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Abstract 

An improvement of uni-directional wave model so called AB equation 
was proposed to study wave groups that appeared in the wave tanks of 
hydrodynamic laboratory [2]. The model was revised version of the 
KdV equation and could be interpreted as a higher order KdV equation 
for wave above finite depth and in certain approximation it became the 
KdV equation. In this paper, we will focus to investigate the evolution 
of the envelop of modulated wave which is described by the nonlinear 
Schrödinger equation (NLS). We derive the NLS-type equation from 
the AB equation. The asymptotic method is used to find the equation. 
The signs of the coefficients of the NLS-type equation that determine 
whether experimentally relevant wave groups are possible exist or not 
will be compared by the other NLS-type equations. The effect of the 
dispersion relation and the nonlinearity terms of the model to existence 
of experimentally relevant wave groups will be presented. 
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1. Introduction 

Many theoretical investigations that deal with evolution of wave groups 
have been discussed. One of them was the theoretical investigation of wave 
groups evolution discussed by van Groesen in [1]; in the literature a KdV-
type equation was used for uni-directional wave model and an NLS-type 
derived from the KdV equation as amplitude equation for modulated waves 
in water waves. In this paper, we will use a new KdV-type equation so called 
AB equation as a uni-directional surface wave model. The model was already 
proposed by van Groesen and Andonowati [2]. The model was improvement 
of the KdV equation and can be interpreted as a higher order KdV equation 
for wave above finite depth and in certain approximation it becomes the KdV 
equation. The nonlinear terms of the model were also improved to include 
the effects of short wave interactions. The model can be used for all wave 
lengths and correct for any depths (see [3]) and given by 
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where η represents elevation, gCA x∂=  and 1−= CgB  are pseudo 

differential operators with symbol ( ) ( ) kkkC Ω=ˆ  (in the form of Fourier 

transform) with ( ) ( ) ,tanh
0 kh

khkck =Ω  ,0 ghc =  g and h are gravity 

acceleration and water depth, respectively. 

Equation (1) will be solved by using third order asymptotic expansions 
where the elevation ( )tx,η  is expanded by power series in a small parameter 

ε. The expansions then obtain three linear partial differential equations up to 
the third order expansion and can be written as 
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Notation ( )iη  denotes the ith order approximation of η. Equations (2)-(4) 

relate to the first, second and third order equations, respectively. 

In equation (2), the dispersion relation of AB equation can be obtained 

by taking ( ) ( )txkiae ω−=η 01  with amplitude constant a. Then we find 

dispersion relation ( ).0kΩ=ω  The dispersion relation is the same as the 

dispersion relation for modified KdV equation in [1]. 

The paper is organized as follows. In Section 2, we will derive the NLS-
type equation for the AB equation. The NLS-type is well-known as 
amplitude equation for modulated wave in water waves, see Dingemans [4]. 
By choosing the solution of AB equation as monochromatic with modulated 
amplitude and applying third order asymptotic method, we found the NLS-
type equation. The coefficient of the NLS-type will be compared with other 
NLS-type. 

In Section 3, the characteristic of wave groups for AB equation will be 
discussed. The characteristics of wave groups are determined by looking 
coefficients of NLS-type equation that are found in Section 2. Section 4 will 
be focussed on comparison of the coefficients of NLS-type of AB and the 
other NLS-type. Conclusions are written in Section 5. 

2. Standard NLS-type Equation 

Here we look for an envelop equation derived from the AB equation. The 
equation is based on investigating wave groups propagation. To the end, the 
solution of (2) will be chosen in the form of a monochromatic wave with 
modulated amplitude ( ),, txa  

 ( )( ) ( ) ( ) ..,, 01 ccetxatx txki +=η ω−  (5) 

Here 0k  and ω represent wave number and frequency of the monochromatic, 



Mashuri and B. S. Purwanto 32 

respectively; c.c means complex conjugates. Expression (5) is called first 
order harmonic mode. 

Substitution of (5) in (2) yields 

( ) ( ) ( )txkitxki
t aeiea ω−ω− ω−∂ 00  
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where Â  is symbol of pseudo differential operator A in the form of Fourier 

transform and nÂ  represents nth derivative of Â  with respect to k. 

For an envelop which has a large spatial extension, we introduce a 
scaling in the spatial variable. Along spatial variable ξ is introduced a frame 
moving with velocity .gV  Thus we write ( ),, τξ= Aa  ( )tVx g−ε=ξ  and 

t2ε=τ  with group velocity .gV  Applying these expressions into (6), we 

obtain 
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with .0 txk ω−=θ  

Since ( )0kΩ=ω  and ( ),0kVg Ω′=  from (7) we obtain 
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For the second order solution, the right hand side (RHS) of equation (3) 
is obtained as interaction between solution of the first order with itself, 
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The solution of the second order equation can be chosen as 

 ( )( ) ( ( ) ( )) ..,,, 22 cctxcetxbtx i ++=η θ  (9) 

This solution is superposition of the second order double harmonic mode and 
second order nonharmonic long wave. 

Substituting (9) into the second order equation, we find 
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For solution of b and c, we will follow the same line as in solution for a. 

We then introduce ( ),, τξ= Bb  ( ),, τξ= Cc  ( )tVx g−ε=ξ  and t2ε=τ  for 

equation (9). Then we get in the second order equation 
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Collecting term θie2  in (11), we get 
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In the third order equation, a resonance term and a constant term will 
appear due to interactions between first and second order solution in the 
nonlinear terms of AB equation. The constant term can be written as 
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while the resonance term can be written by 
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These terms have to be vanished to satisfy solvability condition for 
asymptotic valid solution. Therefore from (13) we get 
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By substituting (15) into resonance term (14) and using solvability 
condition, we obtain an equation for the amplitude A  given by 

 ,022 =γ+∂β+∂ ξτ AAAA ii  (16) 

where the coefficients of equation (16) are given by 
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Equation (16) was known as standard NLS-type equation and we denote 
this as .NLSAB  

3. Characteristic of Wave Groups 

The parameters β and γ are the important parameters in the NLS 
equation. They determine the kind of wave groups that described by the 
model [4, 1], so this will be looked first. We will demonstrate this by looking 
for ‘steady’ solution. Next, we try to compare with other NLS-type 
equations. One of them is NLS-type that derived from the KdV equation, we 
called it by .NLSKdV  The solution of equation (16) will be solved by 

choosing the ansatz as 

 ( ) ( ) ( )., τ±−ξ=τξ iefA  (17) 

Substitution of (17) in (16) yields 

 ( ) ( ) ( ) ( ) .03 =ξγ+ξ′′β+ξ±− fififi  (18) 

Here f ′  and f ′′  denote the derivative of f with respect to ξ. Equation (18) 

can be rewritten as 

 ( ) ( ) ( ).3 ξγ−ξ±=ξ′′β fff  (19) 

Considering (19), we observe that the solution very much depends on 
coefficients β and γ. Multiplying each side by ( )ξ′f  then integrating them 

with respect to ξ, we find 
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where 
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for some constant E. The constant E can be regarded as energy when we 
consider this by interpreting the equation f as a mechanical system (i.e. 
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Newton’s equation of motion for a particle with mass β under the influence 
of a conservative force with potential energy )).( fV  

In the sequel, we denote ±V  corresponding to the sign ±  in (21) and ,γ±  

with .0>γ  The graph of this function can be seen in Figure 1. The 

continuous line shows the ,+V  while the dot line shows the graph of .−V  

The function V has minimum and maximum values at γ±= 1f  with 

the maximum value 
γ4

1  and the minimum value .4
1
γ

−  

 
Figure 1. Graph of the function of +V  (solid line) and −V  (dashed line) with 

.1=γ  

Let us consider the case for ,−V  by using the initial condition of V, where 

the maximum of V is ,4
1
γ

 we get 
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where .γ=γ∗  Equation (22) can be rewritten as 
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The solution of (23) is given by 
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Thus, the solution of (16) is given by 
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Figure 2. Dark soliton for 1−=γ  and .1=β  

As an illustration we choose ,1−=γ  ,1=β  the wave amplitude is the 

modulus of A. The wave amplitude with respect to ξ can be seen in Figure 2. 
The solution is not suitable for surface water wave equation. Therefore for γ 
negative, the AB equation was not describing solitary wave. The solution 
(25) is called dark soliton. 

While for the case of ,+V  it is required that the water is in rest at infinity, 

then f and f ′  are zero for ξ tends to infinity, therefore it gives ,0=E  and 

we get 
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Choosing fg 2
γ=  and doing some modification, we can rewrite (26) as 

 ( ) ( ) .11 222 ggg −
β

=′  (27) 

From the expression (27), we get 
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So, the solution of (16) for γ positive is given by 
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Figure 3. Bright soliton for 1=γ  and .1=β  

By the same way as for the solution (25) but here ,1=γ  the solution 

(29) is called “bright soliton” or soliton (see Figure 3). 

4. Comparison of the NLS-type Equation 

For the modified KdV (mKdV), the equation with exact dispersion 
relation (see [1, 5]) is 

 ( ) .04
3 2 =η∂+η∂−Ω+η∂ xxt ii  (30) 
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The coefficients β and γ of its NLS-type equation are given by 
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Equation (30) is in non-dimension form. The relation between the normalize 
variables and the physical variables is given by ,η=η hlab  ,hxxlab =  
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By using the above relation for the AB equation, comparison between 
coefficient of NLS-type of AB and KdV can be seen in Figure 4. The 
coefficient β of ABNLS  is the same as of KdVNLS  (see Figure 4) since their 

dispersion relations are the same. The coefficient β is always positive. 

Next let us consider the value of γ. For long wave case (small k), the 
coefficients γ of ABNLS  and KdVNLS  are really closed. However, for the 

short wave case, the coefficient γ of ABNLS  is larger than γ of .NLSKdV  The 

order of coefficient γ for ABNLS  and KdVNLS  are ( )25kO  and ( ),23kO  

respectively, such that the order .NLS
NLS k

KdV
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⎠
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⎜
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⎛
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Since the solution is occurred for ,0>βγ  and we know that ,0>β  so 

there is critical wave number critk  such that for ,critkk >  .0>βγ  For 

,NLSAB  47.1≈critk  while for ,NLSKdV  15.1=critk  and ≤≤ critk46.1  

24.4  for BBM (see [1]), which has dispersion relation .6
11

1
2

−
⎟
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⎝
⎛ +=ω kk  

Observe that although the dispersion relations of mKdV and AB equation 
are the same, but their critk  are different. This is caused by the effect of 

nonlinearity term of each other, as we know that their nonlinearity are 
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different. critk  of ABNLS  is closer to the value 36.1≈  which is found when 

the wave groups are considered for the full set of equations describing 
surface waves on a layer fluid [4] than of .NLSKdV  

According to sign β and γ where wave groups that are relevant for 
laboratory experiment only exist when their sign are positive, Table 1 shows 
summarize of sign of β and γ for each equation. 

 

Figure 4. Parameters β (left) and γ (right) for ABNLS  (line) and KdVNLS  

(dot) at the top, and for ABNLS  (line) and BBMNLS  (dot) in normalize 

parameter. 
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Table 1. The table of critk  for various models with their dispersion relation 

Model Dispersion relation Laboratory wave groups 

KdV ⎟
⎠
⎞⎜

⎝
⎛ − 2

6
11 kk  impossible 

BBM 
1

2
6
11

−
⎟
⎠
⎞⎜

⎝
⎛ − kk  for 24.446.1 ≤≤ k  

mKdV ( )( )kkk tanh  15.1≈≥ critkk  

AB ( )( )kkk tanh  47.1≈≥ critkk  

5. Conclusion 

In this paper, we studied the derivation of envelop equation which is 
called NLS equation. By using the AB equation as a uni-directional wave 
equation, it was shown that the amplitude equation for wave groups not only 
depends on the dispersive properties, but also depends on nonlinearity of the 
models. Although the dispersive property of AB equation is really the same 
as the modified KdV equation in [1], the critical k for each equation is 
different. The critical k for AB equation is closer to the value that found 
when wave groups are considered for the full set of equations describing 
surface waves on a layer fluid [4]. It is caused by the nonlinearity of the AB 
equation which is different from the KdV equation. 
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