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Abstract

A two-colored digraph is a digraph each of whose arc is colored by red
or blue. An (h, ¢)-walk is a walk consisting of h red arcs and ¢ blue
arcs. The scrambling index of a two-colored digraph is the smallest
positive integer h + ¢ over all nonnegative integers h and ¢ such that
for each pair of vertices u and v there is a vertex w such that there exist
an (h, ¢)-walk from uto wand an (h, ¢)-walk from v to w. We study
the scrambling index of primitive two-colored digraph consisting of
two cycles whose lengths differ by 1. We present a lower bound and
an upper bound for the scrambling index for such two-colored digraph.
We then show that the lower and the upper bounds are sharp bounds.

1. Introduction

Let D be a digraph on n vertices {v, v, ..., vV,}. A walk of length ¢
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from v; to v; is a sequence of arcs of the form v; = ug — Uy, up > Uy, ...,

U1 = Uy =Vvj. Awalkof length ¢ from v; to v; is denoted by v; 5 Vj

walk. A walk is open if v; = v; and is closed otherwise. A v; — v;j path is
a walk with no repeated vertices, except possibly v; = v;j. A cycle is a closed
path. The distance from vertex v; to vertex Vi, denoted by d(v;, vj), is the
length of the shortest v; — v; path. A digraph D is strongly connected
provided for each ordered pair of vertices v; and v; there is a v; — v; walk.

By a two cycles we mean a strongly connected digraph consisting of exactly
two cycles.

A strongly connected digraph D is primitive provided there is a positive
integer ¢ such that for each ordered pair of vertices v; and v; there exists a

Vi KN j walk. The smallest of such positive integer ¢ is the exponent of D.

In 2009, Akelbek and Kirkland [1] introduced a new parameter on primitive
digraph called scrambling index. The scrambling index of a primitive digraph
is the smallest positive integer k such that for each pair of vertices v; and v;

there exists a vertex v; such that there are a v; LY vy walk and a v; LN Vi

walk in D. See [1, 2] for earliest discussion on the scrambling index of
primitive digraphs.

A two-colored digraph D@ isa digraph each of whose arcs is colored by
either red or blue. An (h, ¢)-walk in a two-colored digraph D@ is a walk

consisting of h red arcs and ¢ blue arcs. An (h, ¢)-walk from v; to vj isalso

h, ¢
denoted by v; (—'>)vj walk. For a walk W in D@ we denote r(W) to be the

number of red arcs in W and b(W) to be the number of blue arcs in W. The
r(W)

length of Wis /(W) =r(W)+Db(W). Th t
ength of W is /(W) = r(W)+ b(W). The vector [b(w)

} is the composition

of the walk W.
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The notions of primitivity and exponent of digraph have been
generalized to that of two-colored digraph [3, 4]. A strongly connected two-
colored digraph D@ js primitive provided there exist nonnegative integers h

and ¢ such that for each pair of ordered vertices v; and vj in D@ there is a

h, ¢ . s
Vi (—>)vj walk in D®). The smallest positive integer h + ¢ over all such

nonnegative integers h and ¢ is called the exponent of D@,
For a primitive two-colored digraph on n vertices {v, vy, ..., V,}, we
define the scrambling index of D(z), denoted by k(D(Z)), to be the smallest

positive integer h + ¢ over all nonnegative integers h and ¢ such that for

each pair of vertices vj and v; in D@ there is a vertex V; with the property

(h,?) (h,0)
that therearea v; —"v; walkanda vj —"v; walk.

We discuss the scrambling index of primitive two-colored two cycles
whose lengths s +1 and s for some positive integer s > 3. In Section 2, we
discuss primitivity of such two-colored two cycles. In Section 3, we present a
way in setting up a lower bound and an upper bound for scrambling index. In
Section 4, we present results on the scrambling index of two-colored two
cycles whose lengths differ by 1.

2. Primitivity
Let D@ pe a strongly connected two-colored digraph and let the set of
all cycles in D pe C = {C1, Ca, ..., Cq}. We define a cycle matrix of p®

r(C) r(Cz) - r(Cq)
b(C;) b(Cz) -+ b(Cq)
1, the content of M is defined to be 0, and the content of M is defined to be
the greatest common divisor of the determinants of 2 by 2 submatrices of M,

to be a 2 by g matrix M = { } If the rank of M is

otherwise. A two-colored digraph D@ js primitive if and only if the content
of Mis 1 [3].
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Let s and c be integers with s > 3 and 2 < ¢ < s. We discuss primitivity
of two-colored two cycles on n=2s+1-c vertices {w, Vo, ..., V,} as
shown in Figure 1. Let Cy : vy > Vy = -+ > Vg > Vg1 = -+ = Vp—2s11—c
— v; be the cycle of length s+1 and let Cy :v; > V) - - 5>V, >
Vey1 — -+ = Vg — Vq be the cycle of length s. Notice that C; and C, have

¢ vertices in common.

o— ' ~—oUst2
Un—1
Un=2s+1-c¢ Js+1
Uet2

Figure 1. Two cycles whose lengths differ by 1.

Proposition 2.1. Let D@ pe a strongly connected primitive two-colored

two cycles of lengths s +1 and s, respectively. The cycle matrix of D@ s

s s-1 1 1
either of the form M = or M = .
1 1 s s-1

s+l-a s-b
Proof. The cycle matrix of D@ s of the form M = { " }

a b

forsome 0<a<s+1and 0<b <s. Since D@ is primitive, det(M) =
s(b —a)+b =+1. This implies (b —a) < 0. If det(M) =1, then s(b - a)
+b =1. Since b <'s, we conclude that b —a = 0. Therefore in this case
we have b =a =1. If det(M) = -1, then s(b—a)+b = -1. Since b <s,
we conclude that b—a=-1. This implies b=s-1 and a =s. Hence we

. s s-1 1 1
now conclude that either M = or M = ) O
1 1 s s-1

We assume without loss of generality that the cycle matrix of D@ s the
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s-1

S
matrix M = L 1 } Hence either D(Z) has two blue arcs or D(Z) has

only one blue arc.
3. Lower and Upper Bounds

In this section, we discuss a way in setting up bounds for the scrambling
index of two-colored two cycles.

Proposition 3.1. Let D@ pe a primitive two-colored two cycles and let
Ri.v, beav; - v path that contains a vertex of both cycles. If for some

L r(Ry,v) h
nonnegative integers h and ¢ the system Mz + = has
b(PVi,Vt) 1

- . . h, ¢
nonnegative integer solution, then there is a v; (—>)vt walk.

Proof. Let z = (zy, 22)T be the solution to the system and let vq be a
vertex in the path R, , that lies on both cycles. The walk that starts at v;,
moves to vq along the path Pvi,vq, and moves z; and z, times around the
cycles C; and Cp, respectively, and back at v, and finally follows the path

Rigove 10 % isan (h, ¢)-walk from v; to v;. 0

For a vertex V; in D®, the local scrambling index of v; and v; at the

vertex Vi, denoted by kvi,vj (v¢), is the smallest positive integer h + ¢ over

l
all pairs of nonnegative integers h and ¢ such that there are a v; (—> Vi

h, ¢ L .
walk and a v; (—>)vt walk. The local scrambling index of vertices v;
and vj in D®), denoted kvi,vj(D(z)): is defined to be kvi,\,j(D(z))z

minvteV(D(z)){kVi'Vj(Vt )}. Hence maxvi]VjGV(D(z)){kvilvj(D(Z))} < k(D®).
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The following lemma is a basis for finding a lower bound for the
scrambling index of two-colored two cycles.

Lemma 3.2. Let D@ be a primitive two-colored two cycles with cycle
matrix M and let det(M) = 1. Let v; and v; be any two distinct vertices in

D@ i Kiiv; (V) is obtained by an (h, ¢)-walk, then
H . lvllb(Cz)r(F’vi,vt )= 1(C2)b(Ry v,)
i r(Cob(Ry;,v ) = b(CF(Ry; ) |
and hence
Ky, v; (%) = £(C)[B(CR)T(Ry v ) = r(C2)b(Ry v )]
+ U(Co)r(CLb(R;, v ) = BECT(Ry; v, )]

for some paths R, ,, and P\,jl\,t.
. . h
Proof. Since det(M) =1, there are integers ¢, and g, such that o=

M [gl} Since every walk can be decomposed into a path and some cycles,
2

h =Mz + r(PVi’Vt) for some path P from v; to v; and some
; = b(Pvi,vt) p Vi, i t

nonnegative integer vector z. Comparing these equations we have z = {ql}
42

[ TRy v)
M 1{b(Pvi,vt)

{ql} oy _1[r(PVi,vt )} ) l:b(Cz)r(PVi,Vt )= 1(C)b(R, v, )}
4 i b(Pvi‘vt) . r(Cl)b(PVith)_b(Cl)r(Pvilvt) .

} > 0. Hence

Thus ¢ = b(Co)r(R, v, ) — r(C2)b(R, v, ) for some path R, \, from v; to
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V¢. Similarly, we have g, > r(Cl)b(ijlvt)— b(Cl)r(ij,vt) for some path

ij.vt from vj to v. If kvi,vj (vt ) is obtained by an (h, 7)-walk, then

h d1 b(CZ)r(Pvi,vt)_ r(CZ)b(Pvi,vt)
{ }_ { }2 . r(Cl)b(PVj,Vt)_b(cl)r(ij,vt) .

4 a2
Thus
kv, v; (V) 2 LC[B(C)T (R, v, ) = 1(C2)D(R, v, )]
+ UC)[M(CD(R,}, v ) = D(CO(R, )]
for some paths R, ,, and ij.vt- O

4. Results

We begin with the case where D@ has only one blue arc. Notice that

the blue arc of D®) must be of the form Vg > Vayq forsomel<ac<c-1

Lemma 4.1. Let D@ be a primitive two-colored two cycles with cycles
of length s +1 and s as shown in Figure 1. If D@ has a unique blue arc

V4 — Va1, forsome 1< a <c -1, then k(D(z)) >s? —c+1.

Proof. We assume that there are a v, 1 (h—’f)vt walk and a v, (h—'f)vt walk
for some vertex v; in D@, Let er = b(Co)r(Ry, ;v ) —r(C2)b(R, ,, v,)
and e; = r(Cy)b(R,,,y, ) — b(Cy)r(R,, v, )- We consider two cases depending
on the position of the vertex V4.

Case 1. The vertex v lies on the vy — v, path. There are two paths
P

Va+1: Vt

(s—a+d(vy, v)+1 0)-path. Considering the (s—a+ d(v, ), 0)-path

from v,,q to v;. They are an (s—a+d(v, ), 0)-path and an
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we have
e = b(C)r(R, ;v )~ 1(C2)b(R,,; )
=@)(s—a+d(v, ) —(s-1)(0) =s—a+d(v, ).
Considering the (s—a+d(v, v¢)+1, 0)-path we have ¢ =s—a+
d(vq, vt) +1. Sowe choose e =s—a+d(v, V).
There are two paths R,_,, from v, to v. They are an (s—a+

d(vq, v¢), 1)-path and an (s—a+d(vy, v)+1, 1)-path. Considering the
(s—a+d(vy, v), 1)-path we have e, =a—d(v, v). Considering the
(s—a+d(vy, v)+1 1)-path we have e, = a —d(v, vt) —1. So we choose

eo =a—d(v, v) -1

By Lemma 3.2 we conclude that
Ky, v, () = (Cp)ep + U(Cp)ep = (s +1)ey + 85 = s* —a+d(vy, v) (1)
for each vertex v; that lies on the v; — v, path.

Case 2. The vertex Vv; lies on the v,,.q4 — Vv, path or v, — Vg path.

There is a unique path R, from v, to v whichisa (d(vq4q, ), 0)-

+1:Vt
path. Using this path we have e; = d(Va,1, V). There is a unique path R,

from v, to v; which isa (d(v4,1, Vt), 1)-path. Using this path we have e, =
s—d(vayg, Vt). Since d(vg4q, Vi) =d (v, vy )—a, by Lemma 3.2 we conclude
that

2
Kug vy, (V) 2 (s +1)ep +s8p = 8% —a+d(vy, v) )
for each vertex v; that lies on the v,y — v, path or vy, — vg path.

From (1) and (2), we conclude that kva,va+1(D(2)) > s? —a and hence

k(D(Z))ZSZ—a. Sincel<a<c-1 k(D(Z))232—0+1. O
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We next discuss the case where D(z) has two blue arcs. We first consider
the case where the blue arcs have the same initial vertex and then discuss the
case where the blue arcs have different initial vertices.

Lemma 4.2. Let D@ be a primitive two-colored two cycles with cycles
of lengths s +1 and s as shown in Figure 1. If D@ has two blue arcs

Ve = Veuq @nd vo — Vg,q, then k(D(Z)) >s? +(s+1-c).

(h, 0) (h, 0)
Proof. Suppose there are a v, — v walk and a vg,; — v; walk.
Define e; = b(Co)r(R, v, ) — 1(C2)b(Ry, ;v ) and ez = r(Cy)b(R, v, ) —

b(Cy)r(R,,,v, )- We consider three cases.

Case 1. The vertex v; lies on the v; — v, path. There is a unique
P

Ve, v Path from vg.; to vy which is an (s+1-c+ d(vy, %), 0)-path.
Using this path we find that e, = s+1—c + d(vy, ). There are two paths
R..v from ve to vi. They are an (s+1-c+d(v, &), 1)-path and an
(s —c+d(v, ), 1)-path. Considering the (s +1—c + d(vy, V), 1)-path we
have e, = c—1-d(v, ). Considering the (s—c+d(v;, v), 1)-path we
have e, =c—d(vy, v{). Thus we conclude that e, =c—-1-d(v, v).
Lemma 3.2 implies that

2

(vi)=(s+1)eg+sep =s“+s+1-c+d(v, v) (3)

sz+1va
for each vertex v; that lies on the v; — v, path.

Case 2. The vertex v lies on vg,3 — Vg path. There is a unique R,/ v,

path from vg,; to v which is an (s + d(ve,q, V), 1) -path. Using this path

we find that e; = d(v4q, Vi) +1. There is a unique path R,y from v; to

v; which is a (d(ves1, V), 1)-path. Using this path we have that e, = s —

d(Veyq, V¢ )- Since d(veyq, Vt) = d(vq, V¢) — ¢, Lemma 3.2 implies that
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2

k ()= (s+1)eg+sep =s“+s+1—c+d(v, ) 4)

Vs+1, Ve
for each vertex v; that lies on the v, 1 — vy path.

Case 3. The vertex v; lies on vg,1 — Vv, path. There is a unique path
P

Ve,1,v TOM Vg to vy which is an (s +1—c—d(v, v), 0)-path. Using

this path we find that e, = s +1—c —d(v, v). There is a unique path from
Ve to v whichisan (s +1-c—d(v, v), 1)-path. Using this path we find

that e, = ¢ —1+ d(v, v;). By Lemma 3.2 we have

ez

We consider vg,; — V¢ walk. Since the path R, is an

+1: Vi

(s+1-c—d(v, vy), 0)-path, the solution to the system

Mz + r(P,, v ) _ s +1-c— d(vi, vp)
b(PV5+1,Vt) S

is 27 =0 and z, = s. This implies there is no (s> +1—c—d(v, v), s)-
walk from vg,; to v;. We note that the shortest vq,q; — v walk that
contains at least s +1—c — d(vt, v) red arcs and at least s blue arcs is an
(s> +s+1—c—d(v, v), s +1)-walk. This implies Kug,,v, (Vt) 2 s?+s+
1-c+(s+1-d(v, v)). Since v lieson Cy, d(vy, vi) =s+1—d(v, »y).

Therefore

k (Vi) =52 +s+1—c+d(vy, V) (5)

Vs41: Ve
for each vertex v; that lieson vg ; — v, path.
From (3), (4) and (5) we conclude that sz+1:Vc(D(2)) >s?+s+l-c

Hence k(D(Z)) >s? +s+1-c O
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We now discuss the case where D(Z) has two blue arcs with different
initial vertices.

Lemma 4.3. Let D@ be a primitive two-colored two cycles with cycles

of lengths s+1 and s as shown in Figure 1. If D@ has two blue arcs
Vy = Vyipand vy — vy, forsomec+1<x<sands+1<y<n,then

K(D@) 2 2 + ] d(vys1, Vi) — d(Vya, Vo) |5 + max{d (vyyq, vi), Ve, Vo))

Proof. For simplicity, we define dy = d(vy 4, V) and dj = d(Vyq, V).
We consider two cases where d(vy.,q, V1) > d(Vyq, V1) and d(vy,q, V) <

d(Vysz, V1)-
(h,7)
Case 1. d(Vy,q1, Vq) > d(Vy4q, Vq). Suppose there are vy . — vy walk

h, ¢ :
and vy (—>)vt walk for some vertex v; in D@, Let e = b(Cz)r(va+1,vt)

— r(Cz)b(P\,yﬂ,Vt) and e; = r(Cy)b(R, v, ) —b(C)r(R,,, v, )- We shall show

that k(D(Z)) > s +(dy — dy)s + dy. We consider three subcases depending
on the position of the vertex \;.
Subcase 1a. The vertex v; lies on the vy — vy path or v; — vy path.

There is a unique R, path from vy .4 to v; whichis a (dy + d(vy, ), 0)-

+1, Ve
path. Using this path we have e = d; + d(vy, v¢). There is a unique path
R,,v from vy to v whichisa (dy +d(vy, vt), 1) -path. Using this path we
have e, = s —d, — d(v, v¢). Lemma 3.2 implies

kVy+1ny (Vi) = (s+1)e; +sey = 52 + (dy —dy)s+dg +d(vq, vy) (6)

for each vertex v; that lies on the vy — vy, path or v; — v, path.

Subcase 1b. The vertex v; lies on vy 1 — v, path. There is a unique
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path va from vy 4 to v whichisa (d; —d(v, vi), 0)-path. Using this

+1, Vt
path we have e; = d; — d(v, ). There is a unique path Rig. v from vy to v
which is a (d, + s —d(v, v;), 2)-path. Using this path, we have e, = s —
d, +d(v¢, vp). From Lemma 3.2, we have

m g M[eﬂ _ {32 +(dy —dy —1)s + dy — d(v, vl)}

4 =) S+d1—d2

We consider walk from the vertex vy, to v;. We note that the path

P

Vye1 vt from vy,q to v is a (dy —d(v, vp), 0)-path. This implies the

solution to the system

r(PVy+1,Vt) 52 +(d1—d2 —1)S+d2 —d(Vt, Vl)
Mz + =
b(PV S + dl - d2

y+1:Vt)
is z7 =0 and z, = s+ dy —d,. Since the path PVy+1:Vt lies entirely on Cy,
there is no walk from v, 4 to v; that consists of s? 4+ (d;—dy —1)s+dy —

d(vt, v) red arcs and s + d; —d, blue arcs. Notice that the shortest walk

from vy 4 to v that contains at least s? +(d; —dy —1)s + dp — d(v, vy) red

arcs and at least s + d; — d, blue arcs is the walk with s2 + (d; — dy)s + d,

—d(v, vy) redarcsand s + d; — d, +1 blue arcs. This implies k\,y+1,\,X (v¢)

>s2 4 (dy—dy)s+dy +5+1— d(vt, vp). Since v; lies on C;, we have

d(vt, vy) = s+1—-d(w, v;). Therefore
Kuysav () = 8% 4 (dy = dp)s + dy + d(vg, ) @)
for each vertex v; that lies on the vy 4 — v, path.

Subcase 1c. The vertex v; lies on vy,; — Vg path. There is a unique

path from vy 4 to vy whichisa (dy +s —1-d(v, v), 1)-path. Considering
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this path, we have e; = d; — d(v, v;). There is a unique path from v, to v
which is a (dy — d(v, ), 1) -path. Considering this path we have e, = s —

dy +d(vt, vy). From Lemma 3.2, we have
m . M[eﬂ (s (dp—dy —1)s+dp —d(v, vp) |
14 =) S + d]_ - d2
We consider walks from vy to v;. We note that the path R, ,, from vy
to v isa (dy — d(v, v ), 1) -path. This implies the solution to the system
Mz + r(va,vt) _ s? + (dy—dy =1)s+dy —d(v, vp)
b(Ry,.v)| |s+d;—dp
is z7 =s+d; —dp —1and z; = 0. Since the path R, ,, lies entirely on the
cycle C,, there is no walk from v, to v; that consists of s? + (d; — dy —1)s
+dy —d(v, vp) red arcs and s + dy — d, blue arcs. Notice that the shortest
walk from v, to v that contains at least s +(dy —dy —1)s+d, —

d(vi, vq) red arcs and at least s + d; — d, blue arcs is the walk with s% +

(dy —dp)s+dy —d(vg, vy)—1red arcs and s + d; — do + 1 blue arcs. This
implies ky v, (Vi) > s% + (dy —dp)s +dy +5—d(v, vp). Since v; lies on

C,, we have d(v, v;) = s —d(vy, ). Therefore

k (vp) = 52 + (dy — dp)s + dy +d(vg, V) 8)

Vy+1: Vx
for each vertex v; that lies on the v, ., — vg path.

From (6), (7) and (8) we conclude that kvy+1,vX(D(2)) >s% 4+ (dy—dj)s
+ dq and hence
k(D®)) 2 §% + (dy — dy)s + cy ©)

whenever d; > d,.



126 Mulyono, Hari Sumardi and Saib Suwilo

(h.7)
Case 2. d(Vy.1, V1) < d(Vyyq, V). Suppose there are a vy, —"v; walk

h, ¢ .
and a vy g (—>)Vt walk for some vertex v; in D). Let ¢ = b(C2)r(R, ;v )

—1(C2)b(R,, v )ande, = r(cl)b(va,vt )— b(Cl)r(P\,y’\,t ). We shall show

that k(D(z)) > s+ (dy —dq)s + dy. We consider three subcases depending

on the position of the vertex V;.

Subcase 2a. The vertex v; lies on the v; — vy path or v; — vy path.

There is a unique path R, from v, 4 to v; whichisa (d, + d(vq, v¢), 0)-

+1: Vi
path. Using this path we find that ¢, = d, + d(v, v;). There is a unique path
P\,y’\,t from vy, to v whichisa (dy +d(vy, ), 1)-path. Using this path we

find that e, = s — dy — d(vy, v¢). From Lemma 3.2 we have
kvy,le(Vt) > (s+1)e +sey = % + (dy —dy)s+dy +d(v, vy) (10)
for each vertex v; that lies on the v — vy path or v; — vy path.

Subcase 2b. The vertex v; lies on vy .4 — v, path. There is a unique

path R, from v, 4 to v whichisa (d, +s —d(v, v;), 1)-path. Using

+1 vt
this path we find that e; = dy +1—d(v, v;). There is a unique path PVyth
from vy to v; which is a (d; —d(v, vy), 1)-path. Using this path we find
that e, = s —d; + d(v, vy). Since v; lieson C;, we have s +1—d(v, v)

= d(vy, V). From Lemma 3.2, we have

k (Vi) = (s+1)e +sep = 52 +(dy —dy)s+dy +(s+1)—d(v, v)

Verx+1
=524 (dy —dq)s+dp +d(vg, V) (11)

for each vertex v; that lies on the vy ., — v, path.



Scrambling Index of Two-colored Two Cycles 127

Subcase 2c. The vertex v; lies on vy, — Vg path. There is a unique

path R from v, 1 to v; whichisa (d, — d(v, vp), 0)-path. Using this
Vy X+1 t 2 V1

+1.: Vt
path we find that e, = d, — d(v, vq). There is a unique path val\,t from vy

to v; whichisa (d; + s —1-d(v, v ), 2)-path. Using this path we find that
e, =s—dy +1+d(vw, v). Since v lies on C,, we have s—d(v;,vy)=

d(vy, v ). From Lemma 3.2 we have

kvy,vm(vt) >(s+1)e +sey = s? + (dy —dq)s+dy +s—d(v, vq)

= 52 4 (dy — dp)s + dy + d(vy, V) (12)
for each vertex v; that lies on the vy — vg path.
From (10), (11) and (12), we conclude that k\,yﬂ‘VX(D(Z)) > 5% +
(dy —dq)s + dy and hence
k(D@) > s% + (dy — dy)s + dy (13)
whenever d, > d;.

Finally, from (9) and (13), we conclude that k(D(z)) > 5% 4 |d; —dy s
+ max{dy, d}. O

Theorem 4.4. Let D be a primitive two-colored two cycles with cycles

2

of lengths s+1 and s as shown in Figure 1. If ¢ <s, then s“—c+1<

k(D(Z)) <s?+(s+1-c)s+s+1l-c.

Proof. From Lemma 4.1, Lemma 4.2 and Lemma 4.3, we conclude that
k(D(Z)) > s? —c+1. We next show that k(D(Z)) <s?+(s+l-c)s+s+
1 - c. We shall show that there exists a vertex v; in D®@ such that for each

vertex vj, i =1 2,..,n, there is a (232 —¢cs, 2s +1—c)-walk from v; to
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V;. We shall show the system

r(Rs v ) 3 2s% —¢s
Mz + [b(Pvi A )} - {25 +1- C} (4

has a nonnegative integer solution for some path R, , from vj to v;. The
solution to the system (14) is z; = s +1-c—r(R, y ) + (s —1)b(R, \,) and

2y = r(R; v ) + L =b(Ry v, ))s.

We first consider the case where D(?) has a unique blue arc. Let v; to be

the terminal vertex of the blue arc. Then for any path R, , we have
b(R;,v ) =1. Using this path we have z =2s-c—-r(R, ) and zp =

r(R;,v, ) = 0. Since r(R, ) <s and ¢ <'s we have z > 0.

We next consider the case where D'®) has two blue arcs and let Vi = Vy.

If b(R, v,) =0, then v; lies on the vy .1 — v; path or vy.4 — v path.
This implies r(R, \,) <s+1-c and hence 3 20 and z, > r(R, y )+
s>s. If b(Pvi,vl) =1 v; liesonthe v, — vy path or v, — vy path, then
zp2r(R, )21 and 3 =2s-c-r(R, ). We note in this case that

r(R;,v) <sandc<s, thus z 2 0.

For each vertex v;, i=1 2, .., n, there is a vertex v; such that the

system (14) has a nonnegative integer solution for some path Riv:
Proposition 3.1 guarantees that for each vertex vj, i =1, 2, ..., n, thereis a
(2s% — cs, 25 +1 - c)-walk from v; to V. Thus k(D(Z)) <s?+(s+1-c)s

+s+1-c. O

We note that the bounds given in Theorem 4.4 are sharp bounds as
shown in the following corollaries.
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Corollary 4.5. Let D@ pe a primitive two-colored two cycles with
cycles of lengths s +1 and s as shown in Figure 1. If D@ has a unique blue

arc vo_; — Vg, then k(D(Z)) =s2_c+1.

Proof. By Lemma 4.1, k(D(Z)) >s? _c+1. It remains to show that
k(D(z)) < s? — ¢ +1. We show that for each i = 1, 2, ..., n, the system

r(Pvi,vl) B s?—s—c+2
Mz + {b(Pvi,vl)} - L -1 } ()

has nonnegative integer solution for some path R, ,, from vj to v;. The
solution to the system (15) is z =s-c+1+sb(R, \,)-r(R. v)-

b(PVi‘Vl) and z, =c-2+ r(PViyvl) - Sb(Pvi,vl)-

If the vertex v; lies on the v; — v._; path, then there is an
(s —d(vy, v;), 1) -path from v; to v;. Using this path we have z; = s — ¢ +
d(vq, vj) and zo =c—2-d(v, vj). Since s>c we have z > 0. Since

d(v, vj) < c—2 we have z, > 0.

If the vertex v; lies on the v, — vy path, then there is an
(s —d(vy, vj), 0)-path from v; to v. Using this path we have z; =
d(v,vi)—c+1and z, =s+c—2-d(v, vj). Since d(vq, vj) > c—1 we
have z; > 0. Since d(vy, vi) <s—-1 wehave z; >c—1.

If v; lies on the vg,1 —> v, path, then there isan (s+1—d(v, vj), 0)-
path from v; to v. Using this path we have z; = d(v;, vj)—c and z, =
s+c—1-d(vy, vj). Since v; lies on the vg,1 — v, path, d(vq, vj)>c.
Hence z; > 0. Since s > d(v, v;) we have z, > ¢ —1.

Therefore for each vertex vj, i =1, 2, ..., n, there is a path PVi,V1 from v;

to v; such that the system (15) has a nonnegative integer solution. Proposition
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h, ¢ .
3.1 guarantees that for each v;, i =1, 2, ..., n, thereisa v; (—>)v1 walk with

h=s?-s—c+2and ¢=s-1 Thus k(D(2))ss2 -c+1
We now conclude that k(D(Z)) =s?—c+1. O

Corollary 4.6. Let D@ be a primitive two-colored two cycles with
cycles of lengths s +1 and s as shown in Figure 1. If D@ has two blue arcs
Ve = Vgy1 and vg > vy and ¢ < s, then kD@)=s? +(s+1-cC)s+s
+1-c.

Proof. By Theorem 4.4, k(D(Z)) <s?+(s+1l-c)s+s+1—c. Note
that this is a special case of Lemma 4.3 with d; = s+1—-c and d, = 0. Case
1 of the proof of Lemma 4.3 guarantees that k(D(z)) >s? +(s+1-c)s+
s +1—c. Therefore, k(D(z)) =s?+(s+1-c)s+s+1-c. O

Theorem 4.7. Let D@ be a primitive two-colored two cycles with cycles

2

of lengths s +1 and s as shown in Figure 1. If c = s, then s —s+1<

k(D®) < s? +1.

Proof. From Lemma 4.1, Lemma 4.2 and Lemma 4.3, we conclude that
k(D(Z)) >s?_c+1=5s2—s+1. It remains to show that k(D(Z)) <s?+1.
We shall show that there exists a vertex v; in D® such that for each vertex

vi, i =12, .., n, thereisan (52 +5s—1, s)-walk from v; to ;.

It suffices to show that there is a vertex v; in D@ such that for each
i =1 2, .., n, the system

P v 2 _
B

has a nonnegative integer solution for some path R, ,, from v; to v. The
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solution to the system (16) is z; = (1 - r(R, v, )) + b(R, . ) (s —1) and z; =

s(1- b(Pvi,vt ) + r(Pvi,vi )-1.

Assume D®) has only one blue arc and let v; to be the vertex v,,, for
some 1<a<c-1 Then foreach i=1 2,....,n, i=#a+1 there is an
(r(Ry, v )» 1)-path from v; to v with r(R, \,)>1. Using this path we find
thatz =s—r(R, y)=0andz; =r(R, \,)-120.Ifi =a+1 then there

isa (1, 0)-path from v; to v;. Using this path we find that 7 = 0 and z, =s.

We now assume D(Z) has two blue arcs. Since c = s, we have n = s +1.

Therefore, there are two possibilities for the two blue arcs of D@, They are
either the arcs v¢ — vy and vy — vg,q orthearcs vg — v and vg, 4 — Vq.

If v¢ — vg,q is blue, we let v; to be v;. Foreach i =1 2, .., n-1
there is an (r(R, v, ), 1)-path from v; to vy with 1 < r(R, \,) < s. Using this
path we find that zy = s —r(R, ) =2 0 and z; = r(R, ;) —12 0. We note
that there is a (1, 0)-path from vy, 4 to v;. Using this path we find that z; = 0
and z, =s.

If vg,1 — vy is a blue arc, we let v; to be the vertex v,. For each i =
2, .., n, there is an (r(R, v,), 1)-path from v; to v, with 1<r(R, y,) <
s —1. Using this path we find that zy = s —r(R, \,) 21 and z; = r(R, y )
—1> 0. We note that there is a (1, 0)-path from v; to v,. Using this path,

we find that zy = 0 and z, = s.

Therefore, there is a vertex v; in D(Z) such that foreach i =1, 2, ..., n,

the system (16) has a nonnegative integer solution for some path Rii v This

implies for each i =1, 2, ..., n there exists a vertex Vv in D(Z) such that

there isan (s — s +1, s)-walk from v; to v;. Hence k(D(Z)) <s?+1. O



132 Mulyono, Hari Sumardi and Saib Suwilo

We note that the bounds given in Theorem 4.7 are sharp bounds. From
Corollary 4.5 the lower bound is achieved if the two-colored two cycles D2
has a unique blue arc vg_; — vs. The upper bound is achieved if the two-
colored two cycles D@ has two blue arcs with the same initial vertex

Vg = vy and Vg — Vg 1_,. Lemma 4.2 guarantees that k(D(Z)) >s?+5+

l-c=s%+1. Combining this and Theorem 4.7, we have k(D(z)) =52 +1.
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