Far East J. Appl. Math. 19(3) (2005), 297-322

FINITE VOLUME ELEMENT METHODS AND
ANALYSIS ALONG CHARACTERISTICS FOR THE
ONE DIMENSIONAL CUBIC SEMICONDUCTOR
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Abstract

Using Hermite cubic polynomial trial function and piecewise linear test
function and combining the method of characteristics with finite volume

element method, we give a full discrete finite volume element method

along characteristics. Further, we get an optimal H' and I? error

estimates. Finally, an experiment showing the advantage is provided.
1. Introduction

The mathematical model of the semiconductor device of heat
conduction is described by the initial boundary value problem made up of
a system of four quasi-linear partial differential equations. One equation
of the elliptic type for the electric potential, two of convection-dominated
diffusion type for the conservation of electron and hole concentration, and

the last one for the heat conduction. The four equations relevant initial
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conduction and boundary condition make up a closed system. We consider

the following one dimensional semiconductor problem [10] in Q = [a, b]:

2 — —_ j—
_0 \g =a(p-e+Nx)), (x,t) e Qx(0,T], J =(0, T], (1.1)
ox

e _ 6 e L OW|_ =

ot ox [De(x) ox M€ Gx} R(e, p, T), (x,t) e QxJ, 1.2)

P _ 0 2] 0_\V} _ <

o ox |:Dp(x) ox +Uupp o R(e, D, T), (x, t) e QOxd, (1.3)

p(x) ot [(Dp(x) o up(x)p ax) (De(x) o He(x)e B o
(x,t) e Qxd, (1.4)

where (1.1) is the electrostatic potential equation, (1.2) and (1.3) are the
electron and hole concentration equations and (1.4) is a temperature
equation. The unknown functions here are the electrostatic potential v,
the electron concentration e, the hole concentration p and the
temperature 7. All coefficients are positive. Dg(x)(s = e, p) is the
diffusion coefficient, py(x)(s = e, p) are mobilities with the relation D,(x)
= Uppg(x), where Uy is the thermal voltage. N(x) = Np(x) — N4(x) is
a given function, Np(x) and N4(x) being the donor and acceptor
impurity concentrations. R(e, p, T') is recombination term considering

the temperature’s effect. For e, p and T, the initial condition is
e(x’ 0) = eO(x)’ p(x’ O) = po(.')C), T(x, O) = TO(x)’ x € Q. (15)

The initial value of y can be calculated by (1.1) and (1.4). We consider
two point boundary value problem, the boundary values are

v(a) = y'(b) = 0, e(a) = €'(b) = 0, p(a) = p'(b) = 0, T(a) = T"(b) = 0. (1.6)

The work on the semiconductor device simulation is very important
for the development of the semiconductor problem. Since Gummel [3]
first proposed sequence iterative computation methods to treat this kind
of problem, and thus opened a new field in 1964, there have been lots of
numerical contributions towards about such problems. The main work
now include: Douglas and Yuan [1], Yuan [9-11] and Zlamal [12] et al.
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Finite volume element method, as a new method to solve differential
equations, can preserve the desired conservation laws and preserve the
main advantage both of the finite element method and also of the finite
difference method. Compared with finite difference method, it can be
parted freely especially in irregular domains. In this paper combining the
modified method of characteristics, we get a full discrete characteristic
finite volume element method for one dimensional cubic semiconductor
device simulation which not only preserves the advantage of finite
volume element method but also preserves the conceptual and
computational advantages of the MMOC.

The outline of the paper is as follows. In Section 2 we introduce the
algorithm of this paper and give the computational procedure. In Section
3 we study the estimate of rate of convergence on assumption of periodic
boundary value condition. First some definitions and lemmas are given.

Then we obtain an optimal prior error estimate in H 1 andin I2. Finally,
in Section 4, the numerical results are presented. In this paper, C stands
for a general positive constant and ¢ is a general small positive constant
having different meaning at different places.

2. Full Discrete Scheme of Characteristic Finite Volume
Element Method

We use H™ to denote Sobolev space of m order. In Q = [a, b], (;, )
denotes H" = L* inter-integral, | - | = denotes H™ norm and |-, = ||
Let HY = {u(x) e H' |u(a) =0}, U =H?NH}. We divide Q = [a, b]
into o/ parts called partition T}, [4] with the nodes x;, i =0, 1, ..., J. Let
I; =[x;_1, x;], h; = x; —x;_; and h = max;;<j{h;}. Then we assume that
the partition satisfies the regular condition A; > ph, p > 0,1 <i < J. We
introduce the dual partition 7} with nodes x;_1/2, +=0,1,..,J. The

nodes satisfy
Xo =X_1j2 S X2 S S Xjyp S X2 S S X gy = Xy

Let IS :[xO’xl]’ Il* :[x. 1, %, 1]’ Ic*] :[x
= -— i+ J

1, xg], 1<i<d -1 All
2 ) 2 2
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the I;(0 < i < J) made up of the cell dual partition 7}, I; is also called
control volume. We use Hermite cubic polynomial space U, as trial

function space due to T}, the base functions about x; are

U=hit 2 —a [P @h|x—x; [ +1),  xq <x<x;,
o0 (x) = 1L - A x —x; [P @Ry & -2 |+ 1), 2 < x <y,

0, others,

(x—x) (A Yo —x; | -1), x4 <x<x,
1 -1
<PE Jo) = {0 — ;) (hith % — ;| = 1), 2 < x < x4,

0, others.
n
We denote an u;, € Uy, uniquely by u;, = Z [ui(pgo)(x) + u{(pgl)(x)]
1=0

We use piecewise linear polynomial space V}, as a test function space

due to Tj,. The base functions about x; are

0) 1, x { <x<x 1,
v, (x) = 3 )
0, others,
X —X; X <x<x
1 NN-L L
) = 3 o
0, others.

n
We denote a v;, € V},, uniquely by vy, = Z[viwgo)(x)+ v{wgl)(x)].
1=0

Let the time step be At = T/N , where NN is a positive integer and
t" =nAt, n=0,1,.., N. Let u(")=u". Define the interpolation
operators [I;, : U — Uy, and [}, : U — V.

For convenience, we rewrite (1.1)-(1.4) as

2
—Z—\gvzoc(p—e+N(x)), (x,t) e Qxd,d = (0, T], 2.1)
x
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Oe 0 Oe Oe Oe.
ot ox [De 8x} TRl oy T

+ auee(p —€—- N(x)) - R(e’ D, T)’ (x’ t) € Qx "—7;

8_19_&[ a_p} P _ Ly o
ot ox| P ox

oT 8T 9
) - =--p, 2

2
ot ox2 pa_x'u"'“pplul

+ D, gfc wtppe ul?, (x,6) e Qxd,

where

u=- Z‘V (x,¢) e Qxd.
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(2.2)

(2.3)

(2.4)

(2.5)

For problems (1.1)-(1.5), we assume the solution to be smooth due to its

physical property and the coefficients satisfy

(1) 0 < C, < Dy(x), ug(x) < C*, s = e, p, C,, C* are positive constants.

Op (x)

(2)‘ <C,s=e, p

(3) R(e, p, T) satisfies the Lipschitz condition in three variables near

| Re(x, t) + &1, p(x, t) + €3, T(x, t) + &5)
— Rle(x, t) + &9, p(x, t) + g4, T(x, t) + &g) |

SC{lSl—82|+|83—84|+|85—86|}, (x,t)eij.

Define

a(D; u, v) = —J. bi(D iu)valx
T a Ox ¥ ox ’

¢o field. That is to say that there exists a C =0, when |¢; | < g,
(1 <i < 6), such that

(2.6)
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a(l; u, v) = a(u, v) = —jbi(i ujvdx
T ’ a Ox \ Ox ’

Let t,(x) be the unit vector of (~uu, 1) and t,(x) be the unit vector
of (upu, 1). Denote ¢; = [1 + w2l u |2]1/2, s = e, p. Then the characteristic
derivative is approximated by

6 10 puad o 18 Mpla

0 - , 2,
e e 0 b, ox’ B, b, 0 ¢, ox @.7)

n
We use a backward difference quotient for (ZL] (x) = aa—e(x, t") along
Te ‘ce

the characteristics. Specifically, we take

de" e"(x)— " Ha + puAt) e (x)— e L (x + poulAt
() 22 = g () LAY M) Tt TA) g
Te [(x —X)" + At“]

be™ e — én—l

Let %, = x + p u"At, é(x)=e(x). Then ¢, ~ ————; for hole
0T, At

. . n s N4 op” - p" —i)nfl
concentration. Let £, = x —u,u"At, p(x) = p(x). Then ¢, o " Y

n

Denote uy, = -V, X270 = x + pufAt, el = e, (x271); 9?;_1 =X — Uy At,

15;;71 = ph(fgfl). Then the full discrete finite volume method along

characteristics can be given by

a(yy, xn) = op; —ey + N", 7p), Ve € Vp, 0<n <N, (2.9)

el — En—l o
h h . —n-1, n-1
yvet R a(Dy; ey, op) — (e, u, 6xe , ©,)

~(aneep (PR~ + N™), )

=-®Re " o TP, o), Yo, €V, 1<n <N, (2.10)

n __ —n-1
Py, — Py, ) —n-1_n-1 aup
[T,mh]+a(D s Dy, ©p)+| Dy uy 0 Oh
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+(anpph (PR ™" + N"), op)

=-(RE™, pp T, o), Yo, €V, 1<n <N, (2.11)

-1
T
At

, zh] +a(T], zp)

apz n n|,n |2 an n
= —[Dp T Yn Fh |t (ppplup |75 20) +| D, T Uno 2h
2
+ (pee}’” uZ I“, 25), Vzp, € V. (2.12)

ep(x) = ([ e9) (x), pp(x) = (T, o) (x), Ty (x) = (1T, Tp) (%), x € Q. (2.13)

The algorithm of the process is: the values of eg, pg, T,? are defined
by (2.13), by (2.9) we can obtain \1/2; for n =1, 2, ..., N, assuming that

\412_1, eZ_l, pZ_l, T}:L_l are obtained, by (2.10), (2.11) and (2.12) we can

calculate the values of e;, p; and 7', and then from (2.9) we get the

value of yJ.

3. Convergence Analysis

3.1. Definitions and lemmas

Definition 1 [4, 7]. We define the discrete norm on Uy, : Vu, € Uy,

2
hillon = \Un> Up)o p = Zh’Zh’
lunllo.n = @Wns undo p = (M5 wp, T wp)
n wi—u; 4 2
lun ), = Zhj[(—J = j Uy +“}2}’
j=1 !

lun 55 =lun Bp+lun I p

Lemma 1. For all u;, € Uy, there exist two positive constants Cy, Cy
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independent of U;,, such that
Cil un |l < [un llo, 5 < Collun |
Cillwp Iy < lun b, < Collup |-
Lemma 2. For all u;, € Uy, and for h sufficiently small, there is
a(D; up, I up) = Clluy, ||f (3.1)
a(D; uy, 1}, v,) is denoted by a(D; uy, [}, vy) = ay(D; uy, 115, vy) +
a1(D; uy,, 113, vy,), where
a1 (D; uy, [y vp) = ay(D; vy, Ty wp), Vg, vy € Uy (3.2)
and
Cillup [F < ay(D; wp, T wp) < Colluy, |y,
the second term satisfies

| ag(D; uy, T vp) | < Ch| uy, || vn |l;» Vup, vy € Up. (3.3)

Let |||, = lay(D; up, T up Y%, wy, € Uy Then || -||, is equivalent to

H' norm [ - ||1

Proof. In this paper, a;(D; uy,, [13, vy) and ay(D; uy, 1}, vy) are the
same as B(D; up, [1; v,) and E(D; uy, 1 v3) in [7]. We only prove
(3.3), the proof of the others can be seen in [7]. Now

as(D; up, I}, vp) = a(D; uy, 11}, vy) — ay(D; uy, 115, vp)

J , [ i2
=Zvjj D'(x) (u; - up)dx

IR Te

J Xj+1/2
= > o[ D 9)) - )

0 Y-z

Following the analytic tradition of Li et al. [4], we know that in I; =
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[xj_1, x;], thereis

u] —uj_l

il = of| 5,

+|u'J_1|+|u’J|]

Using Ho6lder’s inequality and the regularity of the partition, we have

J 12 5 12
| agup, T, vp)| < C{Z (03)2} {Z [uz(s,-)F} h
j=0 j=0

< Chlvj |y plujly, = Chl g [ on ;-
In the last step we use that |-|; and |- |, are equivalent in H L(Q).

Lemma 3. Let (uy,, [T}, up) = [ un 5 ,» Y, € Up. Then

Collwn | < Wun o, < Collun |- (3.4)

Proof. Firstly from the interpolation theorem in Sobolev space, we
have

[T1, u—u| < Ch47m||u||m, 0<m<4, Vuel.
By the triangle inequality
|0, wll <y ||+ 1T, u—u] < Cluy |,
so that
(wn, T, w) < Clluy || 1T ] < Oy |.
Secondly Li et al. [4] have proved that (uj, [T}, u) > B up, ||2, and thus

Cillup || < (up, T w) < Cof g, |
The proof is complete.
Definition 2. For all u; € Uy, we introduce the negative norm as

(up, 11}, op)

3.5
Ton T, 55

Rz ||—1,h =

sup
opeUy and | op, |; %0
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By Lemma 3 and the theory in [6] we can obtain that |uy ||, , and

| up |_; are equivalent norms.

Note. In the following convergence analysis we do not declare when

we use continuous norm instead of discrete norm.

3.2. H' norm error estimate

For convenience we suppose that the solution of (1.1)-(1.5) 1is
Q-periodic, and hence the corresponding discrete scheme (2.9)-(2.13) 1s
also Q-periodic. For ordinary boundary value problems we can get similar

results dealing with the technique extension or mirror reflection (see
[10]).
Now, we introduce the elliptic projection of the solution: let = vy,

satisfy
aly =V, xp) =0, Vyp € Vg, (3.6)

andlet ¢, p, T e V,,, satisfy

a(D,; e —¢, op)+r.(e—€, wp) =0, Vo, €V, (3.7)
a(Dp; p =D, o)+ Lp(p = D, ©) = 0, Yo, € Vp, (3.8)
G(T - T, (,Oh)-i- 7\.T(T - T, (Dh) =0, V(Dh € Vh’ (39)

where Ly (s = e, p, T') is a positive constant. It is well-known [2, 8] that

for v, e, p, T € H*(I)N H(I), we have

lw -1+ Hlw-il, < Chlyl, (310)
e e d(s-73) d(s-73)
s+ ls-7), +| 222 22D
Os | |4 o
SC{IISIL;+ 7 Jh cs=enT (3.11)

Denote 0 =y, -y, n=y-Vy; & =¢,-¢, {, =e-€; §, =p,-D,
Cp =p-Dp; Ep :Th—.’ZN", Cr = T — T. First from (2.9) and (3.6) we can

get the error estimate equation of electric potential
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a0, xp) = olpp, — p" +e" —ep, xn).
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(3.12)

We choose y;, = [}, 8" as test function in (3.12). By Lemma 2, we have

Jo™ Iy < Cllles |+ &5 11+ A,

(3.13)

Next we examine electron concentration, for hole concentration we

have the similar results. By (2.2), (2.10) and (3.7), we obtain

(ae B
At

Oe" 2" , e -—e'!
Tl T Hea Y T T A @R

+olplef (PR~ + N) =" (p" —e" + N)| o)

(‘)hJ + a(De; ag’ (’)h)

+ (e uf - "] B o)+ (RE, o, T - R@ B
+ho(e" =", op) + (C? _Atzg_l , th.
For convenience, we rewrite (3.14) as
At
{C? -AtZ_l , th+(CZ‘_1A—tE£‘_1 , th

0 -1l -
o[l up - o] 2y ) ol e B - 4 )

n-1
(&e Ce , G)h} +a(D,; &, op)

—e"(p" —e" + N)|, o)

+(R(e", p™, T™) = R, o)L, TP7h), op) + hole™ =27, op).

}?_1)7 (’)h)

(3.14)

(3.15)
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n-1
We choose oy, =1}, e Afe =11}, d,&7. as test function in (3.15). Using

Lemma 2 to the left hand of (3.15), we get

n-1
[De’ ge, * E)e Af’e J

= s @Dy &) + 07 T (0 - €071 + alDy; & - &0, (el - eo7h))
= 2At (a(De’ ge + i? -1 Hh(ge ?;2_1)))

B ﬁ(al(De; ‘t:g + ag—l, HZ(%Z —é?_l))+ az(De; gg + é?‘l, HZ(&? —éZ‘l)))

2 Sh(ERIE er1P) + an(Des €8 + £ T el (3.16)

By Lemma 3, we obtain

2 1 2 -1y2
g2 2 5+ 5z (212 - 1 €274 12)
oe de e — En—l . zn-1 _ ¢n-1 .
= ([7 — Mo o U - A—t}’ I1p dz@?j + (% [Ty di&e
Qn _ #n-1 n-1 _%n-1
+ (%, 1T, th.’ZJ + (%, 1T, dt&?]

J

+alpeleh(Bh T —2h Tt + N)—e"(p" —e" + N)L T}, d,&2) + (R(e", p", T")

n-1_n nn.aue
([eh uy —e"u"] >

— R, ot TN, 0 diEl) + Ao (e™ — @7, T, diEl)

— ag(Dy; & + EM7L T, dyel). (3.17)

Multiplying (3.17) by 2A¢, summing for 1 < n < N and using continuous
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norm instead of discrete norm, we have

N 9
2) |l des [Pac+ | el IF -1 e F < DT (3.18)
n=1 i=1

We now estimate the terms of the right hand of (3.18), for 77,

N 2 N
Z oe" oe” et —g! Z % D)
|T’1|S01 W—Meg'u;’;—T At + ¢ "thté;g" At. (319)
n=1 n=1
A 2 211/2 oe” oe" ~ e
Let ¢, = [1+ pg|uy | ]/ , so we have W—MeEJLZ = ¢6E’ and

thus the following [8],

2 n 2
de" ", e -—e'! t d%e
= —n, = - | <CAt — | dxdt. 3.20
ot Meox Yh At L"*l IQ 61:2 ¥ (320
So that
62 2 N
|| <05 (At + &y [der At (3.21)
Te I12(J; I2(Q)) n=1

To estimate the rest of terms of 7}, suppose the partition parameter

satisfies At = o(h). We introduce the hypothesis [10]:

sup {07, + €5 ., + 1€77 ..} > 0, (h, A7) > 0 (3.22)
0<n<N

sup |V0"|  — 0, (h, At) - O. (3.23)
0<n<N

So that when (A, At) is sufficiently small, we have
ler | +|py|+|Tr| < C, |ul| < C. (3.24)

_ 2
n-1 n-1
e — ae

To handle Ty, using the hypothesis and the result of [8]: A7

< C|vert ||2, we have
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N N
| Ty | < CY | ver " Pac+ ) |digr|Pat
n=1 n=1

N N
<O Jen T Par oy [der A (3.25)
n=1 n=1

In treating T3 using (3.11) and 7, similar to Ty, we obtain

N
| T3] <€)
n=1

N N N
[Ty | < CY Ve Pat+ ey [ derPae < ChS + e dgr [Pat. (3.27)
n=1 n=1 n=1

e
ot

N
ITThdie | < Ch® + ) [|diet P a. (3.26)

n=1

By (3.5), (3.6) and (3.24) we examine Tj, Tg,
N
| T5 | = 22
n=1

N
CY ([ee™ P +1ept IP)at + Co(h® + hC + (a0)%)
n=1

At

0 1=n- - *
(e e - )+ ey - T it

IA

N
+ey || g |Pat. (3.28)
n=1

N
| Ts | = 2" apelef (p ™" - ")+ efpfe™ —2p ™)
n=1

+ (e —€")(p" —e" + N), I}, di&g ) | At

N N
<G Y (B + 1857 P)at + Co(® + (a2)%) +2)_ |l At (3.29)
n=1 n=1

By (2.6), we have

N
| Tr | < CY (" =y P+ [p" = 5y P + 17" - T )
n=1

N
L AR
n=1
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N
<C Y (e P + gy I + a8 P ae
n=1

N
+ Cy(h® + (A1)?) + gz | e | At. (3.30)
n=1
N N
| T | < O [ b [T dige At < Ch® + &) | g2 |t (3.31)
n=1 n=1

To estimate Ty, we use (3.3) and the inverse argument of finite element
method [2]:

N N
| To | < €Y Res +&27 | | del [, at < €Y [ler + 07 |, | die? | At
n=1 n=1

N N
2 2
< CZ;, ez at + Z; ez [P at. (3.32)
n= n=

By the estimate of all 7; (1 <i <9) and (3.18), make ¢ properly small

and note that &8 = §(I), =0, so that
N N
leIF + D s IPac < €y (lee I + g IP + &8 P)ae
n=1 n=1

+ Cy(h8 + (AL)). (3.33)

n n-1
* ap - ap

For hole concentration, choosing ;, = [}, v = 1}, dj&), as test

function, we have
N N
2 2 -12 ~12 ~12
leN 7+ lden Pae < ¢ (e P + 1 eh I + e IP)ae
n=1 n=1

+ Cy(h8 + (At)). (3.34)
At last we discuss the error estimate of temperature. By (2.4), (2.12) and
(3.9), we obtain

[p A 2 |t alEr z) = | el oy , 2

g - u
+ pA—t,Zh +}\.T(T—T, Zh)
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ny, ni2 ny, n|2
+(up(prlun " = P "[u" ), 2)

+ (ueleR|uft [P = e"|u" ), z). (3.35)

We choose zj, = [1}, &r A? =I1}, d,&} as test function in (3.35). By

Lemmas 2 and 3 and similar to (3.17), we have

2 2
B I2 5 + o QIR 2 - 18 1)

~ " n apz n apn n . "
+}\’T(T_T7 Hh dt(taT)—f_ Dp O 'uh __ax U, Hh dt(t’T
n an n " n * n
Hp(phluhl - p"|u" ), T dielh ) - —ax Uy U Ty dierp

+ (ue(eM|ult [* - e™u P), T}, dy) — ag (&) + 5L, TT) dER).  (3.36)

Multiplying (3.36) by 2AT, summing for 1 <n < N and using continuous

norm instead of discrete norm and noting that é’;% = 0, we have
N 8
[ [} + 2D ek [Par < @ (3.:37)
n=1 i=1

To deal with the right hand terms of (3.37), we obtain

N
|Q + Qs + Q3] < C((82) +A%)+ £ [|d,eh [P at. (3.38)
n=1
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By the hypothesis (3.24), the bounds for @4, @5 are
ZN opy _ op” op"
_ “h _ YPY. n Yo n _ n * n
|Q4 | =2 « ([Dp( ox ox J up + ox (uh u )]’ Hh E)TJ
n=

N N
<C Y (IE2IF +1Ep ID)AL + CohS + (a2)) + &) |d,eh [Pt (3.39)
n=1 n=1

At

N
@5 | = 2> [ p(pp = p™)uft [P+ wpp™(up P - |u" ), T di&h) |at
n=1

N N
<C Y (g8 P + 1) [P)at + Co(h® + (at)?) + &> | dyh [P At (3.40)
n=1 n=1

For Qqg, @7, using the same estimates as that of @5, g, we obtain

N
Qs+ Q7 [ <G Y (g2 +gp IF)at
n=1

N
+ Cy(A® + (81)%) + &) [ dyeh At (3.41)

n=1

By (3.3) and inverse arguments of finite element method, we have
N N
|Qs| < CY ek [fa+e) |deh |* At (3.42)
n=1 n=1
Put all the @; (1 < i < 8) into (3.37), hide ¢ terms, we have
N N
1N I} + D et Pae < ¢ ) (1E2[F + 185 I + 1887 [F)ae
n=1 n=1

+ Co(h® + (At)P). (3.43)
Combining (3.33) and (3.34), we obtain

N
N 2 N 2 N 2 2 2 2
1N I+ 1D 17 + 1 17 + ) (el I + g I +] e |*)ae
n=1

N
< CIZ(||§Z‘1 ||f + ||EJI},‘1 ||f + ||§%‘1 ||f)At + Cofh® + (At)?). (3.44)
n=1
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Applying the discrete Gronwall lemma, we conclude that
N
N 2 N 2 N 2 2 2 2
1 IF + 1 IF + 1 IF + D (I dge | + 1 dEp I + ek I”)ae
n=1

< C{hO® + (At)?). (3.45)
Now, we prove the hypotheses (3.22), (3.23).

(1) It is easy to see that 00 =0, ég = ég = ?‘;OT =0 when n =0. So
(3.22) and (3.23) are true.

(1) Assume (3.22) and (3.23) are true when n = L —1. By (3.13) and
(3.45), we have

ek, + €5, +lek |, < ChY2nh® + a) - 0, (h, A) > 0
IveL |, < ch 2ol |, < chY2(h® + At) > 0, (b, At) > 0.
So (3.22) and (3.23) are true for all the n (1 < n < N).

Thus, we conclude the theorem.
Theorem 1. Let {e, p, y} be the solution of (1.1)-(1.5) and have some
smoothness, {ey, py, vy | be the solution of the full discrete characteristic

finite volume element scheme (2.9)-(2.13). When h sufficiently small and

satisfies At = o(h), then we can obtain H' norm error estimate as

sup {lle" ey, + 2" —pyl, +1T" =Ty |} < C(h® + At). (3.46)
0<n<N

3.3. L? norm error estimate

We choose wj, = [1, £ as the test function in (3.15).

n _gn-1 . on noyyE en
[‘taeTe,the]+a(De;§e,Hh§e)

oe" oe" e —e"! * gl
- [{7‘“8%'”2 _T} I gg}*(%’ ITi &
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Cn _ rn-1 . n-1 _ En—l .
+ (%, I3 gZJ + [%, 15, gZJ

+ (e~ eun]- B T e) + ol lef (B~ 2+ )

—e"(p" - e" + N)), [T}, &")
+(R(e", p", T™) - Rep ™, pp ™, TH 1), T}, &)
+he(e" — 2", TTj EP). (3.47)

To handle the left hand of (3.47), we apply Lemma 3 and (3.1) in Lemma
2, and obtain

n _¢n-1
(‘ieA—te’ HZ gZJ + a(De; ég’ HZ ‘22’)

1 5 L ,
> 5= (ed g » ~ 11887 lo, ) + Colle? I (3.48)

Multiplying (3.48) by 2At, summing for 1 < n < N and using continuous

norm instead of discrete norm and noting that &2 = &?, = 0, we have

N 8
le 1P+ Co Y ez [Fae < D" ;. (3.49)
n=1 i=1

To treat the first three terms in the same way as done in H ! norm error
estimate, we obtain

N
[Ty | < Cr(ae) + G ) [lee [P at. (3.50)
n=1
N N
Ty | <e) e [fac+C) et Pac. (8.5D)
n=1 n=1
N
Ts | < A8 + C n 2 At. (3.52)
3 1 2 e
n=1

To handle 7, we cannot proceed in a way similar to that in (3.27) as the

term | V21| leading to kS order will appear which we do not want. To
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avoid this thing, we use Definition 2 of H ~1 norm estimate. Consider the

transformation: f(x) = x + ueuZAt, it follows from [8] that f is a bijection
of Q onto itself. We see that

| det(Df)(x) —1| < CAt, Vx e Q. (3.53)

1
Ce —Co
At

-1

- s | e st - [ et st |

At geuy,

{ j R Co M (x)g(x)dx — IQ ¢ (x)g(f —1(x))det(Df ) (x) de

(| e o) - s e

At geUy,

vz s (| [ e e - a0 o s |

Al et
=W +Ws. (3.54)
Following the results of [8],

lg - gof < Cat|(va)e £ < Ol g (355)

Combining with (3.53), we obtain

Wlscisup(" rle 1||||g—gof-1||jscncz-lu. (3.56)
W, < C sup( I 1||||gof-1||js0||cz-1n. (357
AT

By (3.54), (3.56) and (3.57), we have shown that

1T, | < ||ae At < CZucz YAt

N N
vey |Er[far < Ch® 4> g7 [Fat. (3.59)
n=1 n=1
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To estimate 75, we use partition integral and transfer the spacial

] . ~ P n-1_ . n
derivative of ul ! — " = vk -v") to &7, and get

ox
N
| T5 | = 22
n=1

N
<clz<||a 1P +1gp7t P)AL + Co(h® + (AtP) + &Y €2 |7 AL (3.59)

n=1

0 n-1,/=n— n ne n— n * en
[“e[h1< 1—e)+e<u,,1—u>1,nhaejm

The remaining terms are bounded as in H ! horm error estimate, and we
obtain

N
| Tg + Tr + T | < CL Y (Jed P +ep P + 1857 P)at + Co(h® + (a0)P).
n=1

(3.60)

By all the error estimates of 7; and (3.49), hiding ¢ term in the left hand
of (3.49) yields

N N
Jed 1P+ D lee lfae < e (lge ™ P +ep 1P + s P)ae
n=1 n=1

+ Cy(h® + (AL)). (3.61)

For hole concentration we have the similar result

N N
ley P+ D lepliar < c )y (e P+ g™ 1P + e [P)ae
n=1 n=1

+ Co(h® + (AL)?). (3.62)

Now, to treat temperature equation (3.35), in (3.35) choosing Z;, =1}, &%

as test function, we have

At

n n-1 n-1
{955

(p g ogr g &%Jw(&’%, 1}, &)
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~ " ap;; apn .
+Aq{T——T,Hh&%)+[lh[7ﬂr~uz-—Tﬂ?~u” My &7
ny, n|2 ny, n2 * on ae}rzl n de" n ¥ on
+(up(ppluy|” = "), Iy, €7) = | D, T Uh T U , 13 EF

2 2
+ (ue(epluy |” = e"|u" [7), T E7). (3.63)
Multiplying (3.63) by 2At¢, summing for 1 < n < N and using the norm

equivalent and noting that ?‘;OT = 0, we have
N 7
I P+ Co Y g Pac < Y @ (369
n=1 i=1
The similar estimates to @y, @9, @3 in H 1 horm error estimates, we have

N
| @1+ @ + Qs | < Ci(A® + (at)) + Gy )| &% [Pat, (3.65)
n=1

To deal with @,, with the technique of partition integral transferring the

spacial derivative of some terms to &7 and using hypothesis (3.22), (3.23)

yields
N n
Q1= {[Dp{a_hg;Jh g )J m &%] e
n=1
N
< C(A® + (A0%) + Co ) (182 P + 1gp I + e [P)ae
n=1
N
ve) (&5 F +1 ek [)ac. (3.66)
n=1

N
2> [(up(pf = p")up [P+ wpp™(uff P~ u™ ), 11}, )| At

n=1

| Qs |

IA

N
CL(h® + (M) + Co D (L& [P + 1 e P + ] e [P)a
n=1

N
rey | eh ;A (3.67)
n=1
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For Qg, @7, we handle in the same way as @4, Q5. We deduce

N
Qs + @7 | < Cu(h® + (a0) + Co ) (e P + e IP + (1€ [P)ae
n=1

N
+e) (161 + e At (3.68)
n=1

Putting (3.65)-(3.68) into (3.64), we have

N
[ 1P +Co D I &R I at
n=1
N
< Gy (A% + (M) + Co ) (&2 +11gp 1P + 128 IP)at
n=1

N
vey (IEp I +1e% IF)ac. (3.69)
n=1

Combining (3.61) and (3.62) and hiding ¢ term, we have

N
N 2 N 12 N |2 2 2 2
L 1P+ 1gp 17 +1Ef 17+ D (eeIf + 18515 + 1% IF)ae
n=1

N
<C Y (e P +1gp 1P + 1887 [P)ac + Co(® + (ar)?). (3.70)
n=1

By the discrete Gronwall lemma, we conclude that
N
le I+ ey 1P + 1 1P + > (ee I +1Ep I + 1k 1) e
n=1

< C(h® + (AL)). (3.71)

So that we can obtain the result for L2 error estimate.
Theorem 2. Let {e, p, y} be the solution of (1.1)-(1.5) and have some
smoothness, {e;, py, vy} be the solution of the full discrete characteristic

finite volume element scheme (2.9)-(2.13). When h is sufficiently small and

satisfies At = o(h), then we can obtain L2 norm error estimate as

sup {|e" —ey ||+ |p" - py | +|T" - T, |} < C(h* + At). (3.72)
0<n<N
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4. Numerical Experiment

Consider the following simple example

ou  o%u
ot px2

u(x, 0) = sin(x),

u(0, t) = u(m, t) = 0,

0<x<m,

0<t<T.

————sin(x)Z—Z+cos(x)u =f(x,t), 0<t<T,0<x<m,

4.1)

The exact solution is u = e(™) sin(x). Using Hermite cubic polynomial

full discrete characteristic finite volume element method we obtain the

approximate solution Uj,. We get ideal results related to different spacial

steps and time steps in the examination from which we verify the

feasibility and effectiveness of this method. We perform two kinds of

computations: Table 1, the comparison of different nodes between the

discrete approximate solution (FVEM) and the exact solution (TS) when

h =mn/16, dt = h3; Table 2, the comparison of different nodes between

the discrete approximation solution (FVEM) and the exact solution (TS)

when h = /16, dt = h?.

Table 1. The comparison of the nodes between the discrete solution and

the true solution when h = n/16, dt = h® = 0.007570

Node x=n/8 x=mn/4 x=n/2 x=5n/8 x=3n/4 x="Tn/8
FVEM|;-0.1(0.098409) 0-346943 0.641072 0.906615 0.837603 0.641073 0.346943
TS|;-0.10.098409)  0-346818 0.640836 0.906279 0.837292 0.640836 0.346818
FVEM|;_0.20.196817) 0-314535 0.581200 0.821950 0.759385 0.581207 0.314539
TS|;~0.2(0.196s17)  0-314314 0.580776  0.821341 0.758820 0.580776 0.314314
FVEM|;_0.4(0.393634) 0-258507 0.477693 0.675599 0.624184 0.477732 0.258533
TS|;-0.4(0.393634)  0.258158 0.477015 0.674601 0.623250 0.477015 0.258158
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Table 2. The comparison of the nodes between the discrete solution and

the true solution when A = n/16, dt = h* = 0.001486

Node x=n/8 x=n/4 x=n/2 x=5n/8 x=3n/4 x="Tn/8

FVEM|;_0 1(0.099585) 0-346435 0.640129 0.905280 0.836370 0.640130 0.346435
TS|1-0.1(0.099585)  0-346410 0.640082 0.905213 0.836308 0.640082 0.346410
FVEM|;_0.9(0.199170) 0.313619 0.579495 0.819532 0.757149 0.579497 0.313620
TS|1-0.2(0.199170)  0.313575 0.579411 0.819410 0.757037 0.579411 0.313575
FVEM|;_0.4(0.399827) 0.256634 0.474205 0.670635 0.619589 0.474213 0.256639

TS|1-0.4(0.309827) 0.256565 0.474070 0.670436 0.619402 0.474070 0.256565
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