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Abstract

We obtain a posteriori error estimates for a variant of (non-locking)
stabilized nonconforming methods based on the Crouzeix-Raviart
Received: August 26, 2014; Accepted: September 22, 2014
2010 Mathematics Subject Classification: 65N30, 65N15, 65N50.
Keywords and phrases: Crouzeix-Raviart element, nonconforming method, stabilized method,
non-locking, a posteriori error estimates.
Communicated by K. K. Azad




168 E. Creusé, M. Farhloul, S. Nicaise and L. Paquet

element introduced by Hansbo and Larson in [21]. We derive upper
and lower a posteriori error bounds which are robust with respect to
the nearly incompressible materials.

1. Introduction

The finite element methods are widely used for the numerical
approximation of many problems occurring in engineering applications, like
the Laplace equation, the Lamé system, etc. (see [10, 19]). In practice,
adaptive techniques based on a posteriori error estimators have become
indispensable tools for such methods. Hence, there now exist a large number
of publications devoted to the analysis of some finite element approximations
of problems from solid mechanics and obtaining locally defined a posteriori
error estimates. We refer to the monographs [2, 7, 31] for a good overview
on this topic.

For the elasticity system in the primal variables, several different
approaches have been developed: residual type error estimators [5, 4, 32, 33,
17, 11, 22], methods based on the resolution of local subproblems by using
higher order elements [4, 6, 8], averaging techniques (the so-called
Zienkiewicz-Zhu estimators) [1, 2, 34, 35] and finally estimators based on
equilibrated fluxes [3, 12, 25-27, 29]. For methods based on dual variables,
like mixed methods, we refer to [13, 14, 16, 9, 24, 18]; note that such
methods are usually locking-free and therefore the obtained estimators are

usually locking-free.

Here we analyze two displacement methods based on the primal
variables variant of the ones introduced by Hansbo and Larson in [21] which
are nonconforming methods based on the Crouzeix-Raviart finite element.
These methods are locking-free and very cheap. In [21], the authors derive a
priori optimal error estimates uniform in the Lamé parameter A (see Theorem
3.1 of [21]). In this paper, we propose an a posteriori error analysis of these
methods. Our analysis enters in the family of estimators of residual type
since our error indicator is based on residuals on each triangle and jumps

across the inter-element boundaries. We prove reliability of the indicator
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uniformly in A (and /), in particular avoiding locking phenomena. The proof
is based on a discrete divergence stability result (see [11] for another
scheme), the use of an appropriate decomposition of the error into continuous
and discontinuous parts [23]. Local efficiency of our indicator follows by
using classical inverse estimates, the use of a strengthened norm allows to

obtain its robustness.

Note that our methods enter in a similar framework than the ones in
[17, 33, 11]. But our upper bound cannot be deduced from [17] because the
assumption (2.12) from that paper is not satisfied by our scheme. On the
other hand, the schemes in [17, 33, 11] are different from our proposed
schemes, nevertheless the proof of the upper bound uses similar arguments
than in [11].

The outline of the paper is as follows: We recall in Section 2 the
boundary value problem and its numerical approximation. Section 3 is
devoted to the proof of the discrete divergence stability result. The proof of
the upper error bound is made in Section 4; and the lower bound is obtained
in Section 5. Finally, some numerical tests that confirm our theoretical results
are presented in the last section.

Let us finish this introduction with some notations used in the remainder

of the paper: On D, the I*(D)-norm will be denoted by |-[l,- The usual
norm and seminorm of H*(D)(s > 0) are denoted by ||, , and |-| ,,

respectively. In the case D =Q, the index Q will be omitted. Similar
H(div, Q) is defined by

H(div, Q) = {v e I*(Q) : divv e I}(Q)},

equipped with its natural norm. Finally, the notation a < b means the

existence of a positive constant C, which is independent of the mesh size, of
the considered quantities a and b and of the Lamé coefficient A such that
a < Cb. In other words, the constant only depends on the aspect ratio of the
mesh, on the domain Q2 and on the shear modulus p, but not on Lamé

coefficient A (see below).
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2. A Discontinuous Galerkin Method for the Elasticity System

2.1. The boundary value problem of elasticity

Let Q be a plane domain with a polygonal boundary. More precisely, we
assume that Q is a simply connected domain and that its boundary I' is the

union of a finite number of linear segments I';, 1< j <n, (I'; is assumed

to be an open segment). In this domain, we consider an elastic isotropic
material. Let u = (u1, up) be the displacement field and f = (f}, f>) €

[L2(Q)]? the body force by unit of mass. For simplicity, we consider in Q

the pure homogeneous displacement problem. Thus, the displacement field

u = (uy, uy) satisfies the following equations and boundary condition:

{—dl’v o(u)=fin Q, @)
u=0onT,
where the stress tensor is defined by

o(u) = 2ue(u) + A tre(u)l. (2.2)

The positive constants L and A are called the Lamé coefficients where p = G

is the shear modulus ([30, p. 207]) ([20, pp. 72-75, 57-58]). We assume that
[10]

(A, w) € [ho, +oof x [uy, po], (2.3)

where 0 < p; < p, and Ay > 0.

As usual, g(u):= %(Vu +(Vu)') denotes the linearized strain tensor

and [ is the identity tensor. For any tensor t (of order 2), the trace of T is

rt =111 + Ty, and

. L 8111 5’512 8r21 5’522
leT o [ axl * 8x2 ’ axl * 8x2

(in an orthogonal Cartesian frame). The classical variational formulation of
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the boundary value problem (2.1) is the following: find u € [H(l) Q) such
that

IQ o(u): e(v)dx = J.Q fevdx, YvelH)Q)P, 2.4

2

where o:¢ = Zi’jzl Gjj&jj

denotes the contraction of the two tensors.

The existence and uniqueness of the solution in (2.4), for a given

f e[H{(Q)], follows from the first Korn inequality (cf. [10, p. 286]). In

the following, we suppose that f e [I2(Q)]%.

2.2. The discontinuous Galerkin methods

In order to formulate the discrete problems introduced by Hansbo and

Larson in [21], we first recall some notation.

Let (7, )h>0 be a regular family of triangulations. Let us fix a
triangulation 7, € (73),., and let £, denote the set of all edges of the
triangulation 7. We split £, into two disjoint subsets: 5{1 the subset of

edges contained in Q and E‘Z the subset of edges contained in the boundary
of Q. Further, with each edge E, we associate a fixed unit normal ng such

that for edges contained in 0Q), ng is the exterior unit normal; we further fix

a unit tangent 75 so that {ng, tg} forms an orthonormal basis of R2. For
any edge E and any triangle 7, we denote by | E£| the length of E and
|T| the area of T. As usual, for any triangle 7, we denote by g =

U 7'eT, T'NT=2 I > the patch associated with 7. Similarly, for an edge E, we
set g =Uper, pcrT"
Let

DF(T;) = {vy € [(QF; VT € Ty s vy € [R(D)P}
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be the space of piecewise linear discontinuous functions (as usual BA(7)

denotes the space of polynomials of degree less than or equal to 1 on 7).

For a function v, € DF(7},), we denote its jump at an edge E by
v llg =viy —vy for E e gl and [[v, Iz =v; for E e £9, and the average
(vi)g = +vp)/2 for Ee&l and (vp)g =vy, for E e £9, where vi(x)=

lim v, (xFAng) with x € E. In the same spirit, we define its broken strain
h—0"
tensor ¢,(v,) by
en(vp)p = el ) VT € Ty,

its broken stress tensor o(v;) and broken divergence divyv;, are defined

similarly.

We further introduce the Crouzeix-Raviart space of vector fields
CR(Th)l

CR(T}) = {vy, € [(Q)F; VT € Tj, vy 1 < [R(DF,
[[POVh]]E = Oa VE € gh}’ (25)
where for any edge £ and any w e [*(E),
- L
Fyw = E] J.E wds,

and therefore

rlly = Rollvnlly = [ vids = [ vids:

i EOlENE [E[JE

The first discontinuous Galerkin method is a variant of the one
introduced in [21] and reads as follows: find u;, € DF(7,) such that

ap(up, vp) = (f, vy), Vv € DF(T}). (2.6)
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The bilinear form is here defined by

ap(up, vp)

= a(uy. vi) + Qs om0 3 g ([Rwy - ng I (B - ns D
EEEh

v 2ury 3 ([ - 151} TRy - 151D
Eegy

- Z (({on(up)) gnes [[Vh]]E)E +((on i) gres Mupllg)g), (2.7)

Ee&y,

agn(up vi) = Y (oluy), &)y +20m Y é([[”h]]a [vilDg. (2-8)

TeTy, Ee&y,

while the linear form is defined by
(Fovm)= [ f -
Q
Here the parameters y,, yo, and y; are the stabilizing parameters fixed
below.
Here and below (o(uy,), &(v,)); means the [? -inner product IT oluy) :

&(v,)dx. Similarly, for vector valued functions v, we I*(E)?, (v, W)g

means the L? -inner product J. 2V wds.

Note that our bilinear form a;, differs from the one in [21] by the second

and third terms of the right-hand side of (2.7), indeed in that paper these two

terms are replaced by

Guayro Y, (R lh A
Eeg&y,
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This modification is made to have a discrete stability result and hence a
robust a posteriori estimate that cannot be obtained if we keep the original

term from [21]. Note further that the bilinear form a;, is similar to the one in
[11] except that the second and third terms are replaced by

210 2 Wy - nglh o - ng 1D

Ee&y,
As a consequence, the well-posedness of the corresponding problem in [11]
is obtained for y; and 7y, large enough (independently of A), while our
problem is well-posed only for y, and y{ large enough (independently of
A). Our approach allows then to use a penalization parameter y; as small as
we want (but bounded away from zero). This difference also implies the use

of a different error norm.

The well-posedness of problem (2.6) follows from the strong

coerciveness of a; in DF(T}), that we now show (see Proposition 2.2 of
[21] or Proposition 2.2 of [11]).

Proposition 2.1. There exist three positive constants Yin, Ymin and C
independent of A, u and the mesh size h such that for all vy > Ymin and all
Y0 > Ymin and any vy, € DF(T},), we have

. 1
ay (v v) 2 €| 2024 () [P+ M divyvy [P+ (2u+ 200 Y E” [Povs - 11
Ee&y,

1 2 1 2
w2u >0 DR gD + 20 Y -1l |
Eeé'h Eegh

Proof. For a fixed edge E, as g,(v,) and div,v, are piecewise

constants, we have
({on (v »E ng, [[vp ]]E )E = 2u((e(vy »E ng, [Povy ]]E )E

+ M{divivy) g [Bovi - ne ]l ) -
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By Cauchy-Schwarz’s and Young’s inequalities, for any 3, 8’ > 0, we obtain

| Gon Ol pre: vallp)e | < 5 kel €0 Iz + n8hg | TRwillg

A

My di 2
sy e e I

, Mou+1)3

- 2
o hg | TPovi - ng g (-

The regularity assumption on the meshes yields a positive constant Cj,. such

that
hell (diviva) g [z < Colldivivy [, hell (60 |7 < Collena) I,

These estimates in the previous one lead to

D (onn)gnes [vallp)e

Ee&y,
2pCy, 2 ACy : 2
< —\d
5 lena)l” + (2n + }L)SH wpvp ||
_ , 2 AM2u+2A)d
o 3 (Tl [ + 22 [y g 1)

Eegy,

By this estimate and the definition of a;, we deduce that

2C, 2 2C . 2
> — 1 _ T
ap(vy, vy) = ZM(I 5 )" envp)|° + X(l On+ k)S)” diviyvy, |

coun S HE ol I
Eegy,

r 2ud’
+ Egg“h hEl[(Zu + X)X(Yo -0- (ZHL:—X)XJ 1By - gl ||2E

+ 2u(vo =) [LRova - 16 1l "é}
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5 S @Qu+r)s) 2

4Gy n 8uCyy
nw+i) Cu+a)r

and Y = 4C;,.. O

Now we fix & and &' such that (1 - 2C,”j = (1 26'—”) _1 and the

conclusion follows with the choice v, = max{l, B

By the previous result, we deduce that for yy > Y, and Yo > Yimin»

problem (2.6) is well posed. As shown in Proposition 2.1 of [21], the method

is consistent, namely,
a,(u —uy, v,) =0, Vv, € DF(T}). (2.9)

Restricting the discontinuous Galerkin method to the space of
Crouzeix-Raviart functions, we obtain the following simplified scheme: find
ugy € CR(7},) such that

ao(uon, vi) = (fs i), Vv € CR(T}). (2.10)

As before, this second method is consistent in the following sense:
ao(u — ugp, vi,) = 0, Vv, € CR(T;) N HY(Q)>. (2.11)
Observe that Theorem 2.3 of [28] guarantees the displacement vector

field u € [H 3/ 2 Q) for some ¢ € } 0, %[ Consequently, o(u)- ng has

sense on each edge E e £, as an element of [HE(E)P < [I*(E) and

Green’s formula can be applied element by element. Hence, the consistency
always holds.

We finally refer to [21] for robust a priori error estimates.
Our goal is to bound the “triple norm” || e|| := y/agy(e, ) of the error

e:=u—uy. But in order to get a robust estimate, we need to use the

parameter depending norm:

2 2,2 . 2,2 1 2
llell; =llell” + 2% Modivpe [* + 2> - IRe - ne g
Eegh
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where TIj, is the [? -projection on L%(Q)2 defined by
Mof = f =157, FW)av, vf < Q)
[Q[Ja

Before going on notice that if ug, € CR(7},), then

di dx = 0.
IQ Wy Ugpax

3. Discrete Stability

The stability of the continuous problem (2.4) was proved in [11, Prop.
3.2] and means that

Mdivull S 171

A discrete version of this estimate was also proved in Corollary 3.7 of
[11] for their own scheme. Using similar arguments, we also obtain a discrete
stability.

Proposition 3.1. If u;, € DF(T},) is the solution of (2.6), then
ey, < 1711
Proof. Lemma 3.5 of [11] yields w € DF(T}) N H(div, Q) such that

divw = =\ (divy, uy),

Vil + D7 g 1w < 22 To(divyay) |
Eegy,

With such a choice, we notice that in aj,(u;,, w), the term

@u+)hyg Y kg (R - n ]l [Rw - np])g
Eegy,

is zero and therefore the arguments of Proposition 3.6 of [11] can be applied.

[l
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4. Robust Upper Bound of the Error

For all T € 7, the local estimator ny is defined by

2 2
=l frlr+ o Y helllot) nellg I
Ee&yEcT

> (el I + 2N Ry - ng 1),

Ee&y:EcT

1

where fT = m

I . f(x)dx. The global estimator is given by
2 2
N’ = > nr.
TeTy,

Finally, let osc?(f) = > W f - fr ||% be the oscillating term.
TeTy

Note that the difference between our estimator and the one from [11]

relies on the replacement of the term 32z [[uy, - ng || ||% by the smaller one

W hg! | [[Byuy, - ne ] ||12€ (that is even zero for the Crouzeix-Raviart element,

see below).

Now we are able to state our locking-free a posteriori error estimate:

Theorem 4.1. With the previous notation, we have the following a

posteriori estimate:

llelly, < n+ osc(f).

Proof. We proceed as in the proof of Theorem 4.2 of [11], using in

particular Lemma 4.1 in [11], namely, we take ® € H(l)(Q)2 such that
div o = ATy (divye),

lol,q < MToldivgu)|,
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and such that there exist f > 0 and « > 0 for which
2 2 . 2
Apl e(e®) |7 + 27 Mo (divpe) |
< k(2u(e(e®), e(e + Bw)) + PA(divye, divw)), 4.2)

where e is the continuous part of the error (see for instance, [23, 11]),

namely,
e =u—uj, and uh=u2+u#,
. c c ._ 1 2 1 1 1
with uj, € V}, = DF(T,)N Hy(Q)" and uj; € DF(T,) ", where DF(T})

is an appropriate orthogonal complement of Vj into DF(7 ).

In a first step using this splitting and the standard estimate

1
| Vi PS5 51T T (43)
Ee&y, £

we have (compare with the estimate (29) from [11])

2 2 N
lelly < 1e(e) I + 37| Mo (divye) |

+ > g (Dl + 22 [Py - 1)

Ee&y,

Hence, it remains to estimate the first two terms of this right-hand side. For
that purpose, we use (4.2) and transform its right-hand side as in [11] to get

a| o) |2 + 27 o (divye) |
< (o(u), &(w) = (o4 (up ), £(w)) + 2u(e(wy ), e(w)) = Mdivge, dive), (4.4)
where w = e + B that belongs to H(l)(Q)2 and satisfies (see [11, p. 1550])

[wh.a < lell: (4.5)
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For the two first terms of this right-hand side, we use the continuous
and discrete formulation to get successively (with wy, = I (w) the Clément

interpolant of w)
(o(u), &(w)) = (o (up), &(w)) = (o(u), e(w = wy)) = (4 (up), e(w = wy))
+ (o(u), &(wy)) = (o5, (up ), €(wy))
= (o(u), &(w = wy)) = (o), &(w - wy))

- Z ((G(Wh»E”Ea [[“h]]E)E-

Ee&y,

Using again the continuous formulation and piecewise Green’s formula, we

arrive at
((u), &(w)) = (o, (up ), &(w))
=(f, w=wp) - Z (([on(up) - ngll. w—=wi)g

Eegy,

+ ((a(wy, )>EnE= [[uh]]E)E)-

The first term is estimated in a standard way. The second term is also
estimated in a classical way, namely, by classical local error estimates on the

Clément interpolant ([31, Lemma 1.4, p. 11]) using Lemma 3.4 of [11], we
get

D Uonlwp) - nglh w=wi)g | Sl wly o
Ee&y,
For the last term, we can write (see above)

((G(Wh»EnE’ [[”h]]E)E = 2M(<8(Wh)>E”Ea [[uh]]E)E

+ M{divwy) s [Poup - ngllg) g
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Hence, using scaling arguments, we obtain

Z (<G(Wh)>E”Ea [[”h]]E)E

Ee&y,

1
2
Sl 2 5 (sl + ) (R, meJ )
Eegy

Hence, using again Lemma 1.4 of [31], we get

> (ot gne. [unllp)e | <l wh o

Eegy

The third term of (4.4) is estimated by using (4.3), namely,

| 26(eup ), e | S | Vg 1V < nill Vv |

181

For the last term of (4.4) since e belongs to H(l)(Q)2 its divergence

is of mean zero and therefore as in step 2b in the proof of Theorem 4.2 of

[11, p. 1550], we find

~Mdivye, dive®) < -MIodivy, e, divyui).

Hence, by Cauchy-Schwarz’s inequality and the estimate (4.3), we again

arrive at
—Mdivye, dive®) S M| Modivye || < e ”lk

All the previous estimates lead to the conclusion.

5. Lower Bound of the Error

For a subset ® of Q, we denote by

llell? o = (o) £4(e)), + 23| Todivye |2

DI T 8 PR G [

Ee€pEco
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oscczo(f) = Z h%” f=Ir ”%‘

TeT,Tco
We start with the element residual.

Lemma 5.1. For all T € T, we have
hell fr lir < llelly, 7 + oser(f).

Proof. If by is the standard bubble function associated with 7, then we

set wp = frbr. Hence, by a standard inverse inequality, we have
2~ _ .
I/l < T wrdx = T(fT = f) - wrdx - TdWG(u—uh)'WTdX,

reminding that divo(u) = —f. For the second term of this right-hand side

applying Green’s formula, we obtain
Lfrle < J U = 1) wrds [ ol =) swr)a

Now we can write

IT o —uy) : e(wp)dx = Z“JT et — ) : e(wy )dx
n xJT div(u — uy,)div(wp )dx
=20 olu—uy) sy )dv
T kJQ divy (1 — up,)div(wp )dx.

Since wyr can be seen as a function in H (1) (Q)2 , we deduce that

-[T o(u —uy): e(wp)dx = 2uIT e(u —uy) : e(wr)dx

+ XJ.Q Mydivy, (u — uy ) div(wr )dx



A Posteriori Error Estimates of the Stabilized Crouzeix-Raviart ...

= 2ust(u —uy) : e(wp)dx

+ KJ‘T ydivy, (u — uy, ) div(wy ) dx.

By Cauchy-Schwarz’s inequality and the inverse inequality

le(wr)llp < BN S s
we obtain
hr| fr iy S osep(f) + | e(u — up) | + | Todivy (u = uy ) | 7.

The conclusion follows from the direct estimate

e(e) | < % o(e): ele)d

183

(5.1)

[l

We argue in a similar manner for the normal jump, namely, we have the

Lemma 5.2. For all E € £, we have

W2 o) - npllg g < el g, + 05Cap (f):

Proof. Denoting by by the edge bubble, we set wg = [[o(u,) - ng ]l bg

that belongs to [H, (1) (0f )]2 Hence, by a standard inverse inequality, we have

| liotuw) - nellp I = | lotuy)-nplly - weds

[ oty —w)- ngllg - wpds

Z IaT oluy, —u)-n-wgds.

TeTy:Tcog
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Hence, an integration by parts yields
2 .
| [o(uy) - ngllg Iz ~ Z UT o(uy —u): V(wg)dx + ITf . wdeJ.
TeTyTcog

Using the same arguments as before, we obtain

W2 o) nell Iy S sty )l + Arl 7 )

TeTyTcog
+ M Hodivy, (u — uy,) ”COE + 05Cq . (f)-

The conclusion follows from Lemma 5.1 and the estimate (5.1). O
These two lemmas directly yield the

Theorem 5.3. Forall T € T;,, we have

17 S el g + 050 (1)

6. The Nonconforming Galerkin Method Based on the
Crouzeix-Raviart Element

The arguments of the three previous sections can be directly applied to
the discontinuous method (2.10). They are even simpler because [[Pyuy, - n]];
= 0 on any edge E. Hence, we have not to use the extra term

2 3 Bl

Ee&y,

in the norm of the error (as it is zero). More precisely, we can prove the next
results:

Theorem 6.1. We have the following a posteriori estimate:

llell + 2| Todivge | < mo + ose(f), (6.1)

where n% = z n(Z)T, and for all T €Ty, the local estimator oy is
TeTy,
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defined by

2 2 2 2
nor = ht| fr il + Z hg |llo(uy) - ngllg g
Ec&pEcCT

1 2
DI w1173
Ee&pEcT

Theorem 6.2. Forall T € T, we have
Mor < [l elly, + MTodivy(e) |, + osce, (),

where

lelb = Y (olrs@lvam Y, ol lwlE:

TeTpTco EepEco

Theorem 6.1 is also a consequence of Theorem 2.1 of [15] since uyy,

satisfies the assumptions of this theorem. We give here an alternative proof.
7. Numerical Experiments

In this section, some numerical experiments are performed to illustrate
the above theoretical results, similarly to the ones proposed in [11]. In all the

following cases, Crouzeix-Raviart finite elements CR(7,) defined by (2.5)

are used on a regular mesh composed of triangles.
7.1. Divergence-free smooth solutions

The first test consists in solving equation (2.1) on the unit square Q =

(0, 1)2, for the exact solution given by:
u(x, y) = Lz (sin(rx) sin(my))* ! (sin(mx) cos(my ), —sin(my) cos(mx)),
T

where n > 2 is a given integer and where f is chosen accordingly. It should

be noted that u is smooth, divergence-free, and that « = 0 on Q.
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For the first example, we set n =2. We plot in Figure 7.1 the

convergence rates of the error (Figure 7.1(a)) and of the estimator (Figure

7.1(b)) for several values of A, using a uniform mesh refinement strategy.

It can be observed a good convergence towards zero for both of them

corresponding to the one theoretically expected (namely, order 1 in £

corresponding to order —1/2 in the total number of degrees of freedom ndof).

e

Figure 7.1. Error (a) and estimator (b) convergence

regular solution, n = 2, A from 1 to 10%
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Figure 7.2. Effectivity index /.4 for the regular solution, n = 2, A from 1

to 10*.
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Then the effectivity index defined by:

o g
4~ Tell+ M odivge]

is plotted in Figure 7.2. First, it can be observed that for a given value of A,
the reliability of the estimator is ensured, as underlined by Theorem 6.1.

Moreover, even if the value of /.4 is not totally independent of A, it remains

in a reasonable range (in the order of 1).

For the second example, we set n =25 in order to generate high

gradients in the vicinity of the mid-point (% , %) Consequently, instead of a
uniform one, a local refinement mesh strategy is performed based on the
local error estimator efficiency proven in Theorem 6.2. Here, this local
refinement ensures that the mesh remains conform (there is no hanging-nodes
creation), as well as regular (the minimal angle allowed in the triangulation is
specified, in order to preserve the shape regularity of the mesh). We refer to
[31] for further details and for the algorithm description (red, green and blue

refinements). The resulting meshes obtained for iteration steps 1, 4 and 7

corresponding to A = 10* are displayed in Figure 7.3, so that we can observe
that the high gradients area is well tracked by the remeshing process. The
convergence rates of the error and the estimator are plotted in Figure 7.4 and
the effectivity index in Figure 7.5. Once again, the conclusions are the same
than for the first example: experimental convergence rates of order 1 and
robustness with respect to large values of A, as well as only a small variation

in A of the effectivity index (around 1) for all the considered values of A.
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Figure 7.3. Mesh refinements 1, 4 and 7 for the regular solution, n = 25,
A =10%

w

(a)

(h)
Figure 7.4. Error (a) and estimator (b) convergence rates in ndof for the
regular solution, n = 25, A from 1 to 104,

inclen, Ls1.0
ndex. i=10.0
index, L100.0
ox, =1000.0
index. L=10000.0

10"
adal

10"

Figure 7.5. Effectivity index [ 5 for the regular solution, n = 25, A from 1
to 10%,



A Posteriori Error Estimates of the Stabilized Crouzeix-Raviart ... 189

7.2. Singular solution

This second test consists now in solving equation (2.1) on the domain Q
defined by:

Q = (-1, 1)*\{(x, y); -0.1x < y < 0.1x, 0 < x},

with the external force f'chosen to be:

3

f(xa y):—r_z(l’ O)v r= Vx2+y2'

In that case, the exact solution exhibits a singular behaviour around the
origin. We want to check if the mesh is correctly refined around the
singularity when the estimator is used to carry out the refinement process,
and in the same time if the global estimator decreases consequently towards

zero. The resulting meshes obtained for iteration steps 1, 7 and 10

corresponding to A = 10* are displayed in Figure 7.6, and we can see that
the mesh is automatically refined around the singularity. Moreover, Figure
7.7 shows that the estimator converges towards zero, with experimental

convergence rates of order 1.
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Figure 7.6. Mesh refinements 1, 7 and 10 for the singular solution, A = 10%,
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Figure 7.7. Estimator convergence rate in ndof for the singular solution, A

from 1 to 10*.
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