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Abstract 

A two-colored digraph is a digraph each of whose arc is colored by red 
or blue. An ( ),h -walk is a walk consisting of h red arcs and  blue 

arcs. The scrambling index of a two-colored digraph is the smallest 
positive integer +h  over all nonnegative integers h and  such that 
for each pair of vertices u and v there is a vertex w such that there exist 
an ( ),h -walk from u to w and an ( ),h -walk from v to w. We study 

the scrambling index of primitive two-colored digraph consisting of 
two cycles whose lengths differ by 1. We present a lower bound and 
an upper bound for the scrambling index for such two-colored digraph. 
We then show that the lower and the upper bounds are sharp bounds. 

1. Introduction 

Let D be a digraph on n vertices { }....,,, 21 nvvv  A walk of length  
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from iv  to jv  is a sequence of arcs of the form ...,,, 2110 uuuuvi →→=  

.1 jvuu =→−  A walk of length  from iv  to jv  is denoted by ji vv →  

walk. A walk is open if ji vv ≠  and is closed otherwise. A ji vv →  path is 

a walk with no repeated vertices, except possibly .ji vv =  A cycle is a closed 

path. The distance from vertex iv  to vertex ,jv  denoted by ( ),, ji vvd  is the 

length of the shortest ji vv →  path. A digraph D is strongly connected 

provided for each ordered pair of vertices iv  and jv  there is a ji vv →  walk. 

By a two cycles we mean a strongly connected digraph consisting of exactly 
two cycles. 

A strongly connected digraph D is primitive provided there is a positive 
integer  such that for each ordered pair of vertices iv  and jv  there exists a 

ji vv →  walk. The smallest of such positive integer  is the exponent of D. 

In 2009, Akelbek and Kirkland [1] introduced a new parameter on primitive 
digraph called scrambling index. The scrambling index of a primitive digraph 
is the smallest positive integer k such that for each pair of vertices iv  and jv  

there exists a vertex tv  such that there are a t
k

i vv →  walk and a t
k

j vv →  

walk in D. See [1, 2] for earliest discussion on the scrambling index of 
primitive digraphs. 

A two-colored digraph ( )2D  is a digraph each of whose arcs is colored by 

either red or blue. An ( ),h -walk in a two-colored digraph ( )2D  is a walk 

consisting of h red arcs and  blue arcs. An ( ),h -walk from iv  to jv  is also 

denoted by 
( )

j
h

i vv
,
→  walk. For a walk W in ( )2D  we denote ( )Wr  to be the 

number of red arcs in W and ( )Wb  to be the number of blue arcs in W. The 

length of W is ( ) ( ) ( ).WbWrW +=  The vector 
( )
( )⎥⎦

⎤
⎢⎣
⎡

Wb
Wr

 is the composition 

of the walk W. 
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The notions of primitivity and exponent of digraph have been 
generalized to that of two-colored digraph [3, 4]. A strongly connected two-

colored digraph ( )2D  is primitive provided there exist nonnegative integers h 

and  such that for each pair of ordered vertices iv  and jv  in ( )2D  there is a 

( )
j

h
i vv

,
→  walk in ( ).2D  The smallest positive integer +h  over all such 

nonnegative integers h and  is called the exponent of ( ).2D  

For a primitive two-colored digraph on n vertices { },...,,, 21 nvvv  we 

define the scrambling index of ( ),2D  denoted by ( ( ) ),2Dk  to be the smallest 

positive integer +h  over all nonnegative integers h and  such that for 

each pair of vertices iv  and jv  in ( )2D  there is a vertex tv  with the property 

that there are a 
( )

t
h

i vv
,
→  walk and a 

( )
t

h
j vv

,
→  walk. 

We discuss the scrambling index of primitive two-colored two cycles 
whose lengths 1+s  and s for some positive integer .3≥s  In Section 2, we 
discuss primitivity of such two-colored two cycles. In Section 3, we present a 
way in setting up a lower bound and an upper bound for scrambling index. In 
Section 4, we present results on the scrambling index of two-colored two 
cycles whose lengths differ by 1. 

2. Primitivity 

Let ( )2D  be a strongly connected two-colored digraph and let the set of 

all cycles in ( )2D  be { }....,,, 21 qCCCC =  We define a cycle matrix of ( )2D  

to be a 2 by q matrix 
( ) ( ) ( )
( ) ( ) ( ) .

21

21
⎥
⎦

⎤
⎢
⎣

⎡
=

q

q
CbCbCb
CrCrCr

M  If the rank of M is 

1, the content of M is defined to be 0, and the content of M is defined to be 
the greatest common divisor of the determinants of 2 by 2 submatrices of M, 

otherwise. A two-colored digraph ( )2D  is primitive if and only if the content 
of M is 1 [3]. 
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Let s and c be integers with 3≥s  and .2 sc ≤≤  We discuss primitivity 
of two-colored two cycles on csn −+= 12  vertices { }nvvv ...,,, 21  as 

shown in Figure 1. Let csnsc vvvvvC −+=+ →→→→→→ 121211 :  

1v→  be the cycle of length 1+s  and let →→→→ cvvvC 212 :  

11 vvv sc →→→+  be the cycle of length s. Notice that 1C  and 2C  have 

c vertices in common. 

 
Figure 1. Two cycles whose lengths differ by 1. 

Proposition 2.1. Let ( )2D  be a strongly connected primitive two-colored 

two cycles of lengths 1+s  and s, respectively. The cycle matrix of ( )2D  is 

either of the form ⎥⎦
⎤

⎢⎣
⎡ −

=
11

1ss
M  or .

1
11

⎥⎦
⎤

⎢⎣
⎡

−
=

ss
M  

Proof. The cycle matrix of ( )2D  is of the form ⎥⎦
⎤

⎢⎣
⎡ −−+

=
ba

bsas
M

1
 

for some 10 +≤≤ sa  and .0 sb ≤≤  Since ( )2D  is primitive, ( ) =Mdet  

( ) .1±=+− babs  This implies ( ) .0≤− ab  If ( ) ,1det =M  then ( )abs −  

.1=+ b  Since ,sb ≤  we conclude that .0=− ab  Therefore in this case 

we have .1== ab  If ( ) ,1det −=M  then ( ) .1−=+− babs  Since ,sb ≤  

we conclude that .1−=− ab  This implies 1−= sb  and .sa =  Hence we 

now conclude that either ⎥⎦
⎤

⎢⎣
⎡ −

=
11

1ss
M  or .

1
11

⎥⎦
⎤

⎢⎣
⎡

−
=

ss
M  ~ 

We assume without loss of generality that the cycle matrix of ( )2D  is the 
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matrix .
11

1
⎥⎦
⎤

⎢⎣
⎡ −

=
ss

M  Hence either ( )2D  has two blue arcs or ( )2D  has 

only one blue arc. 

3. Lower and Upper Bounds 

In this section, we discuss a way in setting up bounds for the scrambling 
index of two-colored two cycles. 

Proposition 3.1. Let ( )2D  be a primitive two-colored two cycles and let 

ti vvP ,  be a ti vv →  path that contains a vertex of both cycles. If for some 

nonnegative integers h and  the system 
( )
( ) ⎥⎦

⎤
⎢⎣
⎡=⎥

⎦

⎤
⎢
⎣

⎡
+

h
Pb
Pr

M
ti

ti

vv

vv

,

,z  has 

nonnegative integer solution, then there is a 
( )

t
h

i vv
,
→  walk. 

Proof. Let ( )Tzz 21,=z  be the solution to the system and let qv  be a 

vertex in the path 
ti vvP ,  that lies on both cycles. The walk that starts at ,iv  

moves to qv  along the path ,, qi vvP  and moves 1z  and 2z  times around the 

cycles 1C  and ,2C  respectively, and back at qv  and finally follows the path 

tq vvP ,  to tv  is an ( ),h -walk from iv  to .tv  ~ 

For a vertex tv  in ( ),2D  the local scrambling index of iv  and jv  at the 

vertex ,tv  denoted by ( ),, tvv vk
ji

 is the smallest positive integer +h  over 

all pairs of nonnegative integers h and  such that there are a 
( )

t
h

i vv
,
→          

walk and a 
( )

t
h

j vv
,
→  walk. The local scrambling index of vertices iv               

and jv  in ( ),2D  denoted ( ( ) ),2
, Dk

ji vv  is defined to be ( ( ) ) =2
, Dk

ji vv  

( ( ) ){ ( )}.min ,2 tvvDVv vk
jit∈

 Hence ( ( ) ){ ( ( ) )} ( ( ) ).max 22
,, 2 DkDk

jiji
vvDVvv ≤

∈
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The following lemma is a basis for finding a lower bound for the 
scrambling index of two-colored two cycles. 

Lemma 3.2. Let ( )2D  be a primitive two-colored two cycles with cycle 
matrix M and let ( ) .1det =M  Let iv  and jv  be any two distinct vertices in 

( ).2D  If ( )tvv vk ji ,  is obtained by an ( ),h -walk, then 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
,

,1,1

,2,2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−
≥⎥

⎦

⎤
⎢
⎣

⎡

tjtj

titi

vvvv

vvvv

PrCbPbCr

PbCrPrCb
M

h
 

and hence 

( ) ( )[ ( ) ( ) ( ) ( )]titiji vvvvtvv PbCrPrCbCvk ,2,21, −≥  

( )[ ( ) ( ) ( ) ( )]tjtj vvvv PrCbPbCrC ,1,12 −+  

for some paths ti vvP ,  and ., tj vvP  

Proof. Since ( ) ,1det =M  there are integers 1q  and 2q  such that =⎥⎦
⎤

⎢⎣
⎡h  

.
2

1
⎥⎦
⎤

⎢⎣
⎡
q
q

M  Since every walk can be decomposed into a path and some cycles, 

( )
( )⎥⎦

⎤
⎢
⎣

⎡
+=⎥⎦

⎤
⎢⎣
⎡

ti

ti

vv

vv
Pb
Pr

M
h

,

,z  for some path ti vvP ,  from iv  to tv  and some 

nonnegative integer vector z. Comparing these equations we have ⎥⎦
⎤

⎢⎣
⎡=

2

1
q
q

z  

( )
( ) .0

,

,1 ≥⎥
⎦

⎤
⎢
⎣

⎡
− −

ti

ti

vv

vv
Pb
Pr

M  Hence 

( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
.

,1,1

,2,2

,

,1

2

1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
≥

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −

titi

titi

ti

ti

vvvv

vvvv

vv

vv

PrCbPbCr

PbCrPrCb

Pb

Pr
M

q

q
 

Thus ( ) ( ) ( ) ( )titi vvvv PbCrPrCbq ,2,21 −≥  for some path ti vvP ,  from iv  to 



Scrambling Index of Two-colored Two Cycles 119 

.tv  Similarly, we have ( ) ( ) ( ) ( )tjtj vvvv PrCbPbCrq ,1,12 −≥  for some path 

tj vvP ,  from jv  to .tv  If ( )tvv vk ji ,  is obtained by an ( ),h -walk, then 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
.

,1,1

,2,2

2

1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−
≥

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

tjtj

titi

vvvv

vvvv

PrCbPbCr

PbCrPrCb
M

q

q
M

h
 

Thus 

( ) ( ) [ ( ) ( ) ( ) ( )]
titiji vvvvtvv PbCrPrCbCvk ,2,21, −≥  

( )[ ( ) ( ) ( ) ( )]tjtj vvvv PrCbPbCrC ,1,12 −+  

for some paths ti vvP ,  and ., tj vvP  ~ 

4. Results 

We begin with the case where ( )2D  has only one blue arc. Notice that 

the blue arc of ( )2D  must be of the form 1+→ aa vv  for some .11 −≤≤ ca  

Lemma 4.1. Let ( )2D  be a primitive two-colored two cycles with cycles 

of length 1+s  and s as shown in Figure 1. If ( )2D  has a unique blue arc 

,1+→ aa vv  for some ,11 −≤≤ ca  then ( ( ) ) .122 +−≥ csDk  

Proof. We assume that there are a 
( )

t
h

a vv
,

1 →+  walk and a 
( )

t
h

a vv
,
→  walk 

for some vertex tv  in ( ).2D  Let ( ) ( ) ( ) ( )
tata vvvv PbCrPrCbe ,2,21 11 ++

−=  

and ( ) ( ) ( ) ( ).,1,12 tata vvvv PrCbPbCre −=  We consider two cases depending 

on the position of the vertex .tv  

Case 1. The vertex tv  lies on the avv →1  path. There are two paths 

ta vvP ,1+  from 1+av  to .tv  They are an ( )( )0,,1 tvvdas +− -path and an 

( )( )0,1,1 ++− tvvdas -path. Considering the ( )( )0,,1 tvvdas +− -path 
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we have 

( ) ( ) ( ) ( )tata vvvv PbCrPrCbe ,2,21 11 ++
−=  

( ) ( )( ) ( ) ( ) ( ).,01,1 11 tt vvdassvvdas +−=−−+−=  

Considering the ( )( )0,1,1 ++− tvvdas -path we have +−= ase1  

( ) .1,1 +tvvd  So we choose ( ).,11 tvvdase +−=  

There are two paths ta vvP ,  from av  to .tv  They are an ( +− as  

( ) )1,,1 tvvd -path and an ( )( )1,1,1 ++− tvvdas -path. Considering the 

( )( )1,,1 tvvdas +− -path we have ( ).,12 tvvdae −=  Considering the 

( )( )1,1,1 ++− tvvdas -path we have ( ) .1,12 −−= tvvdae  So we choose 

( ) .1,12 −−= tvvdae  

By Lemma 3.2 we conclude that 

( ) ( ) ( ) ( ) ( )ttvv vvdasseeseCeCvk
aa

,1 1
2

212211, 1
+−=++=+≥

+
 (1) 

for each vertex tv  that lies on the avv →1  path. 

Case 2. The vertex tv  lies on the na vv →+1  path or sa vv →+1  path. 

There is a unique path 
ta vvP ,1+
 from 1+av  to tv  which is a ( )( )0,,1 ta vvd + -

path. Using this path we have ( ).,11 ta vvde +=  There is a unique path ta vvP ,  

from av  to tv  which is a ( )( )1,,1 ta vvd + -path. Using this path we have =2e  

( ).,1 ta vvds +−  Since ( ) ( ) ,,, 11 avvdvvd tta −=+  by Lemma 3.2 we conclude 

that 

 ( ) ( ) ( )ttvv vvdasseesvk
aa

,1 1
2

21, 1
+−=++≥

+
 (2) 

for each vertex tv  that lies on the na vv →+1  path or sa vv →+1  path. 

From (1) and (2), we conclude that ( ( ) ) asDk aa vv −≥
+

22
, 1  and hence 

( ( ) ) .22 asDk −≥  Since ( ( ) ) .1,11 22 +−≥−≤≤ csDkca  ~ 
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We next discuss the case where ( )2D  has two blue arcs. We first consider 
the case where the blue arcs have the same initial vertex and then discuss the 
case where the blue arcs have different initial vertices. 

Lemma 4.2. Let ( )2D  be a primitive two-colored two cycles with cycles 

of lengths 1+s  and s as shown in Figure 1. If ( )2D  has two blue arcs 

1+→ cc vv  and ,1+→ sc vv  then ( ( ) ) ( ).122 cssDk −++≥  

Proof. Suppose there are a 
( )

t
h

c vv
,
→  walk and a 

( )
t

h
s vv

,
1 →+  walk. 

Define ( ) ( ) ( ) ( )
tsts vvvv PbCrPrCbe ,2,21 11 ++

−=  and ( ) ( ) −= tc vvPbCre ,12  

( ) ( ).,1 tc vvPrCb  We consider three cases. 

Case 1. The vertex tv  lies on the cvv →1  path. There is a unique 

ts vvP ,1+  path from 1+sv  to tv  which is an ( )( )0,,1 1 tvvdcs +−+ -path. 

Using this path we find that ( ).,1 11 tvvdcse +−+=  There are two paths 

tc vvP ,  from cv  to .tv  They are an ( )( )1,,1 1 tvvdcs +−+ -path and an 

( )( )1,,1 tvvdcs +− -path. Considering the ( )( )1,,1 1 tvvdcs +−+ -path we 

have ( ).,1 12 tvvdce −−=  Considering the ( )( )1,,1 tvvdcs +− -path we 

have ( ).,12 tvvdce −=  Thus we conclude that ( ).,1 12 tvvdce −−=  

Lemma 3.2 implies that 

 ( ) ( ) ( )ttvv vvdcssseesvk
cs

,11 1
2

21,1
+−++=++≥

+
 (3) 

for each vertex tv  that lies on the cvv →1  path. 

Case 2. The vertex tv  lies on sc vv →+1  path. There is a unique ts vvP ,1+  

path from 1+sv  to tv  which is an ( )( )1,,1 tc vvds ++ -path. Using this path 

we find that ( ) .1,11 += + tc vvde  There is a unique path tc vvP ,  from cv  to 

tv  which is a ( )( )1,,1 tc vvd + -path. Using this path we have that −= se2  

( ).,1 tc vvd +  Since ( ) ( ) ,,, 11 cvvdvvd ttc −=+  Lemma 3.2 implies that 
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 ( ) ( ) ( )ttvv vvdcssseesvk cs ,11 1
2

21,1 +−++=++≥
+

 (4) 

for each vertex tv  that lies on the sc vv →+1  path. 

Case 3. The vertex tv  lies on ns vv →+1  path. There is a unique path 

ts vvP ,1+  from 1+sv  to tv  which is an ( )( )0,,1 1vvdcs t−−+ -path. Using 

this path we find that ( ).,1 11 vvdcse t−−+=  There is a unique path from 

cv  to tv  which is an ( )( )1,,1 1vvdcs t−−+ -path. Using this path we find 

that ( ).,1 12 vvdce t+−=  By Lemma 3.2 we have 

( ) .1 1
2

2

1
⎥
⎦

⎤
⎢
⎣

⎡ −−+=⎥⎦
⎤

⎢⎣
⎡≥⎥⎦

⎤
⎢⎣
⎡

s
v,vdcs

e
e

M
h t  

We consider ts vv →+1  walk. Since the path ts vvP ,1+  is an 

( )( )0,,1 1vvdcs t−−+ -path, the solution to the system 

( )
( )

( )
⎥
⎦

⎤
⎢
⎣

⎡ −−+=⎥
⎦

⎤
⎢
⎣

⎡
+

+

+

s
v,vdcs

Pb
Pr

M t
vv

vv

ts

ts 1
2

,

, 1

1

1z  

is 01 =z  and .2 sz =  This implies there is no ( ( ) )svvdcs t ,,1 1
2 −−+ -

walk from 1+sv  to .tv  We note that the shortest ts vv →+1  walk that 

contains at least ( )1
2 ,1 vvdcs t−−+  red arcs and at least s blue arcs is an 

( ( ) )1,,1 1
2 +−−++ svvdcss t -walk. This implies ( ) ++≥

+
ssvk tvv cs

2
,1

 

( )( ).,11 1vvdsc t−++−  Since tv  lies on ( ) ( ).,1,, 111 vvdsvvdC tt −+=  

Therefore 

 ( ) ( )ttvv vvdcssvk
cs

,1 1
2

,1
+−++≥

+
 (5) 

for each vertex tv  that lies on ns vv →+1  path. 

From (3), (4) and (5) we conclude that ( ( ) ) .122
,1 cssDk cs vv −++≥

+
 

Hence ( ( ) ) .122 cssDk −++≥  ~ 
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We now discuss the case where ( )2D  has two blue arcs with different 
initial vertices. 

Lemma 4.3. Let ( )2D  be a primitive two-colored two cycles with cycles 

of lengths 1+s  and s as shown in Figure 1. If ( )2D  has two blue arcs 

1+→ yy vv  and 1+→ xx vv  for some sxc ≤≤+ 1  and ,1 nys ≤≤+  then 

( ( ) ) ( ) ( ) { ( ) ( )}.,,,max,, 11111111
22 vvdvvdsvvdvvdsDk xyxy ++++ +−+≥  

Proof. For simplicity, we define ( )111 , vvdd y+=  and ( )., 112 vvdd x+=  

We consider two cases where ( ) ( )1111 ,, vvdvvd xy ++ >  and ( ) ≤+ 11, vvd y  

( )., 11 vvd x+  

Case 1. ( ) ( ).,, 1111 vvdvvd xy ++ >  Suppose there are 
( )

t
h

y vv
,

1 →+  walk 

and 
( )

t
h

x vv
,
→  walk for some vertex tv  in ( ).2D  Let ( ) ( )

ty vvPrCbe ,21 1+
=  

( ) ( )
ty vvPbCr ,2 1+

−  and ( ) ( ) ( ) ( ).,1,12 txtx vvvv PrCbPbCre −=  We shall show 

that ( ( ) ) ( ) .121
22 dsddsDk +−+≥  We consider three subcases depending 

on the position of the vertex .tv  

Subcase 1a. The vertex tv  lies on the yvv →1  path or xvv →1  path. 

There is a unique ty vvP ,1+  path from 1+yv  to tv  which is a ( )( )0,,11 tvvdd + -

path. Using this path we have ( ).,111 tvvdde +=  There is a unique path 

tx vvP ,  from xv  to tv  which is a ( )( )1,,12 tvvdd + -path. Using this path we 

have ( ).,122 tvvddse −−=  Lemma 3.2 implies 

 ( ) ( ) ( ) ( )ttvv vvddsddsseesvk
xy

,1 1121
2

21,1
++−+=++≥

+
 (6) 

for each vertex tv  that lies on the yvv →1  path or xvv →1  path. 

Subcase 1b. The vertex tv  lies on ny vv →+1  path. There is a unique 
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path ty vvP ,1+  from 1+yv  to tv  which is a ( )( )0,, 11 vvdd t− -path. Using this 

path we have ( )., 111 vvdde t−=  There is a unique path tx vvP ,  from xv  to tv  

which is a ( )( )2,, 12 vvdsd t−+ -path. Using this path, we have −= se2  

( )., 12 vvdd t+  From Lemma 3.2, we have 

( ) ( ) .,1

21

1221
2

2

1
⎥
⎦

⎤
⎢
⎣

⎡

−+
−+−−+=⎥⎦

⎤
⎢⎣
⎡≥⎥⎦

⎤
⎢⎣
⎡

dds
vvddsdds

e
e

M
h t  

We consider walk from the vertex 1+yv  to .tv  We note that the path 

ty vvP ,1+  from 1+yv  to tv  is a ( )( )0,, 11 vvdd t− -path. This implies the 

solution to the system 

( )
( )

( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡

−+
−+−−+=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

+

+

21

1221
2

,

, ,1

1

1

dds
vvddsdds

Pb
Pr

M t
vv

vv

ty

tyz  

is 01 =z  and .212 ddsz −+=  Since the path ty vvP ,1+  lies entirely on ,1C  

there is no walk from 1+yv  to tv  that consists of ( ) −+−−+ 221
2 1 dsdds  

( )1, vvd t  red arcs and 21 dds −+  blue arcs. Notice that the shortest walk 

from 1+yv  to tv  that contains at least ( ) ( )1221
2 ,1 vvddsdds t−+−−+  red 

arcs and at least 21 dds −+  blue arcs is the walk with ( ) 221
2 dsdds +−+  

( )1, vvd t−  red arcs and 121 +−+ dds  blue arcs. This implies ( )tvv vk
xy ,1+

 

( ) ( ).,1 1121
2 vvdsdsdds t−+++−+≥  Since tv  lies on ,1C  we have 

( ) ( ).,1, 11 tt vvdsvvd −+=  Therefore 

 ( ) ( ) ( )ttvv vvddsddsvk
xy

,1121
2

,1
++−+≥

+
 (7) 

for each vertex tv  that lies on the ny vv →+1  path. 

Subcase 1c. The vertex tv  lies on sx vv →+1  path. There is a unique 

path from 1+yv  to tv  which is a ( )( )1,,1 11 vvdsd t−−+ -path. Considering 
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this path, we have ( )., 111 vvdde t−=  There is a unique path from xv  to tv  

which is a ( )( )1,, 12 vvdd t− -path. Considering this path we have −= se2  

( )., 12 vvdd t+  From Lemma 3.2, we have 

( ) ( ) .,1

21

1221
2

2

1
⎥
⎦

⎤
⎢
⎣

⎡

−+
−+−−+=⎥⎦

⎤
⎢⎣
⎡≥⎥⎦

⎤
⎢⎣
⎡

dds
vvddsdds

e
e

M
h t  

We consider walks from xv  to .tv  We note that the path tx vvP ,  from xv  

to tv  is a ( )( )1,, 12 vvdd t− -path. This implies the solution to the system 

( )
( )

( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡

−+
−+−−+=⎥

⎦

⎤
⎢
⎣

⎡
+

21

1221
2

,

, 1
dds

v,vddsdds
Pb
Pr

M t
vv

vv

tx

txz  

is 1211 −−+= ddsz  and .02 =z  Since the path tx vvP ,  lies entirely on the 

cycle ,2C  there is no walk from xv  to tv  that consists of ( )sdds 121
2 −−+  

( )12 , vvdd t−+  red arcs and 21 dds −+  blue arcs. Notice that the shortest 

walk from xv  to tv  that contains at least ( ) −+−−+ 221
2 1 dsdds  

( )1, vvd t  red arcs and at least 21 dds −+  blue arcs is the walk with +2s  

( ) ( ) 1, 1221 −−+− vvddsdd t  red arcs and 121 +−+ dds  blue arcs. This 

implies ( ) ( ) ( )., 1121
2

,1
vvdsdsddsvk ttvv xy

−++−+≥
+

 Since tv  lies on 

,2C  we have ( ) ( ).,, 11 tt vvdsvvd −=  Therefore 

 ( ) ( ) ( )ttvv vvddsddsvk
xy

,1121
2

,1
++−+≥

+
 (8) 

for each vertex tv  that lies on the sx vv →+1  path. 

From (6), (7) and (8) we conclude that ( ( ) ) ( )sddsDk
xy vv 21

22
,1

−+≥
+

 

1d+  and hence 

 ( ( ) ) ( ) 121
22 dsddsDk +−+≥  (9) 

whenever .21 dd >  
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Case 2. ( ) ( ).,, 1111 vvdvvd xy ++ ≤  Suppose there are a 
( )

t
h

y vv
,
→  walk 

and a 
( )

t
h

x vv
,

1 →+  walk for some vertex tv  in ( ).2D  Let ( ) ( )
tx vvPrCbe ,21 1+

=  

( ) ( )
tx vvPbCr ,2 1+

−  and ( ) ( ) ( ) ( ).,1,12 tyty vvvv PrCbPbCre −=  We shall show 

that ( ( ) ) ( ) .212
22 dsddsDk +−+≥  We consider three subcases depending 

on the position of the vertex .tv  

Subcase 2a. The vertex tv  lies on the yvv →1  path or xvv →1  path. 

There is a unique path tx vvP ,1+  from 1+xv  to tv  which is a ( )( )0,,12 tvvdd + -

path. Using this path we find that ( ).,121 tvvdde +=  There is a unique path 

ty vvP ,  from yv  to tv  which is a ( )( )1,,11 tvvdd + -path. Using this path we 

find that ( ).,112 tvvddse −−=  From Lemma 3.2 we have 

 ( ) ( ) ( ) ( )ttvv vvddsddsseesvk xy ,1 1212
2

21, 1 ++−+=++≥
+

 (10) 

for each vertex tv  that lies on the yvv →1  path or xvv →1  path. 

Subcase 2b. The vertex tv  lies on ny vv →+1  path. There is a unique 

path tx vvP ,1+  from 1+xv  to tv  which is a ( )( )1,, 12 vvdsd t−+ -path. Using 

this path we find that ( ).,1 121 vvdde t−+=  There is a unique path ty vvP ,  

from yv  to tv  which is a ( )( )1,, 11 vvdd t− -path. Using this path we find 

that ( )., 112 vvddse t+−=  Since tv  lies on ,1C  we have ( )1,1 vvds t−+  

( ).,1 tvvd=  From Lemma 3.2, we have 

( ) ( ) ( ) ( ) ( )1212
2

21, ,11
1

vvdsdsddsseesvk ttvv xy
−+++−+=++≥

+
 

( ) ( )tvvddsdds ,1212
2 ++−+=  (11) 

for each vertex tv  that lies on the ny vv →+1  path. 
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Subcase 2c. The vertex tv  lies on sx vv →+1  path. There is a unique 

path tx vvP ,1+  from 1+xv  to tv  which is a ( )( )0,, 12 vvdd t− -path. Using this 

path we find that ( )., 121 vvdde t−=  There is a unique path ty vvP ,  from yv  

to tv  which is a ( )( )2,,1 11 vvdsd t−−+ -path. Using this path we find that 

( ).,1 112 vvddse t++−=  Since tv  lies on ,2C  we have ( ) =− 1, vvds t  

( ).,1 tvvd  From Lemma 3.2 we have 

( ) ( ) ( ) ( )1212
2

21, ,1
1

vvdsdsddsseesvk ttvv xy
−++−+=++≥

+
 

( ) ( )tvvddsdds ,1212
2 ++−+=  (12) 

for each vertex tv  that lies on the sx vv →+1  path. 

From (10), (11) and (12), we conclude that ( ( ) ) +≥
+

22
,1 sDk xy vv  

( ) 212 dsdd +−  and hence 

 ( ( ) ) ( ) 212
22 dsddsDk +−+≥  (13) 

whenever .12 dd ≥  

Finally, from (9) and (13), we conclude that ( ( ) ) sddsDk 21
22 −+≥  

{ }.,max 21 dd+  ~ 

Theorem 4.4. Let ( )2D  be a primitive two-colored two cycles with cycles 

of lengths 1+s  and s as shown in Figure 1. If ,sc <  then ≤+− 12 cs  

( ( ) ) ( ) .1122 csscssDk −++−++≤  

Proof. From Lemma 4.1, Lemma 4.2 and Lemma 4.3, we conclude that 

( ( ) ) .122 +−≥ csDk  We next show that ( ( ) ) ( ) ++−++≤ sscssDk 122  

.1 c−  We shall show that there exists a vertex tv  in ( )2D  such that for each 

vertex ,iv  ,...,,2,1 ni =  there is a ( )cscss −+− 12,2 2 -walk from iv  to 
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.tv  We shall show the system 

 
( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡

−+
−=⎥

⎦

⎤
⎢
⎣

⎡
+

cs
css

Pb
Pr

M
ti

ti

vv

vv

12
2 2

,

,z  (14) 

has a nonnegative integer solution for some path ti vvP ,  from iv  to .tv  The 

solution to the system (14) is ( ) ( ) ( )
titi vvvv PbsPrcsz ,,1 11 −+−−+=  and 

( ) ( ( )) .1 ,,2 sPbPrz titi vvvv −+=  

We first consider the case where ( )2D  has a unique blue arc. Let tv  to be 

the terminal vertex of the blue arc. Then for any path ti vvP ,  we have 

( ) .1, =ti vvPb  Using this path we have ( )ti vvPrcsz ,1 2 −−=  and =2z  

( ) .0, ≥
ti vvPr  Since ( ) sPr ti vv ≤,  and sc <  we have .01 ≥z  

We next consider the case where ( )2D  has two blue arcs and let .1vvt =  

If ( ) ,01, =vviPb  then iv  lies on the 11 vvx →+  path or 11 vvy →+  path. 

This implies ( ) csPr vvi −+≤ 11,  and hence 01 ≥z  and ( ) +≥ 1,2 vviPrz  

.ss ≥  If ( ) ,1
1, =vvi

Pb  iv  lies on the xvv →2  path or yvv →2  path, then 

( ) 11,2 ≥≥ vviPrz  and ( ).2 1,1 vviPrcsz −−=  We note in this case that 

( ) sPr vvi ≤1,  and ,sc <  thus .01 ≥z  

For each vertex ,iv  ,...,,2,1 ni =  there is a vertex tv  such that the 

system (14) has a nonnegative integer solution for some path ., ti vvP  

Proposition 3.1 guarantees that for each vertex ,iv  ,...,,2,1 ni =  there is a 

( )cscss −+− 12,2 2 -walk from iv  to .tv  Thus ( ( ) ) ( )scssDk −++≤ 122  

.1 cs −++  ~ 

We note that the bounds given in Theorem 4.4 are sharp bounds as 
shown in the following corollaries. 
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Corollary 4.5. Let ( )2D  be a primitive two-colored two cycles with 

cycles of lengths 1+s  and s as shown in Figure 1. If ( )2D  has a unique blue 

arc ,1 cc vv →−  then ( ( ) ) .122 +−= csDk  

Proof. By Lemma 4.1, ( ( ) ) .122 +−≥ csDk  It remains to show that 

( ( ) ) .122 +−≤ csDk  We show that for each ,...,,2,1 ni =  the system 

 
( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡

−
+−−=⎥

⎦

⎤
⎢
⎣

⎡
+

1
22

,

,

1

1

s
css

Pb
Pr

M
vv

vv

i

iz  (15) 

has nonnegative integer solution for some path 1, vviP  from iv  to .1v  The 

solution to the system (15) is ( ) ( ) −−++−= 11 ,,1 1 vvvv ii PrPsbcsz  

( )1, vviPb  and ( ) ( ).2 11 ,,2 vvvv ii PsbPrcz −+−=  

If the vertex iv  lies on the 11 −→ cvv  path, then there is an 

( )( )1,,1 ivvds − -path from iv  to .1v  Using this path we have +−= csz1  

( )ivvd ,1  and ( ).,2 12 ivvdcz −−=  Since cs ≥  we have .01 ≥z  Since 

( ) 2,1 −≤ cvvd i  we have .02 ≥z  

If the vertex iv  lies on the sc vv →  path, then there is an 

( )( )0,,1 ivvds − -path from iv  to .1v  Using this path we have =1z  

( ) 1,1 +− cvvd i  and ( ).,2 12 ivvdcsz −−+=  Since ( ) 1,1 −≥ cvvd i  we 

have .01 ≥z  Since ( ) 1,1 −≤ svvd i  we have .12 −≥ cz  

If iv  lies on the ns vv →+1  path, then there is an ( )( )0,,1 1 ivvds −+ -

path from iv  to .1v  Using this path we have ( ) cvvdz i −= ,11  and =2z  

( ).,1 1 ivvdcs −−+  Since iv  lies on the ns vv →+1  path, ( ) .,1 cvvd i ≥  

Hence .01 ≥z  Since ( )ivvds ,1≥  we have .12 −≥ cz  

Therefore for each vertex ,iv  ,...,,2,1 ni =  there is a path 1, vviP  from iv  

to 1v  such that the system (15) has a nonnegative integer solution. Proposition 
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3.1 guarantees that for each ,iv  ,...,,2,1 ni =  there is a 
( )

1
,

vv
h

i →  walk with 

22 +−−= cssh  and .1−= s  Thus ( ( ) ) .122 +−≤ csDk  

We now conclude that ( ( ) ) .122 +−= csDk  ~ 

Corollary 4.6. Let ( )2D  be a primitive two-colored two cycles with 

cycles of lengths 1+s  and s as shown in Figure 1. If ( )2D  has two blue arcs 

1+→ sc vv  and 1vvs →  and ,sc <  then ( ( ) ) ( ) sscssDk +−++= 122  

.1 c−+  

Proof. By Theorem 4.4, ( ( ) ) ( ) .1122 csscssDk −++−++≤  Note 

that this is a special case of Lemma 4.3 with csd −+= 11  and .02 =d  Case 

1 of the proof of Lemma 4.3 guarantees that ( ( ) ) ( ) +−++≥ scssDk 122  

.1 cs −+  Therefore, ( ( ) ) ( ) .1122 csscssDk −++−++=  ~ 

Theorem 4.7. Let ( )2D  be a primitive two-colored two cycles with cycles 

of lengths 1+s  and s as shown in Figure 1. If ,sc =  then ≤+− 12 ss  

( ( ) ) .122 +≤ sDk  

Proof. From Lemma 4.1, Lemma 4.2 and Lemma 4.3, we conclude that 

( ( ) ) .11 222 +−=+−≥ sscsDk  It remains to show that ( ( ) ) .122 +≤ sDk  

We shall show that there exists a vertex tv  in ( )2D  such that for each vertex 

,iv  ,...,,2,1 ni =  there is an ( )sss ,12 −+ -walk from iv  to .tv  

It suffices to show that there is a vertex tv  in ( )2D  such that for each 

,...,,2,1 ni =  the system 

 
( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡ +−=⎥
⎦

⎤
⎢
⎣

⎡
+

s
ss

Pb
Pr

M
ti

ti

vv

vv 12

,

,z  (16) 

has a nonnegative integer solution for some path ti vvP ,  from iv  to .tv  The 
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solution to the system (16) is ( ( )) ( ) ( )11 ,,1 −+−= sPbPrz iiti vvvv  and =2z  

( ( )) ( ) .11 ,, −+−
iiti vvvv PrPbs  

Assume ( )2D  has only one blue arc and let tv  to be the vertex 2+av  for 

some .11 −≤≤ ca  Then for each ,...,,2,1 ni =  ,1+≠ ai  there is an 

( ( ) )1,, ti vvPr -path from iv  to tv  with ( ) .1, ≥ti vvPr  Using this path we find 

that ( ) 0,1 ≥−= ti vvPrsz  and ( ) .01,2 ≥−= ti vvPrz  If ,1+= ai  then there 

is a ( )0,1 -path from iv  to .tv  Using this path we find that 01 =z  and .2 sz =  

We now assume ( )2D  has two blue arcs. Since ,sc =  we have .1+= sn  

Therefore, there are two possibilities for the two blue arcs of ( ).2D  They are 
either the arcs 1vvs →  and 1+→ ss vv  or the arcs 1vvs →  and .11 vvs →+  

If 1+→ ss vv  is blue, we let tv  to be .1v  For each ,1...,,2,1 −= ni  

there is an ( ( ) )1,1, vviPr -path from iv  to 1v  with ( ) .1 1, sPr vvi ≤≤  Using this 

path we find that ( ) 01,1 ≥−= vviPrsz  and ( ) .011,2 ≥−= vviPrz  We note 

that there is a ( )0,1 -path from 1+sv  to .1v  Using this path we find that 01 =z  

and .2 sz =  

If 11 vvs →+  is a blue arc, we let tv  to be the vertex .2v  For each =i  

,...,,2 n  there is an ( ( ) )1,2, vviPr -path from iv  to 2v  with ( ) ≤≤
2,1 vvi

Pr  

.1−s  Using this path we find that ( ) 12,1 ≥−= vviPrsz  and ( )
1,2 vvi

Prz =  

.01 ≥−  We note that there is a ( )0,1 -path from 1v  to .2v  Using this path, 

we find that 01 =z  and .2 sz =  

Therefore, there is a vertex tv  in ( )2D  such that for each ,...,,2,1 ni =  

the system (16) has a nonnegative integer solution for some path ., ti vvP  This 

implies for each ni ...,,2,1=  there exists a vertex tv  in ( )2D  such that 

there is an ( )sss ,12 +− -walk from iv  to .tv  Hence ( ( ) ) .122 +≤ sDk  ~ 
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We note that the bounds given in Theorem 4.7 are sharp bounds. From 

Corollary 4.5 the lower bound is achieved if the two-colored two cycles ( )2D  
has a unique blue arc .1 ss vv →−  The upper bound is achieved if the two-

colored two cycles ( )2D  has two blue arcs with the same initial vertex 

1vvs →  and .1 nss vv =+→  Lemma 4.2 guarantees that ( ( ) ) ++≥ ssDk 22  

.11 2 +=− sc  Combining this and Theorem 4.7, we have ( ( ) ) .122 += sDk  
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