ˆ xx =  Let { ( ) } H⊂∈= Ghxh :ˆA  and let G  

be the covering group of a universal covering map .: S→′ H  Then GH  

( ) { }xGS \~~ H==  and there exists an exact sequence 

,11 →→→Γ→ GG  

where Γ  is the covering group of a universal covering map .\: AHH →v  

Let ( )GQ  ( ( ))GQ.resp  be the group of quasiconformal automorphisms 

w of H with GwGw =−1  ( )..resp 1 GwGw =−  Two elements ( )GQww ∈1,  

are said to be equivalent if .1 RR |=| ww  Let [ ]w  be the equivalence class of 

w. The x-pointed mapping class group, denoted by ,Modx
S  is the subgroup of 

the ordinary mapping class group ( )SMod  that consists of mapping classes 

fixing x. In [1], Bers explicitly constructed an isomorphism ( ) →ϕ∗ ~: GQ  
x
SMod  (Theorem 10 of [1]), which is outlined below. 

Let ( ) ( )GQGQ ⊂0  be the subgroup of ( )GQ  consisting of maps 

projecting (under )′  to maps on S leaving the puncture x fixed. For any 

[ ] ( ) ~,GQw ∈  there is a map ( ),0 GQw ∈  which is obtained by performing 
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a local quasiconformal deformation within each fundamental region D 
leaving the boundary D∂  fixed, such that 0~ ww  and ( ) .ˆ0 A∈xw  Clearly, 

as a map of ,\AH  0w  can be lifted (through )′  to a map ( ).00 GQ∈ω  

Hence [ ]( )w∗ϕ  can be defined as the mapping class on S represented by the 

projection of 0ω  under .′  

Alternatively, let ( )ST ~  denote the Teichmüller space of S~  and let ( )SF ~  

be the fiber space over ( )ST ~  (see  [1] for the definitions of ( )ST ~  and ( )).~SF  

By Theorem 9 of [1], there is a biholomorphic map ( ) ( )STSF →ϕ ~:  that 

respects the forgetting map of ( )ST  onto ( ).~ST  By Theorem 1 of [1], 

( ) ~GQ  is considered a group of holomorphic automorphisms of ( ).~SF  Via 

ϕ  it thus defines a group of holomorphic automorphisms of ( ),ST  which is, 

by Royden’s theorem [9], identified with the group .Modx
S  

Note that G is centerless, for any ,, Ggg ∈′  gg ′=  if and only if 

( ) 11 −− ′′= ghgghg  for all .Gh ∈  We see that G can be regarded as a normal 

subgroup of ( ) .~GQ  Thus, ∗ϕ  restricts to an isomorphism of G onto ( )G∗ϕ  

.Modx
S⊂  Write [ ] [ ]( )ww ∗∗ ϕ=  for [ ] ( ) ~GQw ∈  and ( )gg ∗∗ ϕ=  for 

.Gg ∈  

We now construct some special elements of ( ) .\GGQ  Let N  be the 

disjoint union of small crescent neighborhoods of all geodesics in { ( )}.~1 u−  

Let ( )NN =
~

 and ut~  the positive Dehn twist along u~  which is supported 

in .
~
N  Let HH →τ :  be a lift of .~ut  That is, τ  satisfies the two conditions 

(i) GG =ττ −1  and (ii) .~ut=τ  One can easily verify that ( )GQ∈τ  and 

thus that [ ] .Modx
S∈τ ∗  

Fix ( ).~~
0 Su C∈  Let { ( )}u~1−  denote the collection of all (disjoint) 

geodesics H⊂û  such that ( ) .~ˆ uu =  Denote by u~R  the collection of all 
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components of { ( )}u~\ 1−H  and by uF~  the subset of ( )S0C  that projects to 

u~  under the projection (1.1). For any ,~uR∈Ω  there exists a unique 

hyperbolic element Gg ∈  such that id\
1 =|τ Ω

−
Ng  (see [13] for more 

explanations). Let .1τ=τ −
Ω g  Then ( )GQ∈τΩ  and satisfies conditions (i) 

and (ii) above, which tells us that [ ] .Modx
S∈τ ∗

Ω  

The complement of Ω  in H consists of infinitely many half-planes, 
which are invariant half-planes under the action of τ  and are called maximal 
(or first order) elements determined by .τ  Each maximal element contains 
infinitely many second order half-planes which are not invariant by the 
action of ,τ  and so on (the actions of τ  on higher order half-planes were 
investigated in [11]). Let U  be the collection of all these half-planes of 
different orders. Then U  is partially ordered defined by inclusion. That is, 
for any 1≥n  and any element 1+∆n  of U  with ( )1+n th order, there is a 

unique element U∈∆n  with nth order, such that .1 nn ∆⊂∆ +  

By Lemma 3.2 of [13], [ ] ut=τ ∗
Ω  for a ,~uFu ∈  where ut  denotes the 

positive Dehn twist along u on S. Conversely, for every ,~uFu ∈  there is a 

component u~R∈Ω  such that [ ] .ut=τ ∗
Ω  In what follows, we write Ωτ=τ  

and call the triple ( )U,, Ωτ  the configuration corresponding to the vertex 

.~uFu ∈  It is clear that for each ,Gh∈  ( ) ( ) .11 −−
Ω τ=τ hghh  Hence [ ( )]∗Ωτh  

[ ( ) ] [ ] ( ) ( ).
111

uh
thhhgh ∗=τ=τ= −∗∗

Ω
∗∗−−  We thus obtain a map 

 uu F~~: →χ R  (3.1) 

defined by sending Ω  to u. It is not difficult to prove that χ  is surjective. To 

see that χ  is also injective, we note that for any two regions u~, R∈Ω′Ω  

with ,Ω′≠Ω  they are either adjacent, by which we mean that Ω  and Ω′  

share a common geodesic boundary e for { ( )},~1 ue −∈  or Ω  and Ω′            

are disjoint. If Ω  and Ω′  are adjacent, then by Lemma 2.1 of [17], 
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( ) ( )( ) ,1, 21 =ΩχΩχCd  which occurs if and only if ( ) ( ){ }21 , ΩχΩχ  are 

boundary components of an x-punctured cylinder on S. If Ω  and Ω′  are 
disjoint, then there are maximal elements U∈∆  and U ′∈∆′  such that 

H=∆′∆ ∪  and .∅=∆′∂∆∂ ∩  By examining the action of τ  and τ′  on 

,1 HS ∂=  we conclude that nmmn ττ′≠τ′τ  for all large integers m, n.        

See Lemma 4 of [11] for more details. This implies that ( ) ( ) ≠Ω′χΩχ
mn tt  

( ) ( ).
nm tt ΩχΩ′χ  In particular, ( ) ( ).Ωχ≠Ω′χ  

We have thus proved the following lemma: 

Lemma 3.1. The map χ  defined as (3.1) is a bijection which satisfies  

the equivariant condition ( )( ) ( )( )Ωχ=Ωχ ∗gg  for each Gg ∈  and each 

.~uR∈Ω  

Remark. The bijection (3.1) can also be obtained from topological terms 
by Theorem 7.1 of Kent et al. [6]. In fact, Theorem 4.1 and Theorem 4.2 of 
Birman [2] state that there exists an exact sequence 

 ( ) ( ) ,1~ModMod,~1 1 →→→π→ SxS x
S  (3.2) 

where ( )S~Mod  is the mapping class group and ( )xS ,~
1π  is the fundamental 

group of .~S  Thus, there defines an injective map of ( )xS ,~
1π  into .Modx

S  

Note that an isomorphism between G and ( )xS ,~
1π  is obtained by choosing 

a lift x̂  of x in H to serve as the base point. As such, we obtain an injective 

map x
SG Mod: →ψ  so that the image ( )Gψ  consists of mapping classes 

projecting to the trivial mapping class on S~  as x is filled in. Since G keeps 

{ }u~1−  invariant, G naturally acts on .~uR  Hence ( )Gψ  acts on .~uF  As 

such, the bijection χ  in Lemma 3.1 can be given by identifying a region Ω  

that is the stabilizer of an Gh ∈  with a vertex uFu ~∈  that is the stabilizer 

of ( ).hψ  
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By a similar discussion to the above, we know that u~R  naturally inherits 

a structure of a tree. From the bijection (3.1), we know that uF~  is also a    

tree. Hence uF~  is path connected. We formulate the result as the following 

lemma: 

Lemma 3.2. For each ( ),~~
0 Su C∈  the fiber uF~  is path connected in 

.~uF  Moreover, for any ,, ~uFvu ∈  there is one and only one path in uF~  

connecting u and v. 

For ,, ~uR∈Ω′Ω  we can introduce the distance ( )Ω′Ω,D  between Ω  

and Ω′  as follows. If there are elements un ~11 ...,, R∈ΩΩ −  which are 

obtained from Lemma 3.2, we then declare ( ) ., nD =Ω′Ω  

Lemma 3.3. We have ( ) ( )( ) ( ),,, Ω′Ω≤Ω′χΩχ DdC  and if ( )Ω′Ω,D  

,2=  then ( ) ( )( ) .2, =Ω′χΩχCd  

Proof. From Lemma 3.2, there is a sequence ,0 Ω=Ω  Ω′=ΩΩ n...,,1  

in u~R  such that for ,10 −≤≤ ni  iΩ  is adjacent to .1+Ωi  By Lemma 2.1 

of [17], we get ( ) ( )( ) .1, 1 =ΩχΩχ +iidC  It follows from the triangle inequality 

that ( ) ( )( ) ( ) ( )( )∑ −
= + =ΩχΩχ≤Ω′χΩχ 1

0 1 .,, n
i ii ndd CC  Hence ( ) ( )( )Ω′χΩχ ,Cd  

( )., Ω′Ω≤ D  

If ( ) ,2, =Ω′ΩD  then ( ) ( )( ) .2, ≤Ω′χΩχCd  Assume that ( ( ),ΩχCd  

( )) ,1=Ω′χ  which says that ( )Ωχ  and ( )Ω′χ  are disjoint. Thus, { ( ) ( )}Ω′χΩχ ,  

are boundary components of an x-punctured cylinder on S. By Lemma 2.1 of 
[17], Ω  and Ω′  are adjacent. But this means that ( ) .1, =Ω′ΩD  This is a 

contradiction.  

4. Distances between Vertices in Fibers in the Curve Complex 

For each ( ),~~
0 Su C∈  the group G naturally acts on .~uR  Let Gg ∈  be 
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an essential hyperbolic element, i.e., .F∈∗g  Let ( )gaxis  be the axis of g; 

that is, ( ) H⊂gaxis  is the unique geodesic so that ( )( ) ( ).axisaxis ggg =  

Let u~R∈Ω  and denote by ( ).Ωχ=u  We first investigate the situation 

where ( ) .axis ∅=Ω∩g  We have 

Lemma 4.1. Suppose that ( ) .∅=Ω gaxis∩  Then ( ( )) .3, ≥∗ ugudC  

Proof. The proof can be found in Section 4 of [14].  

Observe that for any ,~uR∈Ω  there always exists an essential hyperbolic 

element g (and hence there are infinitely many such elements) in the 
conjugacy class of g for which ( ) ,axis ∅≠Ω∩g  and conversely, for any 

essential hyperbolic element ,Gg ∈  there are infinitely many u~R∈Ω  such 

that ( ) .axis ∅≠Ω∩g  We now proceed to explore the relationship between 

( )( )ΩΩ gD ,  and the intersection number between ( )gaxis  and .~u  

Lemma 4.2. Let Gg ∈  be an essential hyperbolic element, and let 

u~R⊂Ω  be a region so that ( ) .∅≠Ω∩gaxis  Then ( ( )( )) =gaxisui ,~  

( )( )., ΩΩ gD  

Proof. Write ( ( )( )).axis,~ guin =  Let uU∈∆  be the maximal element 

that covers the repelling fixed point of g. By Lemma 2.1 of [14], there is a 
maximal element uU∈∆1  that contains ( ).\∆Hg  1∆  is disjoint from ∆  and 

covers the attracting fixed point of g. Thus, ( ).\ 1∆∆⊂Ω ∪H  Parametrize 

( ) ( ),axis gtc =  ,∞+<<∞− t  so that ( ) ( ).0tctc =∆∂∩  Also, write =z  

( ).0tc  Let ( ) ( ) .11 ∆∂= ∩tctc  Then ( )tc  continues to travel and enters a 

second-order element .2 uU∈∆  Set ( ) ( ) ,22 ∆∂= ∩tctc  and so on. 

When ( )tc  reaches the point ( )zg  at time ,nt  ( ) ( )zgtc n =  lies in n∆∂  

for an nth order element .un U∈∆  We thus obtain a finite sequence <∞−  

,210 ∞+<<<<< ntttt  and see that ( ),tc  [ ]nttt ,0∈  meets n regions 
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of .~uR  It is easy to check that ( )Ωg  lies in .un U∈∆  It follows that =n  

( )( ),, ΩΩ gD  as claimed.  

Consider the case in which ( ( )) .1, =∗ ugudC  

Lemma 4.3. Let Gg ∈  be an essential hyperbolic element. Let ∈u~  

( ).~
0 SC  Then ( ( )( )) 1,~ =gaxisui  if and only if there is uFu ~∈  such        

that ( ( )) ,1, =∗ ugudC  in which case ( )Ωχ=u  for an u~R∈Ω  with ∩Ω  

( ) .∅≠gaxis  

Proof. If ( ( )( )) ,1axis,~ =gui  then by Lemma 4.2, ( )( ) 1, =ΩΩ gD  for 

an u~R⊂Ω  with ( ) .axis ∅≠Ω g∩  This means that Ω  and ( )Ωg  are 

adjacent. By Lemma 2.1 of [17], ( ( ) ( )( )) .1, =ΩχΩχ gdC  Therefore, if we 

let ( ),Ωχ=u  then 

( )( ) ( ( ) ( )( )) ( ( ) ( )( )) .1,,, =ΩχΩχ=ΩχΩχ= ∗ gdgdufud CCC  

Conversely, suppose ( )( ) .1, =ufudC  Let u~R⊂Ω  be such that =u  

( ).Ωχ  By Lemma 3.1, we have ( ( ) ( )( )) ( ( ) ( )( ))ΩχΩχ=ΩχΩχ ∗gdgd ,, CC  

.1=  By Lemma 2.1 of [17] again, Ω  and ( )Ωg  are adjacent. If ∩Ω  

( ) ,axis ∅=g  then by Lemma 4.1, ( ( ) ( )( )) ,3, ≥ΩχΩχ ∗gdC  which leads to 

a contradiction. We thus conclude that ( ) .axis ∅≠Ω g∩  By Lemma 4.2, 

( ( )( )) .1axis,~ =gui   

The case where ( )( ) 2, =ufudC  is more involved. Let ( )( ).axis gc =  

If ( ) ,1,~ =cui  then by Lemma 4.1 and Lemma 4.3, either ( )( ) 3, ≥ufudC  

or ( )( ) .1, =ufudC  So it must be the case that ( ) .2,~ ≥cui  It is worthwhile 

pointing out that the number ( )cui ,~  can be arbitrarily large. In fact, one can 

easily construct a geodesic ∗∈ SS \c  on a genus p surface for 1>p  such 
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that a vertex ( )Sv ~~
0C∈  can be found with the property that ( ) 1~, =vci        

and v~  is disjoint from .~u  Let F∈f  be defined by c by a point-pushing 

deformation, let Gg ∈  be such that .fg =∗  In this case, ( )( ) 2, =ufudC  

for some ( )cKf ∈  and some uFu ~∈  (the author thanks the referee for his 

comments). 

Figure 1 depicts such a filling curve c which intersects u~  and ,~v  and 

goes around a hole as many times as possible. This illustrates that ( ) =cui ,~  

( ( )( ))gui axis,~  can be arbitrarily large, whereas ( )( ) 2, =ufudC  for =u  

( ),Ωχ  where u~R∈Ω  with ( ) .axis ∅≠Ω g∩  In particular, ( ) −cui ,~  

( )( )ufud ,C  could be unbounded. 

Note that it could be the case where both ( )cui ,~  and ( )( )ufud ,C  are 

larger than two even if ( ) .axis ∅≠Ω g∩  However, if ( ) ,2,~ =cui  then 

Lemma 4.1 tells us that ( ( ) ( )( )) 3, ≥ΩχΩχ gdC  for all u~R⊂Ω  with ∩Ω  

( ) .axis ∅=g  But if Ω  is so chosen that ( ) ,axis ∅≠Ω g∩  then by Lemma 

4.2 and Lemma 3.3, ( )( ) ,2, =ufudC  where ( ).Ωχ=u  

 

Figure 1 

Recall that ( )U,, Ωτ  is the configuration corresponding to u. For       

other vertices ( ),ˆ
0 Sv C∈  we let ( )vvv U,, Ωτ  denote the configuration 

corresponding to v. It is easy to verify that ( ) wg Ω=Ω  if ( )www U,, Ωτ  is 

the configuration corresponding to ( ).ugw ∗=  
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Assume that ( ) .axis ∅≠Ω g∩  By Lemma 2.1 of [14], there is a pair 

( )∆′∆,  of maximal elements of uU  such that ∆  covers the repelling fixed 

point and ∆′  covers the attracting fixed point of g. In addition, we have 
( )∆′∆⊂Ω ∪\H  and ( ) .∅=ΩΩ g∩  Without loss of generality, we may 

assume that ( ) .∅≠∆′∆ ∩g  

The following lemma will be used frequently in the proof of Theorem 
2.1 and Theorem 2.2. 

Lemma 4.4. With the above notations and conditions, we have 
( )( ) 2, ≥ufvdC  provided that there is a maximal element vv U∈∆  such 

that ( ).\ ∆⊂∆ gvH  Similarly, ( ) 2, ≥uvdC  if there is a maximal element 

vv U∈∆  such that .\ ∆′⊂∆vH  In particular, if v is disjoint from both           

u and ( ),uf  then no maximal element of vU  exists whose boundary lies 

entirely in ( ) .∆′∆ ∩g  

Proof. We outline the argument here for completeness. See [14] for  
more details. If ( ) ,1, =wvdC  where ( ),ufw =  then ( ) .vvtw =  So for any 

maximal element ,vv U∈∆′  ( ) vv
s
wt U∈∆′  is also a maximal element for any 

integer .0≠s  On the other hand, by the assumption, there is a maximal 
element vv U∈∆  such that ( ).\ ∆⊂∆ gvH  By examining the action of wτ  

on H, we see that ( )v
s
w ∆τ \H  is disjoint from v∆\H  for any .0≠s  It 

follows that ( ) ∅≠∆∆τ vv
s
w ∩  and ( ).v

s
wv ∆τ≠∆  We thus conclude that 

( )v
s
w ∆τ  is not a maximal element of .vU  This is a contradiction. Similarly, 

we can prove the other two statements.  

Alternatively, the condition that there is a maximal element vv U∈∆  

such that ( )∆⊂∆ gv\H  implies that ,∅=ΩΩ wv ∩  which says that vΩ  

and wΩ  are disjoint but not adjacent. The result is stated as follows for future 

references. 
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Lemma 4.5. Let ( )Svu 0
ˆ, C∈  be such that ( ) .1, =vudC  Let 

( )uuu U,, Ωτ  and ( )vvv U,, Ωτ  be the configurations corresponding to u 

and v, respectively. Then uΩ  and vΩ  cannot be disjoint. 

Let ( ).0 Su C ′∈′  Then u ′~  is trivial. By Lemma 5.1 and Lemma 5.2 of 

[15], u′  corresponds to a parabolic fixed point z′  of G; that is, there is a 
primitive parabolic element GT ∈  such that ( ) .zzT ′=′  If ( ) ,1, =′uudC  

then .uuuu tttt ′′ =  Thus, ,uu TT τ=τ  which in turn implies that uτ  fixes ,z′  

and thus that .1S∩uz Ω∈′  The converse remains valid and the result can be 

stated in the following lemma (see [15] for more detailed argument): 

Lemma 4.6. Let ( )Su 0Ĉ∈  and ( ).0 Su C′∈′  Let 1S∈′z  be the parabolic 

fixed point of G corresponding to .u′  Then ( ) 1, =′uudC  if and only if 

.1S∩uz Ω∈′  

Return to the case in which uΩ=Ω  and ( ) ( )( )( ) 2, =ΩχΩχ gdC  but 

( )( )ΩΩ gD ,  is arbitrary (where   we recall that ( ),Ωχ=u  and ).fg =∗  

Lemma 4.7. Let ( )Su ~~
0C∈  be a non-trivial vertex, and let Gg ∈  be 

an essential hyperbolic element so that ( ( )( )) .2,~ ≥gaxisui  Suppose that 

u~R∈Ω  is such that ( ) ( )( )( ) .2, =ΩχΩχ gdC  Then ( ( ) ) ( )SgV 0, C ′Ωχ ∗ ∩  

.∅=  Furthermore, we have ( ( ( ) )) ( ( )( )),,~, gaxisuWgV ⊂Ωχε ∗  where ε  

is the projection given in (1.1). 

Proof. If ( ) ,axis ∅=Ω g∩  then by Lemma 4.1, we see that ( ( ),ΩχCd  

( )( )) .3≥Ωχ g  This contradicts the hypothesis. So it must be the case that 

( ) .axis ∅≠Ω g∩  Write ( ).Ωχ=u  By Lemma 3.1, ( )( ) ( )( ) =Ωχ=Ωχ ∗gg  

( ) ( ).ufug =∗  Since ( )( ) ( )( )ufuufud ,,2, =C  does not fill S. Choose ∈v  

( ),, fuV  which means that ( ) ( )( ) .1,, == ufvduvd CC  
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If ( )vv ε=~  is trivial, i.e., ( ),0 Sv C ′∈  then by Lemma 4.6, ∈z  

( ( )) .1S∩∩ ΩΩ g  This is impossible since ( ) .∅=ΩΩ g∩  This proves 

( ( ) ) ( ) ., 0 ∅=′Ωχ ∗ SgV C∩  

We thus assume that ( ).ˆ
0 Sv C∈  Then ( ).~~

0 Sv C∈  Suppose that v~  is 

not in ( ( )( )).axis,~ guW  By Lemma 4.4, we need to find a maximal element 

vv U∈∆  such that ∆′⊂∆v\H  or ( ).\ ∆⊂∆ gvH  To do so, we first notice 

that Gg ∈  is an essential hyperbolic element. As a result, ( )gaxis  cannot lie 

in .vΩ  There remain two cases: 

Case 1. There is a maximal element vv U∈∆  such that ( ) .axis vg ∆⊂  

Since u~  is disjoint from v~  and since { ( )},~1 vv
−∈∆∂  we see that v∆∂  is 

disjoint from all geodesics drawn in Figure 2(a). 

Notice that ( ) { ( )},~,, 1 ug −∈∆∂∆∂∆′∂  so they are all mutually disjoint. 

As it turns out, ( ) 1\ SH ∩v∆  lies in one of the eight subarcs of { ,,,\1 EBAS  

}.,,,, NMLHF  A possible v∆  is drawn in Figure 2(a). As we see, v∆\H  

( )∆⊂ g  or ,\ vv ∆′⊂∆H  and we are done. 

Case 2. ( ) .axis ∅≠Ωvg ∩  There is a pair ( )vv ∆′∆ ,  of maximal 

elements of ,vU  where v∆  covers the repelling fixed point of g and v∆′  

covers the attracting fixed point of g, so that ( ).\ vvv ∆′∆⊂Ω ∪H  

By hypothesis, v~  is non-trivial and does not lie in ( ( )( )).axis,~ guW  

Write { ( ) } { }....,,~,# 1 rPPvc =τ  There is a parametrization ( )τ= cc  and an 

intersection point { },...,,1 rq PPP ∈  ( ),1
qq cP τ=  such that ,12

1 qτ<τ  where 

( )2
1τc  is the first intersection point in { ( ) }.~,# uc τ  qP  corresponds to the 

intersection point qP̂  shown in Figure 2(b). 
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(a)                                                                  (b) 

Figure 2 

Since u, v are disjoint, ,~u  v~  are also disjoint, which implies that { ( )}u~1−  

and { ( )}v~1−  are disjoint. But ( ) { ( )}.~,, 1 ug −∈∆∂∆′∂∆∂  We conclude that 

there is one geodesic [ ] { ( )}vXY ~1−∈  that passes through qP̂  and lies entirely 

in the region ( ) .∆′∆ ∩g  

If ( ),\ ∆⊂∆∂ gv H  then .\ ∆′⊂∆vH  If ( ) ∆′∆⊂∆∂ ∩gv  (note  that 

v∆∂  may or may not be equal to [ ]),XY  then also .\ ∆′⊂∆vH  We are  

done. If ( ),\ ∆′∆⊂∆∂ ∪Hv  then since [ ] ( ) ,∆′∆⊂ ∩gXY  v∆′  must contain 

[ ],XY  which tells us that ( ).\ ∆⊂∆′ gvH  Finally if ,∆⊂∆∂ v  then v∆′  

contains [ ].XY  It follows that ( ).\ ∆⊂∆′ gvH  

It remains to consider the case where ( ){ }.,, ∆∂∆′∂∆∂∈∆∂ gv  If =∆∂ v  

,∆∂  then .uv tt =  Thus, .vu =  If ( ),∆∂=∆∂ gv  then .vw tt =  So .vw =  

If ,∆′∂=∆∂ v  then v∆′  contains [ ].XY  It follows that ( ).\ ∆⊂∆′ gvH  

Geometrically, in this case, ,0uv =  where 0u  together with u forms the 

boundary of an x-punctured cylinder.  

Proof of Theorem 2.1. By Lemma 4.7, we see that the restriction 

( )fuV ,|ε  sends ( )fuV ,  to ( ).,~ cuW  We first claim that ( )fuV ,|ε  is onto. 



Point-pushing Pseudo-Anosov Mapping Classes … 115 

Indeed, pick ( ),,~~ cuWv ∈  and let ( )τ= cc  be a parametrization for c such 

that 

 21
ji τ<τ  for all ri ≤≤1  and ,1 kj ≤≤  (4.1) 

where { } { ( ) ( )}11
1 ...,,,~# rcccv ττ=  and { } { ( ) ( )}....,,,~# 22

1 kcccu ττ=  Take 

( )0cx =  and move x along ( ).τc  After meeting v~  at rPP ...,,1  in the order, 

c starts meeting u~  at order kQQ ...,,1  and never meets v~  again before 

arriving at x because of (4.1). It turns out that v is disjoint from ( )ug∗  as 

well (where v is obtained from v~  by deleting x). We see that v is disjoint 
from u and ( ).uf  By the assumption, ( )( ) 2, =ufudC  and ( ) =vud ,C  

( )( ) .1, =vufdC  By the triangle inequality, we obtain 

( )( ) ( ) ( )( ) .2,,,2 =+≤= ufvdvudufud CCC  

It follows that ( )( ) ( ) ( )( ).,,, ufvdvudufud CCC +=  Hence ( )fuVv ,∈  and 

( ) .~vv =ε  This proves that ( )fuV ,|ε  is onto. 

We next claim that ( )fuV ,|ε  is one-to-one. Suppose there are ∈21, vv  

( )fuV ,  so that ( ) ( ).21 vv ε=ε  Let ( ),~
ivv ε=  .2,1=i  Let ( )iii U,, Ωτ  be 

the configurations corresponding to .iv  

If, say, for 1v  we have ( ) ,axis1 ∅=Ω g∩  then by Lemma 4.1, 

( )( ) .3, 11 ≥vfvdC  Since ( ),,1 fuVv ∈  we have ( ) ( )( )11 ,, vufdvud CC =  

.1=  Hence the triangle inequality yields that 

( )( ) ( ) ( )( )ufvdvudufud ,,,2 11 CCC +==  

( ) ( )( ) ( )( ) ( )( ) .3,,, 1111 ≥≥+= vfvdufvdvfufd CCC  

This is a contradiction. Similarly, we assert that ( ) .axis2 ∅≠Ω g∩  So we 

only need to handle the case in which ( ) .axis ∅≠Ω gi ∩  Since ( ) =ε 1v  

( ),2vε  ., ~21 vFvv ∈  From the bijection (3.1), we see that ., ~21 vR∈ΩΩ  As 
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an immediate consequence, either ,1Ω  2Ω  are disjoint, or ,1Ω  2Ω  are 

adjacent, or .21 Ω=Ω  

The condition ( )fuVv ,1 ∈  says that 1v  is disjoint from u and w, where 

( ).ufw =  By the argument of Lemma 4.4, s
w

r
u

−ττ  sends every maximal 

element of 1U  to a maximal element. In particular, for the maximal element 

11 U∈∆v  that contains the repelling fixed point of g and ( ) 1axis vg ∆∂∩  

,∅≠  it cannot occur that ( )∆⊂∆ gv1\H  or .\ 1 ∆′⊂∆vH  This further 

implies that 1Ω  contains ( ) ( )( )∆′∆ ∩∩ ggaxis  (see Figure 2(b)). Similarly, 

the condition ( )fuVv ,2 ∈  leads to that 2Ω  also contains ( ) ∩gaxis  

( )( ).∆′∆ ∩g  Hence 21 ΩΩ ∩  contains ( ) ( )( ).axis ∆′∆ ∩∩ gg  In particular, 

.21 ∅≠ΩΩ ∩  This tells us that 1Ω  and 2Ω  are not disjoint. If they are 

adjacent, 21 ΩΩ ∩  is the axis of a simple hyperbolic element of G, which 

coincides with ( ).axis g  This implies that g is simple, which is clearly a 

contradiction. So we must have ,21 Ω=Ω  which means ( ) ( ).21 Ωχ=Ωχ  

That is, .21 vv =  This shows that ( )fuV ,|ε  is one-to-one, and hence the 

proof of Theorem 2.1 is complete.  

Proof of Theorem 2.2. Suppose ( )( ) 2, ≤ufudC  for some .~uFu ∈       

If ( )( ) ,1, =ufudC  then ( ) u=Ωχ  and Ω  satisfies ( ) .axis ∅≠Ω g∩       

By Lemma 4.3, ( ) .1,~ =cui  In particular, c cannot be expressed as a 

concatenation of two filling curves 1c  and .2c  Assume that ( )( ) .2, =ufudC  

Then by Lemma 4.3 and Lemma 4.1, ( ) 2,~ ≥cui  (as  discussed in Section 3, 

the converse is not true, but ( ) 2,~ =cui  does imply that ( )( ) 2, =ufudC  for 

( ) ,~uFu ∈Ωχ=  where ( ) ).axis ∅≠Ω g∩  

From Theorem 2.1, we know that ( ) ( ) ∅=′ SfuV 0, C∩  and ( )( )fuV ,ε  

( ).,~ cuW=  Choose ( )fuVv ,∈  and write ( ).~ vv ε=  Since u, v are disjoint, 

u~  and v~  are also disjoint and by Theorem 2.1 again, they are separated by c, 
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which means that with the aid of a parametrization ( ),τ= cc  [ ],1,0∈τ  all 

points jQ  in { }uc ~,#  can be expressed as ( )2
jj cQ τ=  and all points iP  in 

{ }vc ~,#  can be expressed as ( ),1
ji cP τ=  where 21

ji τ<τ  for all ri ≤≤1  

and .1 kj ≤≤  Without loss of generality, we assume { }22
1

2
1 ...,,min kττ=τ  

and { }....,,max 22
1

2
kk ττ=τ  Then ( ),τc  ,22

1 kτ<τ<τ  is a path in c connecting 

( )2
11 τ= cQ  and ( ),2

kk cQ τ=  which is denoted by .0c  We see that β⋅= 01 cc  

is homotopic to .1δ  

We claim that v~  is disjoint from .1δ  Since ( ),,~~ cuWv ∈  it is clear that 

0c  does not meet .~v  But v~  is disjoint from u~  and β is a part of .~u  We see 

that v~  does not meet β either, which says v~  does not meet 1c  (because 1c  is 

the union of β and .)0c  This further implies that v~  is disjoint from ,1δ  

contradicting that .1 S∈δ  This proves Theorem 2.2.  

5. Proof of Theorem 2.3 

As usual, we let S∈c  be determined by an element .F∈f  Let ∈u~  

( )S~0C  be given an orientation. With respect to ,~u  the geodesic c can          

be expressed as a concatenation ,21 cc ⋅  where 1c  is freely homotopic to          

a geodesic .1δ  Moreover, 1c  can further be written as the concatenation 

1,111 ...,, −kcc  of curves, where each ic1  is freely homotopic to nontrivial 

geodesics .1iδ  Set { }....,, 1,111 −δδ=∑ k  

We prove Theorem 2.3 by establishing the following result: 

Theorem 5.1. If ∑  contains two filling close geodesics ji 11 , δδ  for 

1,1 −≤≤ kji  and ,2≥− ji  then ( )( ) 4, ≥ufudC  for those ( )Ωχ=u  

uF~∈  for which ( ) .∅≠Ω gaxis∩  

Proof. Let ( )∆′∆,  be the pair of maximal elements of uU  such that ∆  
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and ∆′  cover the repelling and attracting fixed points of g, respectively.      
We know that ( ).\ ∆′∆⊂Ω ∪H  If ( )( ) ,1, =ufudC  then by Lemma 4.3, 

( ) ,1,~ =cui  contradicting that .1
∗∈δ= Sc  If ( )( ) ,2, =ufudC  then by 

Theorem 2.1, for any ( ),, fuVv ∈  we have ( )Sv 0C ′∉  and ( ) ( ).,~ cuWv ∈ε  

This implies that ( )vε  does not intersect ,1δ  which says that .1 S∉δ  So 

.1
∗∉δ S  

Assume that ( )( ) ,3, =ufudC  where we write ( )Ωχ=u  for an u~R∈Ω  

satisfying ( ) Ω∅≠Ω .axis g∩  Let ( )[ ]ufvvu ,,, 21  be a geodesic path in 

( )S0C  connecting u and ( ).uf  Note that ( ) ( ).ˆ, 0021 SSvv CC ∪′∈  

Consider the case in which ( ),ˆ
0 Svi C∈  .2,1=i  Denote by ( )iii U,, Ωτ  

the configuration corresponding to .iv  Let ii U∈∆  be the maximal element 

that contains ( )gaxis  if ( ) ∅=Ω gi axis∩  (Figure 2(a) with ;)iv ∆=∆  and 

let iii U∈∆′∆ ,  be the pair of maximal elements so that i∆  covers the 

repelling fixed point B and i∆′  covers the attracting fixed point A of g if 

( ) ∅≠Ω gi axis∩  (Figure 2(b) with i∆=∆  and .)i∆′=∆′  

Since iv~  and u~  are simple closed geodesics, all geodesics in { ( )}iv~1−  

are mutually disjoint, and so are the geodesics in { ( )}.~1 u−  In particular, 

since ( ){ } { ( )},~,, 1 ug −⊂∆∂∆′∂∆∂  ,∆∂  ∆′∂  and ( )∆∂g  are mutually 

disjoint. If, in addition, iv  and u are disjoint, then { ( )}iv~1−  is also disjoint 

from { ( )}u~1−  which particularly implies that { ( )}iv~1−  is disjoint from 

( ){ }.,, ∆∂∆′∂∆∂ g  We will use these properties in each case below. 

There are several possibilities: (1) ( ),, 021 Svv C ′∈  (2) ( )Sv 01 C ′∈  and 

( ),ˆ
02 Sv C∈  (3) ( )Sv 01 Ĉ∈  and ( ),02 Sv C ′∈  and (4) ( ).ˆ, 021 Svv C∈  
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Case 1. ( )., 021 Svv C ′∈  We claim that this case cannot occur, as any 

two twice punctured disks enclosing x have an overlap near x, as it turns out, 

21, vv  must intersect, contradicting that [ ]21, vv  is an edge in ( ).1 SC  

Case 2. ( )Sv 01 C ′∈  and ( ).ˆ
02 Sv C∈  By Lemmas 5.1 and 5.2 of [12], 

1v  corresponds to a parabolic fixed point 1z  of G, where .1
1 S∈z  

If ( ) ,axis2 ∅=Ω g∩  then since ( )( ) ,1,2 =ufvdC  either ( )∆⊂∆ g2  

or ( ) .2∆⊂∆g  The former cannot occur, as 2∆  covers the point A while 

( )∆g  does not. Hence we have ( ) .2∆⊂∆g  Notice that 1v  is disjoint from 

.2v  By Lemma 4.6, .1
21 S∩Ω∈z  This implies that ( ) .\ 1

21 SH ∩∆∈z  

Hence ( )( ) .\ 1
1 SH ∩∆∈ gz  But ( ) .\ ∆′⊂∆gH  Therefore, 1z  is covered by 

.∆′  From Lemma 4.6, ( ) ,2,1 ≥uvdC  contradicting that ( ) .1,1 =uvdC  

If ( ) ,axis2 ∅≠Ω g∩  then ( ).\ 222 ∆′∆⊂Ω ∪H  By the assumption, 

( )( ) .1,2 =ufvdC  Hence either ( ) 2∆⊂∆g  or ( ).2 ∆⊂∆ g  Suppose that 

the former occurs. Then ( ) 1, 21 =vvdC  implies (from Lemma 4.6) that ∈1z  

.1
2 S∩Ω  We deduce that 1z  is covered by .∆′  By Lemma 4.6 again, 

( ) .2,1 ≥uvdC  This leads to a contradiction. 

Suppose now ( ).2 ∆⊂∆ g  By the assumption, .1
∗∈δ S  This means 

that { ( )}2
1 ~v−  intersects 0ĉ  at least twice (where and below 0ĉ  denotes the 

geodesic segment ( ) ( ) ;)axis ∆′∆ ∩∩ gg  that is to say, there are geodesics 

[ ] [ ] { ( )}2
1

2222
~, vYXYX −∈′′  that are entirely contained in ( ) ,∆′∆ ∩g  where 

[ ]22YX ′′  is the one closest to [ ] ( ).∆∂= gMN  If [ ]MN=∆∂ 2  or [ ],, 22 YX ′′  

then since ( )222 \ ∆′∆⊂Ω ∪H  and since ( ) ,1, 21 =vvdC  by Lemma 4.6, 

,1
21 S∩Ω∈z  and hence .1 ∆′∈z  By Lemma 4.6 again, ( ) ,2, 1 ≥vudC  

contradicting the hypothesis. If [ ]222 YX=∆∂  or any other geodesics of 

{ ( )}2
1 ~v−  intersecting ,ˆ0c  then by Lemma 4.6, 2∆′  must contain [ ]22YX ′′  
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and so ( ) .2 ∅≠∆∆′ g∩  It follows that ( )( ) .2, 2 ≥vufdC  This is again a 

contradiction. 

Case 3. ( )Sv 01 Ĉ∈  and ( ).02 Sv C ′∈  This time, 2v  corresponds to a 

parabolic fixed point 2z  of G. By the assumption, 1
~v  is nontrivial and u, 1v  

are disjoint. 

Suppose that ( ) .axis1 ∅=Ω g∩  By the assumption, ( ) .1, 1 =vudC  

Hence either ∆⊂∆1  or .1∆⊂∆  The former case does not occur, as 1∆  

covers the point A while ∆  does not. So we must have ;1∆⊂∆  or 

.\\ 1 ∆⊂∆ HH  The assumption says ( ) .1, 21 =vvdC  By Lemma 4.6, ∈2z  

.1
1 S∩Ω  But ( ).\ 111 ∆′∆⊂Ω ∪H  So 2z  is covered by ( ).∆g  It follows that 

( )( ) .2, 2 ≥vufdC  

Suppose that ( ) .axis1 ∅≠Ω g∩  In this case, ( ).\ 111 ∆′∆⊂Ω ∪H  By 

the assumption, ( ) .1, 1 =vudC  This implies that 1∆⊂∆  or .1 ∆⊂∆  Assume 

that .1 ∆⊂∆  Since { ( )}1
1 ~v−  intersects 0ĉ  at least twice, let [ ],11YX  [ ]11YX ′′  

be such geodesics, where [ ]11YX ′′  is the one in { ( )}1
1 ~v−  closest to [ ]MN  

( ).∆∂= g  Note that [ ],11YX  [ ]11YX ′′  are contained in ( ).∆∆′ g∩  It follows 

that 1∆′  contains [ ].11YX ′′  But 1
12 S∩Ω∈z  and ( ).\ 111 ∆′∆⊂Ω ∪H  We 

conclude that 2z  is covered by ( ).∆g  So ( )( ) .2,2 ≥ufvdC  

Assume now that .1∆⊂∆  The assumption leads to that { ( )}1
1 ~v−  

intersects 0ĉ  at least twice. Let [ ],11YX  [ ]11YX ′′  be as above. Then since 

( ) ,1, 1 =vudC  .\1 ∆′⊂∆ H  Hence by Lemma 4.6, 1∆′  contains [ ].11YX  It 

follows that 1
12 S∩Ω∈z  must be covered by ( ).∆g  This contradicts that 

( )( ) .1,2 =ufvdC  

Case 4. ( ).ˆ, 021 Svv C∈  Then for ,2,1=i  iv  corresponds to the 

configurations ( ).,, iii UΩτ  By the assumption, 1v  and 2v  are disjoint. 
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Suppose that ( ) ∅=Ω gaxis1 ∩  and ( ) .axis2 ∅=Ω g∩  By the same 

argument as in Case 3, .1∆⊂∆  By Lemma 4.5, ( ) 1, 1 =vudC  implies that 

.1 ∅≠ΩΩ ∩  Hence ( ).\\ 1 ∆′∆⊂∆ ∪HH  If ,21 ∆⊂∆  i.e., ,\\ 12 ∆⊂∆ HH  

then ( ).\ 2 ∆⊂∆ gH  By Lemma 4.5, ( )( ) ,2, 2 ≥vufdC  contradicting that 

( )( ) .1, 2 =vufdC  Suppose ,12 ∆⊂∆  i.e., .\\ 21 ∆⊂∆ HH  See Figure 3(a). 

Note that { ( )}2
1 ~v−  intersects 0ĉ  more than once, and all geodesics in 

{ ( )}2
1 ~v−  are disjoint, as a member of { ( )},~

2
1 v−  2∆∂  must be disjoint from 

any geodesic in { ( )}2
1 ~v−  intersecting .ˆ0c  It follows that ( ).\ 2 ∆⊂∆ gH  

By Lemma 4.5, ( )( ) ,2, 2 ≥vufdC  contradicting that ( )( ) .1, 2 =vufdC  

If ( ) ∅=Ω gaxis1 ∩  and ( ) ,axis2 ∅≠Ω g∩  then by the discussion 

above, we know that 1∆⊂∆  and ( ).\\ 1 ∆′∆⊂∆ ∪HH  By the assumption, 

there are at least two geodesics in { ( )}2
1 ~v−  intersecting .ˆ0c  Let [ ]22YX  be 

the one which is closest to [ ] .∆′∂=EF  See Figure 3(b). 

 

(a)                                                              (b) 

Figure 3 

Recall that ( )22, ∆′∆  is the pair of the maximal elements of 2U  that 

crosses ( ).axis g  We claim that 2∆′  contains [ ].22YX  Otherwise, by Lemma 

2.1 of [14], 2∆  contains [ ].22YX  Since ( )222 \ ∆′∆⊂Ω ∪H  and ,\ 11 ∆⊂Ω H  
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we see that .12 ∅=ΩΩ ∩  By Lemma 4.4, ( ) ,2, 21 ≥vvdC  contradicting 

that ( ) .1, 21 =vvdC  We conclude that 2∆′  contains [ ].22YX  But then ∩2∆′  

( ) .∅≠∆g  So again, by Lemma 4.5, ( ) ,2, 21 ≥vvdC  which also leads to a 

contradiction. 

The case where ( ) ∅≠Ω gaxis1 ∩  and ( ) ∅=Ω gaxis1 ∩  can be handled 

similarly. 

If ( ) ∅≠Ω gaxis1 ∩  and ( ) ,axis2 ∅≠Ω g∩  we note that { ( )},~
1

1 v−  

{ ( )}2
1 ~v−  and { ( )}u~1−  are mutually disjoint. From the assumption, { ( )}u~1−  

intersects 0ĉ  at points ,...,,1 kqq  where [ ] 01 ĉEFq ∩=  and [ ] .ˆ0cMNqk ∩=  

See Figure 4. 

Note that ic1  and jc1  correspond to two intervals iE  and jE  on .ˆ0c  

Since ,2≥− ji  there is a geodesic [ ]CD  that separates iE  and .jE  

Denote [ ] .ˆ0cCDq ∩=  Then the geodesic segment ,ˆ0c  which is a portion of 

( ),axis g  can be written as [ ] [ ].1 kqqqq ∪  Thus, [ ]qqEi 1⊂  and [ ].kj qqE ⊂  

By the assumption, i1δ  and S∈δ j1  for some i, j with .2≥− ij  This 

means that 1
~v  and 2

~v  intersect i1δ  and .1 jδ  Therefore, the segments [ ]qq1  

and [ ]kqq  both intersect geodesics in { { ( )} ( ) }.ˆ:~ˆ 1
1

1 ∆′∆⊂∈=∑ − ∩gvvv  

Similarly, [ ]qq1  and [ ]kqq  also intersect geodesics in { { ( )} :~ˆ 2
1

2 vv −∈=∑  

( ) }.ˆ ∆′∆⊂ ∩gv  

For simplicity, let [ ] 111 ∑∈′′YX  denote the geodesic that is closest to the 

geodesic [ ],MN  and let [ ] 111 ∑∈YX  denote the geodesic that is closest to 

the geodesic [ ].EF  Then [ ]11YX ′′  lies in the component of H bounded by 

[ ]MN  and [ ],CD  and [ ]11YX  lies in the component of H bounded by [ ]EF  

and [ ].CD  See Figure 4(a). Likewise, let [ ] 222 ∑∈′′YX  be the geodesic 

closest to [ ],MN  and [ ] 222 ∑∈YX  be the geodesic closest to [ ].EF  It is also 
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obvious that [ ]22YX ′′  lies in the component of H bounded by [ ]MN  and 

[ ],CD  and [ ]22YX  lies in the component of H bounded by [ ]EF  and [ ].CD  

See Figure 4(b). Notice that geodesics in 1∑  and 2∑  are boundaries of 

elements of 1U  and ,2U  respectively. Consider the pairs ( )11, ∆′∆  and 

( )22, ∆′∆  of maximal elements of 1U  and ,2U  respectively. Recall that 1∆′  

and 2∆′  cover the attracting fixed point A of g, while 1∆  and 2∆  cover the 

repelling fixed point B of g. 

We claim that [ ]111 YX=∆′∂  or 1∆′∂  is disjoint from .∆′  If not, then by 

Lemma 2.1 of [14], either [ ]111 YX=∆∂  or [ ]11YX  is contained in .1∆  Since 

( ),\ 111 ∆′∆⊂Ω ∪H  we see that 1Ω  is disjoint from .Ω  From Lemma 4.5, 

( ) ,2, 1 ≥vudC  contradicting that ( ) .1, 1 =vudC  So 1∆′  contains [ ].CD  

We also claim that [ ]222 YX ′′=∆∂  or 2∆∂  is disjoint from ( ).∆g  

Suppose not. By Lemma 2.1 of [14] again, either [ ]222 YX ′′=∆′∂  or [ ]22YX ′′  is 

contained in .2∆′  But ( ).\ 222 ∆′∆⊂Ω ∪H  Hence 2Ω  is disjoint from 

( ).Ωg  Clearly, ( )( ) ( )( ) ( ).ufgg =Ωχ=Ωχ ∗  From Lemma 4.5, ( )( )2, vufdC  

,2≥  contradicting that ( )( ) .1, 2 =vufdC  So 2∆  contains [ ].CD  

 

(a)                                                                 (b) 

Figure 4 
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In particular, .21 ∅≠∆∆′ ∩  As members of ( )1
1 ~v−  and ( ),~

1
1 v−  1∆′∂  

is disjoint from .2∆∂  Since ( )111 \ ∆′∆⊂Ω ∪H  and ( ),\ 222 ∆′∆⊂Ω ∪H  

we conclude that .21 ∅=ΩΩ ∩  By Lemma 4.5, we see that ( ) ,2, 21 ≥vvdC  

contradicting that ( ) .1, 21 =vvdC   
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