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Abstract 

We obtain a posteriori error estimates for a variant of (non-locking) 
stabilized nonconforming methods based on the Crouzeix-Raviart 
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element introduced by Hansbo and Larson in [21]. We derive upper 
and lower a posteriori error bounds which are robust with respect to 
the nearly incompressible materials. 

1. Introduction 

The finite element methods are widely used for the numerical 
approximation of many problems occurring in engineering applications, like 
the Laplace equation, the Lamé system, etc. (see [10, 19]). In practice, 
adaptive techniques based on a posteriori error estimators have become 
indispensable tools for such methods. Hence, there now exist a large number 
of publications devoted to the analysis of some finite element approximations 
of problems from solid mechanics and obtaining locally defined a posteriori 
error estimates. We refer to the monographs [2, 7, 31] for a good overview 
on this topic. 

For the elasticity system in the primal variables, several different 
approaches have been developed: residual type error estimators [5, 4, 32, 33, 
17, 11, 22], methods based on the resolution of local subproblems by using 
higher order elements [4, 6, 8], averaging techniques (the so-called 
Zienkiewicz-Zhu estimators) [1, 2, 34, 35] and finally estimators based on 
equilibrated fluxes [3, 12, 25-27, 29]. For methods based on dual variables, 
like mixed methods, we refer to [13, 14, 16, 9, 24, 18]; note that such 
methods are usually locking-free and therefore the obtained estimators are 
usually locking-free. 

Here we analyze two displacement methods based on the primal 
variables variant of the ones introduced by Hansbo and Larson in [21] which 
are nonconforming methods based on the Crouzeix-Raviart finite element. 
These methods are locking-free and very cheap. In [21], the authors derive a 
priori optimal error estimates uniform in the Lamé parameter λ (see Theorem 
3.1 of [21]). In this paper, we propose an a posteriori error analysis of these 
methods. Our analysis enters in the family of estimators of residual type 
since our error indicator is based on residuals on each triangle and jumps 
across the inter-element boundaries. We prove reliability of the indicator 
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uniformly in λ (and h), in particular avoiding locking phenomena. The proof 
is based on a discrete divergence stability result (see [11] for another 
scheme), the use of an appropriate decomposition of the error into continuous 
and discontinuous parts [23]. Local efficiency of our indicator follows by 
using classical inverse estimates, the use of a strengthened norm allows to 
obtain its robustness. 

Note that our methods enter in a similar framework than the ones in         
[17, 33, 11]. But our upper bound cannot be deduced from [17] because the 
assumption (2.12) from that paper is not satisfied by our scheme. On the 
other hand, the schemes in [17, 33, 11] are different from our proposed 
schemes, nevertheless the proof of the upper bound uses similar arguments 
than in [11]. 

The outline of the paper is as follows: We recall in Section 2 the 
boundary value problem and its numerical approximation. Section 3 is 
devoted to the proof of the discrete divergence stability result. The proof of 
the upper error bound is made in Section 4; and the lower bound is obtained 
in Section 5. Finally, some numerical tests that confirm our theoretical results 
are presented in the last section. 

Let us finish this introduction with some notations used in the remainder 

of the paper: On D, the ( )DL2 -norm will be denoted by .D⋅  The usual 

norm and seminorm of ( ) ( )0≥sDH s  are denoted by Ds,⋅  and ,, Ds⋅  

respectively. In the case ,Ω=D  the index Ω will be omitted. Similar 

( )Ω,divH  is defined by 

( ) { ( ) ( )},:, 222 Ω∈Ω∈=Ω LvdivLvdivH  

equipped with its natural norm. Finally, the notation ba  means the 

existence of a positive constant C, which is independent of the mesh size, of 
the considered quantities a and b and of the Lamé coefficient λ such that  

.Cba ≤  In other words, the constant only depends on the aspect ratio of the 
mesh, on the domain Ω and on the shear modulus µ, but not on Lamé 
coefficient λ (see below). 



E. Creusé, M. Farhloul, S. Nicaise and L. Paquet 170 

2. A Discontinuous Galerkin Method for the Elasticity System 

2.1. The boundary value problem of elasticity 

Let Ω be a plane domain with a polygonal boundary. More precisely, we 
assume that Ω is a simply connected domain and that its boundary Γ  is the 
union of a finite number of linear segments ,jΓ  enj ≤≤1  jΓ(  is assumed 

to be an open segment). In this domain, we consider an elastic isotropic 
material. Let ( )21, uuu =  be the displacement field and ( ) ∈= 21, fff  

[ ( )]22 ΩL  the body force by unit of mass. For simplicity, we consider in Ω 

the pure homogeneous displacement problem. Thus, the displacement field 
( )21, uuu =  satisfies the following equations and boundary condition: 

 
( )





Γ=
Ω=σ−

,on0
,in

u
fudiv

 (2.1) 

where the stress tensor is defined by 

 ( ) ( ) ( ) .2: Iutruu ελ+µε=σ  (2.2) 

The positive constants µ and λ are called the Lamé coefficients where G≡µ  

is the shear modulus ([30, p. 207]) ([20, pp. 72-75, 57-58]). We assume that 
[10] 

 ( ) [ [ [ ],,,, 210 µµ×∞+λ∈µλ  (2.3) 

where 210 µ<µ<  and .00 >λ  

As usual, ( ) ( ( ) )Tuuu ∇+∇=ε 2
1:  denotes the linearized strain tensor 

and I is the identity tensor. For any tensor τ (of order 2), the trace of τ is 

,: 2211 τ+τ=τtr  and 









∂
τ∂+

∂
τ∂

∂
τ∂+

∂
τ∂=τ

2
22

1
21

2
12

1
11 ,: xxxxdiv  

(in an orthogonal Cartesian frame). The classical variational formulation of 
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the boundary value problem (2.1) is the following: find [ ( )]21
0 Ω∈ Hu  such 

that 

 ( ) ( ) [ ( )]∫ ∫Ω Ω
Ω∈∀⋅=εσ ,,: 21

0Hvdxvfdxvu  (2.4) 

where ∑ = εσ=εσ 2
1,: ji ijij  denotes the contraction of the two tensors.       

The existence and uniqueness of the solution in (2.4), for a given 

[ ( )] ,21 Ω∈ −Hf  follows from the first Korn inequality (cf. [10, p. 286]). In 

the following, we suppose that [ ( )] .22 Ω∈ Lf  

2.2. The discontinuous Galerkin methods 

In order to formulate the discrete problems introduced by Hansbo and 
Larson in [21], we first recall some notation. 

Let ( ) 0>hhT  be a regular family of triangulations. Let us fix a 

triangulation ( ) 0>∈ hhh TT  and let hE  denote the set of all edges of the 

triangulation .hT  We split hE  into two disjoint subsets: I
hE  the subset of 

edges contained in Ω and ∂
hE  the subset of edges contained in the boundary 

of Ω. Further, with each edge E, we associate a fixed unit normal En  such 

that for edges contained in En,Ω∂  is the exterior unit normal; we further fix 

a unit tangent Et  so that { }EE tn ,  forms an orthonormal basis of .2R  For 

any edge E and any triangle T, we denote by E  the length of E and       

T  the area of T. As usual, for any triangle T, we denote by =ωT  

,: TTTT h
′∅≠′∈′ ∩∪ T  the patch associated with T. Similarly, for an edge E, we 

set .: TTETE h
′=ω ′⊂∈′ T∪  

Let 

( ) { [ ( )] ( )[ ] }2
1

22 :;: TPvTLvDF Thhhh ∈∈∀Ω∈= |TT  



E. Creusé, M. Farhloul, S. Nicaise and L. Paquet 172 

be the space of piecewise linear discontinuous functions (as usual ( )TP1  

denotes the space of polynomials of degree less than or equal to 1 on T). 

For a function ( ),hh DFv T∈  we denote its jump at an edge E by 

[ ][ ] −+ −= hhEh vvv  for I
hE E∈  and [ ][ ] += hEh vv  for ,∂∈ hE E  and the average 

( ) 2−+ += hhEh vvv  for I
hE E∈  and += hEh vv  for ,∂∈ hE E  where ( ) =± xvh  

( )Eh
h

hnxv ∓
+→0

lim  with .Ex ∈  In the same spirit, we define its broken strain 

tensor ( )hh vε  by 

( ) ( ) ,, hThThh Tvv T∈∀ε=ε |  

its broken stress tensor ( )hh vσ  and broken divergence hhvdiv  are defined 

similarly. 

We further introduce the Crouzeix-Raviart space of vector fields 
( ):hCR T  

( ) { [ ( )] ( )[ ] ,:;: 2
1

22 TPvTLvCR Thhhh ∈∈∀Ω∈= |TT  

[ ][ ] },,00 hEh EvP E∈∀=  (2.5) 

where for any edge E and any ( ),2 ELw ∈  

∫=
E

wdsEwP ,1:0  

and therefore 

[ ][ ] [ ][ ] ∫ ∫ −+ −==
E E hhEhEh dsvEdsvEvPvP .11: 00  

The first discontinuous Galerkin method is a variant of the one 
introduced in [21] and reads as follows: find ( )hh DFu T∈  such that 

 ( ) ( ) ( ).,,, hhhhhh DFvvfvua T∈∀=  (2.6) 
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The bilinear form is here defined by 

( )hhh vua ,  

( ) ( ) 00 2,: λγλ+µ+= hhh vua [ ][ ] [ ][ ]( )∑
∈

⋅⋅
hE

EEhEh
E

nvPnuPh
E

00 ,1  

[ ][ ] [ ][ ]( )∑
∈

⋅⋅γ′µ+
hE

EEhEh
E

tvPtuPh
E

000 ,12  

(( ( ) [ ][ ] ) ( ( ) [ ][ ] ) )∑
∈

σ+σ−
h

E
E

EEhEEhhEhEEhh unvvnu
E

,,,  (2.7) 

( ) ( ) ( )( ) [ ][ ] [ ][ ]( )∑ ∑
∈ ∈

µγ+εσ=
h hT E

Ehh
EThhhhh vuhvuvua

T E

,,12,:, 10  (2.8) 

while the linear form is defined by 

( ) ∫Ω ⋅= ., dxvfvf hh  

Here the parameters ,0γ  0γ′  and 1γ  are the stabilizing parameters fixed 

below. 

Here and below ( ) ( )( )Thh vu εσ ,  means the 2L -inner product ( )∫ σ
T hu : 

( ) .dxvhε  Similarly, for vector valued functions ( ) ,, 22 ELwv ∈  ( )Ewv,  

means the 2L -inner product ∫ ⋅
E

dswv .  

Note that our bilinear form ha  differs from the one in [21] by the second 

and third terms of the right-hand side of (2.7), indeed in that paper these two 
terms are replaced by 

( ) [ ][ ] [ ][ ]( )∑
∈

γλ+µ
hE

Ehh
E

vPuPh
E

.,12 000  
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This modification is made to have a discrete stability result and hence a 
robust a posteriori estimate that cannot be obtained if we keep the original 
term from [21]. Note further that the bilinear form ha  is similar to the one in 

[11] except that the second and third terms are replaced by 

[ ][ ] [ ][ ]( )∑
∈

⋅⋅γλ
hE

EEhEh
E

nvnuh
E

.,1
0

2  

As a consequence, the well-posedness of the corresponding problem in [11] 
is obtained for 1γ  and 0γ  large enough (independently of ,)λ  while our 

problem is well-posed only for 0γ  and 0γ′  large enough (independently of 

.)λ  Our approach allows then to use a penalization parameter 1γ  as small as 

we want (but bounded away from zero). This difference also implies the use 
of a different error norm. 

The well-posedness of problem (2.6) follows from the strong 
coerciveness of ha  in ( ),hDF T  that we now show (see Proposition 2.2 of 

[21] or Proposition 2.2 of [11]). 

Proposition 2.1. There exist three positive constants ,minγ  minγ′  and C 

independent of µλ,  and the mesh size h such that for all min0 γ>γ  and all 

min0 γ′>γ′  and any ( ),hh DFv T∈  we have 

( ) ( ) ( ) [ ][ ]






⋅λλ+µ+λ+εµ≥ ∑

∈ hE
EEh

E
hhhhhhh nvPhvdivvCvva

E

2
0

22 122,  

[ ][ ] [ ][ ] .1212 2
1

2
0 






µγ+⋅µ+ ∑ ∑

∈ ∈h hE E
Eh

EEEh
E

vhtvPh
E E

 

Proof. For a fixed edge E, as ( )hh vε  and hhvdiv  are piecewise 

constants, we have 

( ( ) [ ][ ] ) ( ( ) [ ][ ] )EEhEEhEEhEEhh vPnvvnv 0,2, εµ=σ  

( [ ][ ] ) ., 0 EEEhEhh nvPvdiv ⋅λ+  
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By Cauchy-Schwarz’s and Young’s inequalities, for any ,0, >δ′δ  we obtain 

( ( ) [ ][ ] ) ( ) [ ][ ] 2
0

12, EEhEEEhEEEhEEhh vPhvhvnv −δ′µ+ε
δ′
µ≤σ  

( )
2

22 EEhhE vdivh
δλ+µ

λ
+  

( ) [ ][ ] .
2

2 2
0

1
EEEhE nvPh ⋅

δλ+µλ
+ −  

The regularity assumption on the meshes yields a positive constant trC  such 

that 

( ) ( ) ., 2222
EE hhtrEEhEhhtrEEhhE vCvhvdivCvdivh ωω ε≤ε≤  

These estimates in the previous one lead to 

( ( ) [ ][ ] )∑
∈

σ
hE

EEhEEhh vnv
E

,  

( )
( )

22
2

2
hh

tr
hh

tr vdivCvC
δλ+µ

λ
+ε

δ′
µ

≤  

[ ][ ] ( ) [ ][ ]∑
∈

− 




 ⋅δλ+µλ+δ′µ+

hE
EEEhEEhE nvPvPh

E

.2
2 2

0
2

0
1  

By this estimate and the definition of ,ha  we deduce that 

( ) ( ) ( )
22

2
21212, hh

tr
hh

tr
hhh vdivCvCvva 








δλ+µ
−λ+ε








δ′
−µ≥  

[ ][ ]∑
∈

−µγ+
hE

EEhE vh
E

21
12  

( ) ( ) [ ][ ] 2
00

1
2

22 EEh
E

E nvPh
h

⋅














λλ+µ
δ′µ−δ−γλλ+µ+ ∑

∈

−

E

 

( ) [ ][ ] .2 2
00 






⋅δ′−γ′µ+ EEEh tvP  
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Now we fix δ and δ′  such that ( ) ,2
1

2
2121 =








δλ+µ
−=








δ′
− trtr CC  and the 

conclusion follows with the choice ( ) ( ) 







λλ+µ
µ

+
λ+µ

=γ 2
8

2
4,1maxmin

trtr CC  

and .4min trC=γ′  ~ 

By the previous result, we deduce that for min0 γ>γ  and ,min0 γ′>γ′  

problem (2.6) is well posed. As shown in Proposition 2.1 of [21], the method 
is consistent, namely, 

 ( ) ( ).,0, hhhhh DFvvuua T∈∀=−  (2.9) 

Restricting the discontinuous Galerkin method to the space of          
Crouzeix-Raviart functions, we obtain the following simplified scheme: find 

( )hh CRu T∈0  such that 

 ( ) ( ) ( ).,,,00 hhhhhh CRvvfvua T∈∀=  (2.10) 

As before, this second method is consistent in the following sense: 

 ( ) ( ) ( ) .,0, 21
000 Ω∈∀=− HCRvvuua hhhhh ∩T  (2.11) 

Observe that Theorem 2.3 of [28] guarantees the displacement vector 

field [ ( )]223 Ω∈ ε+Hu  for some .2
1,0 



∈ε  Consequently, ( ) Enu ⋅σ  has 

sense on each edge hE E∈  as an element of [ ( )] [ ( )]222 ELEH ⊂ε  and 

Green’s formula can be applied element by element. Hence, the consistency 
always holds. 

We finally refer to [21] for robust a priori error estimates. 

Our goal is to bound the “triple norm” ( )eeae h ,: 0=  of the error 

.: huue −=  But in order to get a robust estimate, we need to use the 

parameter depending norm: 

[ ][ ]∑
∈

λ ⋅λ+Πλ+=
hE

EE
E

h nePhedivee
E

,1 2
0

22
0

222  
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where 0Π  is the 2L -projection on ( )22
0 ΩL  defined by 

( ) ( )∫Ω Ω∈∀
Ω

−=Π .,1 22
0 Lfdxxfff  

Before going on notice that if ( ),0 hh CRu T∈  then 

∫Ω = .00 dxudiv hh  

3. Discrete Stability 

The stability of the continuous problem (2.4) was proved in [11, Prop. 
3.2] and means that 

.fudivλ  

A discrete version of this estimate was also proved in Corollary 3.7 of       
[11] for their own scheme. Using similar arguments, we also obtain a discrete 
stability. 

Proposition 3.1. If ( )hh DFu T∈  is the solution of (2.6), then 

.fuh λ  

Proof. Lemma 3.5 of [11] yields ( ) ( )Ω∈ ,divHDFw h ∩T  such that 

( ),0 hh udivwdiv Πλ−=  

[ ][ ] ( )∑
∈

− Πλ+∇
hE

hhEEh udivwhw
E

.2
0

2212  

With such a choice, we notice that in ( ),, wua hh  the term 

( ) ( [ ][ ] [ ][ ])∑
∈

− ⋅⋅λγλ+µ
hE

EEEhE nwPnuPh
E

00
1

0 ,2  

is zero and therefore the arguments of Proposition 3.6 of [11] can be applied. 

 ~ 
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4. Robust Upper Bound of the Error 

For all ,hT T∈  the local estimator Tη  is defined by 

( )[ ][ ]∑
⊂∈

⋅σ+=η
TEE

EEEhETTTT
h

nuhfh
:

2222

E

 

( [ ][ ] [ ][ ] )∑
⊂∈

− ⋅λ++
TEE

EEhEhE
h

nuPuh
:

2
0

221 ,
E

 

where ( )∫=
TT dxxfTf .1  The global estimator is given by 

∑
∈

η=η
hT

T
T

.22  

Finally, let ( ) ∑
∈

−=
hT

TTT ffhfosc
T

222  be the oscillating term. 

Note that the difference between our estimator and the one from [11] 

relies on the replacement of the term [ ][ ] 212
EEhE nuh ⋅λ −  by the smaller one 

[ ][ ] 2
0

12
EEhE nuPh ⋅λ −  (that is even zero for the Crouzeix-Raviart element, 

see below). 

Now we are able to state our locking-free a posteriori error estimate: 

Theorem 4.1. With the previous notation, we have the following a 
posteriori estimate: 

 ( ).fosce +ηλ  (4.1) 

Proof. We proceed as in the proof of Theorem 4.2 of [11], using in 

particular Lemma 4.1 in [11], namely, we take ( )21
0 Ω∈ω H  such that 

( ),0 edivdiv hΠλ=ω  

( ) ,0,1 hhudivΠλω Ω  



A Posteriori Error Estimates of the Stabilized Crouzeix-Raviart … 179 

and such that there exist 0>β  and 0>κ  for which 

( ) ( ) 2
0

224 edive h
c Πλ+εµ  

 ( ( ( ) ( )) ( )),,,2 ωβλ+βω+εεµκ≤ divedivee h
cc  (4.2) 

where ce  is the continuous part of the error (see for instance, [23, 11]), 
namely, 

c
h

c uue −=    and   ,⊥+= h
c
hh uuu  

with ( ) ( )21
0: Ω=∈ HDFVu h

c
h

c
h ∩T  and ( ) ,⊥⊥ ∈ hh DFu T  where ( )⊥hDF T  

is an appropriate orthogonal complement of c
hV  into ( ).hDF T  

In a first step using this splitting and the standard estimate 

 [ ][ ]∑
∈

⊥∇
hE

Eh
E

hh uhu
E

,1 22  (4.3) 

we have (compare with the estimate (29) from [11]) 

( ) ( ) 2
0

222 edivee h
c Πλ+ελ  

( [ ][ ] [ ][ ] )∑
∈

− ⋅λ++
hE

EEhEhE nuPuh
E

.2
0

221  

Hence, it remains to estimate the first two terms of this right-hand side. For 
that purpose, we use (4.2) and transform its right-hand side as in [11] to get 

( ) ( ) 2
0

224 edive h
c Πλ+εµ  

( ) ( )( ) ( ) ( )( ) ( ( ) ( )) ( ),,,2,, c
hhhh edivedivwuwuwu λ−εεµ+εσ−εσ ⊥  (4.4) 

where βω+= cew  that belongs to ( )21
0 ΩH  and satisfies (see [11, p. 1550]) 

 .,1 λΩ ew  (4.5) 
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For the two first terms of this right-hand side, we use the continuous         
and discrete formulation to get successively (with ( )wIw Clh =  the Clément 

interpolant of w) 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )hhhhhh wwuwwuwuwu −εσ−−εσ=εσ−εσ ,,,,  

( ) ( )( ) ( ) ( )( )hhhh wuwu εσ−εσ+ ,,  

( ) ( )( ) ( ) ( )( )hhhh wwuwwu −εσ−−εσ= ,,  

( ( ) [ ][ ] )∑
∈

σ−
hE

EEhEEh unw
E

.,  

Using again the continuous formulation and piecewise Green’s formula, we 
arrive at 

( ) ( )( ) ( ) ( )( )wuwu hh εσ−εσ ,,  

( ) (( ( )[ ][ ] )∑
∈

−⋅σ−−=
hE

EhEhhh wwnuwwf
E

,,  

( ( ) [ ][ ] ) )., EEhEEh unwσ+  

The first term is estimated in a standard way. The second term is also 
estimated in a classical way, namely, by classical local error estimates on the 
Clément interpolant ([31, Lemma 1.4, p. 11]) using Lemma 3.4 of [11], we 
get 

( ( )[ ][ ] ) ., ,1 Ω
∈

η−⋅σ∑ wwwnu
hE

EhEhh
E

 

For the last term, we can write (see above) 

( ( ) [ ][ ] ) ( ( ) [ ][ ] )EEhEEhEEhEEh unwunw ,2, εµ=σ  

( [ ][ ] ) ., 0 EEEhEhh nuPwdiv ⋅λ+  
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Hence, using scaling arguments, we obtain 

( ( ) [ ][ ] )∑
∈

σ
hE

EEhEEh unw
E

,  

( [ ][ ] [ ][ ] ) .1 2
1

2
0

22
,1 













⋅λ+∑

∈
Ω

hE
EEhEh

E
h nuPuhw

E

 

Hence, using again Lemma 1.4 of [31], we get 

( ( ) [ ][ ] ) ., ,1 Ω
∈

ησ∑ wunw
hE

EEhEEh
E

 

The third term of (4.4) is estimated by using (4.3), namely, 

( ( ) ( )) .,2 wwuwu hhh ∇η∇∇εεµ ⊥⊥  

For the last term of (4.4) since ce  belongs to ( )21
0 ΩH  its divergence           

is of mean zero and therefore as in step 2b in the proof of Theorem 4.2 of 
[11, p. 1550], we find 

( ) ( ).,, 0
⊥Πλ−≤λ− hhh

c
h udivedivedivediv  

Hence, by Cauchy-Schwarz’s inequality and the estimate (4.3), we again 
arrive at 

( ) ., 0 ληΠηλλ− eedivedivediv h
c

h  

All the previous estimates lead to the conclusion. ~ 

5. Lower Bound of the Error 

For a subset ω  of ,Ω  we denote by 

( ) ( )( ) 2
0

22
, ,: ωωωλ Πλ+εσ= ediveee hhh  

( [ ][ ] [ ][ ] )∑
ω⊂∈

⋅λ+µγ+
EE

EEhEh
E

h

nuPuh
:

2
0

22
1 ,21

E
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( ) ∑
ω⊂∈

ω −=
TT

TTT
h

ffhfosc
:

222 .:
T

 

We start with the element residual. 

Lemma 5.1. For all ,hT T∈  we have 

( )., foscefh TTTTT +λ  

Proof. If Tb  is the standard bubble function associated with T, then we 

set .TTT bfw =  Hence, by a standard inverse inequality, we have 

( ) ( )∫ ∫ ∫ ⋅−σ−⋅−=⋅
T T T ThTTTTTT dxwuudivdxwffdxwff ,2  

reminding that ( ) .fudiv −=σ  For the second term of this right-hand side 

applying Green’s formula, we obtain 

( ) ( ) ( )∫ ∫ ε−σ+⋅−
T T ThTTTT dxwuudxwfff .:2  

Now we can write 

( ) ( ) ( ) ( )∫ ∫ ε−εµ=ε−σ
T T ThTh dxwuudxwuu :2:  

( ) ( )∫ −λ+
T Th dxwdivuudiv  

( ) ( )∫ ε−εµ=
T Th dxwuu :2  

( ) ( )∫Ω −λ+ .dxwdivuudiv Thh  

Since Tw  can be seen as a function in ( ) ,21
0 ΩH  we deduce that 

( ) ( ) ( ) ( )∫ ∫ ε−εµ=ε−σ
T T ThTh dxwuudxwuu :2:  

( ) ( )∫Ω −Πλ+ dxwdivuudiv Thh0  
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( ) ( )∫ ε−εµ=
T Th dxwuu :2  

( ) ( )∫ −Πλ+
T Thh dxwdivuudiv .0  

By Cauchy-Schwarz’s inequality and the inverse inequality 

( ) ,1
TTTTT fhw −ε  

we obtain 

( ) ( ) ( ) .0 ThhThTTTT uudivuufoscfh −Πλ+−ε+  

The conclusion follows from the direct estimate 

 ( ) ( ) ( )∫ εσ
µ

≤ε
TT dxeee .:2

12  (5.1) 

 ~ 

We argue in a similar manner for the normal jump, namely, we have the 

Lemma 5.2. For all ,hE E∈  we have 

( )[ ][ ] ( ).,
21 foscenuh EEEEEhE ωωλ +⋅σ  

Proof. Denoting by Eb  the edge bubble, we set ( )[ ][ ] EEEhE bnuw ⋅σ=  

that belongs to [ ( )] .21
0 EH ω  Hence, by a standard inverse inequality, we have 

( )[ ][ ] ( )[ ][ ]∫ ⋅⋅σ⋅σ
E EEEhEEEh dswnunu ~2  

( )[ ][ ]∫ ⋅⋅−σ=
E EEEh dswnuu  

( )∑ ∫
ω⊂∈

∂
⋅⋅−σ=

Eh TT
T Eh dswnuu

:
.

T
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Hence, an integration by parts yields 

( )[ ][ ] ( ) ( )∑ ∫ ∫
ω⊂∈







 ⋅+∇−σ⋅σ

Eh TT
T T EEhEEEh dxwfdxwuunu

:

2 .:~
T

 

Using the same arguments as before, we obtain 

( )[ ][ ] ( ( ) )∑
ω⊂∈

+−ε⋅σ
Eh TT

TTTThEEEhE fhuunuh
:

21

T

 

( ) ( ).0 foscuudiv EEhh ωω +−Πλ+  

The conclusion follows from Lemma 5.1 and the estimate (5.1). ~ 

These two lemmas directly yield the 

Theorem 5.3. For all ,hT T∈  we have 

( )., fosce TTT ωωλ +η  

6. The Nonconforming Galerkin Method Based on the  
Crouzeix-Raviart Element 

The arguments of the three previous sections can be directly applied to 
the discontinuous method (2.10). They are even simpler because [ ][ ]Eh nuP ⋅0  

0=  on any edge E. Hence, we have not to use the extra term 

[ ][ ]∑
∈

⋅λ
hE

EE
nePh

E

2
0

2 1  

in the norm of the error (as it is zero). More precisely, we can prove the next 
results: 

Theorem 6.1. We have the following a posteriori estimate: 

 ( ),00 foscedive h +ηΠλ+  (6.1) 

where ∑
∈

η=η
hT

T
T

,2
0

2
0  and for all ,hT T∈  the local estimator T0η  is 
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defined by 

( )[ ][ ]∑
⊂∈

⋅σ+=η
TEE

EEEhETTTT
h

nuhfh
:

2222
0

E

 

[ ][ ]∑
⊂∈

+
TEE

Eh
E

h

uh
:

2 .1

E

 

Theorem 6.2. For all ,hT T∈  we have 

( ) ( ),00 foscedive TTT hT ωωω +Πλ+η  

where 

( ) ( )( ) [ ][ ]∑ ∑
ω⊂∈ ω⊂∈

ω µγ+εσ=
TT EE

Eh
E

T
h h

uheee
: :

2
1

2 .12,:
T E

 

Theorem 6.1 is also a consequence of Theorem 2.1 of [15] since hu0  

satisfies the assumptions of this theorem. We give here an alternative proof. 

7. Numerical Experiments 

In this section, some numerical experiments are performed to illustrate 
the above theoretical results, similarly to the ones proposed in [11]. In all the 
following cases, Crouzeix-Raviart finite elements ( )hCR T  defined by (2.5) 

are used on a regular mesh composed of triangles. 

7.1. Divergence-free smooth solutions 

The first test consists in solving equation (2.1) on the unit square =Ω  

( ) ,1,0 2  for the exact solution given by: 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ),cossin,cossinsinsin1, 1
2 xyyxyxyxu n ππ−ππππ

π
= −  

where 2≥n  is a given integer and where f is chosen accordingly. It should 
be noted that u is smooth, divergence-free, and that 0=u  on .Ω∂  



E. Creusé, M. Farhloul, S. Nicaise and L. Paquet 186 

For the first example, we set .2=n  We plot in Figure 7.1 the 
convergence rates of the error (Figure 7.1(a)) and of the estimator (Figure 
7.1(b)) for several values of λ, using a uniform mesh refinement strategy.         
It can be observed a good convergence towards zero for both of them 
corresponding to the one theoretically expected (namely, order 1 in h 
corresponding to order –1/2 in the total number of degrees of freedom ndof). 

 

Figure 7.1. Error (a) and estimator (b) convergence rates in ndof for the 

regular solution, λ= ,2n  from 1 to .104  

 

Figure 7.2. Effectivity index effI  for the regular solution, λ= ,2n  from 1 

to .104  
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Then the effectivity index defined by: 

ediveI
h

eff
0

0
Πλ+

η
=  

is plotted in Figure 7.2. First, it can be observed that for a given value of λ, 
the reliability of the estimator is ensured, as underlined by Theorem 6.1. 
Moreover, even if the value of effI  is not totally independent of λ, it remains 

in a reasonable range (in the order of 1). 

For the second example, we set 25=n  in order to generate high 

gradients in the vicinity of the mid-point .2
1,2

1





  Consequently, instead of a 

uniform one, a local refinement mesh strategy is performed based on the 
local error estimator efficiency proven in Theorem 6.2. Here, this local 
refinement ensures that the mesh remains conform (there is no hanging-nodes 
creation), as well as regular (the minimal angle allowed in the triangulation is 
specified, in order to preserve the shape regularity of the mesh). We refer to 
[31] for further details and for the algorithm description (red, green and blue 
refinements). The resulting meshes obtained for iteration steps 1, 4 and 7 

corresponding to 410=λ  are displayed in Figure 7.3, so that we can observe 
that the high gradients area is well tracked by the remeshing process. The 
convergence rates of the error and the estimator are plotted in Figure 7.4 and 
the effectivity index in Figure 7.5. Once again, the conclusions are the same 
than for the first example: experimental convergence rates of order 1 and 
robustness with respect to large values of λ, as well as only a small variation 
in λ of the effectivity index (around 1) for all the considered values of λ. 
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Figure 7.3. Mesh refinements 1, 4 and 7 for the regular solution, ,25=n  

.104=λ  

 
Figure 7.4. Error (a) and estimator (b) convergence rates in ndof for the 

regular solution, λ= ,25n  from 1 to .104  

 
Figure 7.5. Effectivity index effI  for the regular solution, λ= ,25n  from 1 

to .104  
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7.2. Singular solution 

This second test consists now in solving equation (2.1) on the domain Ω 
defined by: 

( ) ( ){ },0,1.01.0;,\1,1 2 xxyxyx ≤≤≤−−=Ω  

with the external force f chosen to be: 

( ) ( ) .,0,1, 224
3

yxrryxf +=−=
−

 

In that case, the exact solution exhibits a singular behaviour around the 
origin. We want to check if the mesh is correctly refined around the 
singularity when the estimator is used to carry out the refinement process, 
and in the same time if the global estimator decreases consequently towards 
zero. The resulting meshes obtained for iteration steps 1, 7 and 10 

corresponding to 410=λ  are displayed in Figure 7.6, and we can see that 
the mesh is automatically refined around the singularity. Moreover, Figure 
7.7 shows that the estimator converges towards zero, with experimental 
convergence rates of order 1. 

 

Figure 7.6. Mesh refinements 1, 7 and 10 for the singular solution, .104=λ  
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Figure 7.7. Estimator convergence rate in ndof for the singular solution, λ 

from 1 to .104  
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