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Abstract 

This study is conducted to analyze the buckling behavior of elliptical 
homogeneous plates with a non-concentric elliptic hole subjected to 
uniform radial loading under different boundary conditions using 
Rayleigh-Ritz method. The geometry of plate with a non-concentric 
elliptic hole through a proper mapping transfers to natural coordinate 
system. Consequently, in-plane and out-of-plane displacement fields 
with respect to natural coordinates system are expressed using the 
Hierarchical, Hermitian, Lagrange and Fourier series shape functions. 
The Kirchhoff theory is used to formulate the problem in buckling 
condition. Due to the asymmetry in geometry, the in-plane solution is 
required to find the stress distribution. In terms of effects of the elliptic 
hole eccentricity, results show that the hole eccentricity has an 
insignificant effect on the critical buckling load factor in simply 
supported boundary conditions cases. 
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Nomenclature 

 bK  bending stiffness matrix 

 GK  geometric stiffness matrix 

 x, y Cartesian coordinates 

 crN  critical load 

 ξ, η natural coordinates 

 λ buckling load factor 

 crλ  critical buckling load factor 

 mlK  plate’s membrane stiffness matrix 

 wiviui NNN ,,  vectors of interpolation functions 

 ∆ generalized coordinates 

 D flexural rigidity  

 κ curvature vector 

 bU  strain energy due to the bending moment 

 W work done on the mid-plane of plate due to the external forces 

 σ in-plane stress matrix 

 Π  total potential energy 

 mlU  strain energy due to in-plane deformation 

 mlε  in-plane strains vector 

 tW  work done by the applied traction load 

 t traction vector 

 F generalized force vector 

1. Introduction 

By definition, buckling is a mechanical instability of a structure that       
is resulted from critical load. This critical load causes a column to fail. In 
contrast, due to membranes behavior, a plate can sustain more than its critical 
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buckling load. This phenomenon is called post buckling behavior of plate, 
therefore, critical buckling load is the starting point for post buckling 
behavior. 

Timoshenko and Woinowsky [1] and Ugural [2] have set the milestone 
work on plates and shells. Since then, numerous researches and studies    
have been done to calculate the force or displacement which causes buckling 
in a plate by considering different geometry. Using Rayleigh-Ritz method,      
Jazi and Farhatnia [3] investigated the buckling analysis of functionally 
graded super-elliptical plate with clamped and simply supported boundary 
conditions under uniform radial loading. Using the finite difference method, 
Reddy and Alwar [4] studied the post buckling behavior of isotropic and 
orthotropic annular plates under uniform radial loading inside the hole and 
on the outer border, with different boundary conditions. The Rayleigh-Ritz 
method is used by Altekin [5] to investigate the free linear vibration and 
buckling of super-elliptical plates under in-plane uniform pressure along the 
periphery, and results have been presented for different boundary conditions. 
The elaborated method of eigenfunction expansion in elliptic coordinates is 
employed by Hasheminejad et al. [6] to obtain an exact time-domain series 
solution involving products of angular and radial Mathieu functions for the 
forced flexural vibrations of a thin elastic plate of elliptical platform. Chai  
[7, 8] applied Rayleigh-Ritz method to study the buckling and post buckling 
of elliptical plate. In these studies, the large-deflection of elliptical plate is 
considered. Furthermore, a polynomial series expansion for displacements 
fields is used in conjunction with the Rayleigh-Ritz method to produce 
buckling and post buckling stress solutions for an elliptically-shaped surface 
layer. Bhushan et al. [9] used the finite element method to study the buckling 
and post buckling behavior of elliptical plates subject to uniform radial 
loading with different boundary conditions. Using the Rayleigh-Ritz method, 
Venkateswara et al. [10] studied the stability of simply supported and 
clamped elliptical plates subject to the compressive force uniformly 
distributed around the edge of the plate. The Rayleigh-Ritz method was used 
by Wang and Wang [11] to study the buckling and frequency of a super 
elliptic plate subject to uniform radial loading with clamped and simply 
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supported boundary conditions. The Rayleigh-Ritz method was used by 
Heitzer and Feucht [12] to study the buckling and post buckling of thin 
elliptical anisotropic plates with various boundary conditions. Using the 
Rayleigh-Ritz method, Mazhari and Shahidi [13] studied buckling and post 
buckling of circular plates with a non-concentric hole under uniform radial 
loading with various boundary conditions. 

In this study, application of the Rayleigh-Ritz method by using in-plane 
and out-of-plane shape function and novel proper mapping is developed      
for studying the effect of the non-concentric elliptical hole on the critical 
buckling load factor of an elliptical plate that is subjected to the uniform in-
plane loading along the periphery. 

2. Coordinate System 

In this paper, the natural coordinate system with the domain [ ]1,1−  is 

used to simplify the integration process. The relationships between Cartesian 
and natural coordinate systems are expressed in the following equations and 
Figure 1: 
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Figure 1. Schematic of changing of variable of an elliptical plate with non-
concentric elliptical hole to natural coordinate system. 

The differential operators of the two coordinate systems are related by 
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where J is the Jacobian matrix. Applying the chain rule of differentiation, 
and after some mathematical manipulation, it can be shown that the second 
derivatives can be expressed by 
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and the transformation matrix R is defined as 
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3. Interpolation of Displacement Fields and Shape Functions 

Displacement field in mid-plane of the plate has three independent 
displacement components u, v and w corresponding to x, y and z as follows: 

.T
p wvuU =  (7) 

Using equation (1), the displacement fields in the natural coordinate system 
can be noted as: 
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where iii uvw ˆ,ˆ,ˆ  are generalized coordinates and uiN  and viN  are in-plane 

shape functions and wiN  is the out-of-plane shape function. Equation (8) is 

written in matrix form as 
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where i∆  is the vector of degree of freedom or generalized coordinates and 

iN  is called the matrix of shape functions. The previous equation for general 

conditions can be expressed as: 

.N∆=pU  (10) 

The shape functions are assumed as ( ) ( ),1 1∑ ∑= = ξη= n
i

n
j xy ji NNN  where 

( )ηyN  is presented as: 

( ) ( )( ) ( )( ) ( )( )12sin1cos1sin1 +ηπ+ηπ+ηπ=ηyN  

( )( ) .12cos +ηπ  (11) 

For the out-of-plane solution, the first four shape functions are Hermitian 
shape functions and the rest six shape functions are Hierarchical shape 
functions which are [16] 
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For the in-plane solution, the first two shape functions are Lagrangian shape 
functions and the rest eight shape functions are Hierarchical shape functions 
[16]. 

4. Buckling Analysis 

The strain energy due to the bending moment in polar coordinate system 
is [1, 2] 

,2
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where bD  is the elasticity matrix of the plate, which can be written as 
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where 
( )2

3

112 v
EtD
−

=  is the flexural rigidity of the plate, v is the Poisson’s 

ratio, t is the thickness of the plate, and E is the Young’s modulus. The 
curvature vector in mid-plane of the plate is 
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Substituting equation (10) into (15), we have 

,∆BN∆LL bbpbU ===κ  (16) 

where bB  and bL  are matrices containing appropriate differential operators. 

Consequently, equation (13) can be rearranged as 

,2
1

2
1 ∫ ∫ ==

A b
T

bb
T
b

T
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where bK  is the bending stiffness matrix of the plate and is 

.∫ ∫=
A bb

T
bb dABDBK  (18) 

The work done on the mid-plane of the plate due to the external forces is 
given by 
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where ,xσ  yσ  and xyτ  are the in-plane stresses. By introducing the 

following matrix for buckling behavior of the plate: 



Analysis of Buckling Behavior of Elliptical Plate … 89 

,
00

00
∆BG

w

v

u

y

x =



































∂
∂
∂
∂

 (20) 

equation (19) can be rewritten as 

,2
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where GK  is the geometric stiffness matrix and is 

,∫ ∫ ∫Ω Ω= dG
T
GG σBBK  (22) 

where σ is the in-plane stress matrix. The total potential energy of the plate 
due to external forces exerted on mid-plane and bending is 

.2
1

2
1 ∆K∆∆K∆ G

T
b

T
b WU −=−=∏  (23) 

Based on the Rayleigh-Ritz method, the variation of the above equation 
should be equal to zero; therefore, we have 

( ) .0=−δ=δ+δ=∏δ ∆KK∆ Gb
T

b WU  (24) 

Since T∆δ  non-zero 

( ) .0=λ− ∆KK Gb  (25) 

The above equation is an eigen-value problem. The minimum eigen-value is 
the critical buckling load factor and its corresponding eigen-vector is the first 
buckling mode shape. The relation between the critical buckling load factor 

crλ  and the critical applied traction load on the outer boundary crN  is 

.2a
DN crcr λ=  (26) 

4.1. In-plane solution 

The presence of a non-concentric elliptical hole along the horizontal axes 
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of an elliptical plate always causes non-symmetric distribution to the in-plane 
stresses when it is subjected to external in-plane radial loading. A problem 
such as this cannot be handled analytically; therefore, the numerical in-plane 
solution is the only way to find the in-plane stress distributions, which is 
presented as the following. 

The strain energy due to in-plane deformation for small displacement is 
given as 

,2
1 ∫ ∫=

A mlm
T
mlml dAU εDε  (27) 

where mD  is the stress-strain relationships matrix, and for the plane-stress 

problems, it is 
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In-plane strains for small displacement are 

pm

xy

y

x

ml U

w

v

u

xy

y

x

x
v

y
u

y
v
x
u

Lε =















































∂
∂

∂
∂

∂
∂

∂
∂

=



























∂
∂+

∂
∂

∂
∂
∂
∂

=

























γ

ε

ε

=

0

00

00

 (29) 

or 

,∆BN∆Lε mmml ==  (30) 

where mL  and mB  are matrices containing appropriate differential 

operators. Consequently, equation (27) may be rewritten as 
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where mlK  is the plate’s membrane stiffness matrix and is given by 

.∫ ∫=
A mm

T
mml dABDBK  (32) 

Using Figure 2, it is seen that the work done by the applied traction load 

0τσ= n
Tt  is 

,∫ ∫Γ Γ
=Γ=Γ= F∆tN∆t TΤT

pt ddUW  (33) 

where F is the generalized force vector given by 

.∫Γ Γ= dT tNF  (34) 

 

Figure 2. Schematic of applied in-plane load on the boundary of the 
elliptical plate. 

Based on the Rayleigh-Ritz method, minimizing the total potential 
energy leads to static equilibrium, and we have 

0F∆∆K∆ =δ−δ==δ+δ=∏δ T
ml

T
tml WU 0  (35) 

which means 

.F∆K =ml  (36) 
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On the other hand, the relation between stress and strain is 
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Substituting equation (30) into (37), we get 

∆BDσ ms=  (38) 

which after substituting from equation (36) becomes 

.1FKBDσ −= mlms  (39) 

In equation (39), the Lagrange multipliers method is used to constrain        
the membrane stiffness matrix ( ).Kml  By applying this constrain as the       

in-plane boundary condition, the membrane stiffness matrix would be 
invertible. According to the balance of in-plane forces subject to uniform 
compressive force distributed around the outer edge, reaction forces of these 
constrains are zero, and no stress concentration occurs. 

5. Numerical Results 

In this section, different case studies are simulated to study the critical 
buckling factor. MATLAB programming code has been developed to 
calculate the results. In this program, the number of out-of-plane and in-plane 
shape functions are considered to be eight in both directions and the 
Poisson’s ratio is selected as 0.3. For all the case studies, the elliptical plate is 
subjected to in-plane uniform pressure along the periphery. 

Figure 3 shows the critical buckling load factor versus different value    

of a
b  for simply supported and clamped boundary conditions. These values 

are compared with the results of [6, 9-11, 14] in Tables 1 and 2. This 
compression shows strong agreement between the presented results and 
references. 
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Figure 3. The value of the critical buckling load factor for clamped and 
simply supported boundary condition. 

Table 1. Values of the critical buckling load factor crλ  for an elliptical plate 

with a simply supported boundary condition 

    ab      
Methods 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

  Ref. [6] - - - 12.204 - - - - - 

  Ref. [9] - - - 12.208 - - - - 4.20 

  Ref. [10] 78.475 - - 12.352 - 6.695 5.45 4.655 4.138 

  Ref. [11] - - 18.550 12.196 8.765  6.755 5.724 4.719 4.197 

  Present 72.034  32.476  18.706 12.257 8.785  6.754 5.515 4.723 4.204 

Table 2. Values of the critical buckling load factor crλ  for an elliptical plate 

with a clamped boundary condition 

    ab      
Methods 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

  Ref. [6] - - - 41.732 - - - - 14.681 

  Ref. [9] - - - 41.8492 - - - - 14.695 

  Ref. [10] 272.25 - - 43.32 - 23.656 19.304 16.629 14.68 

  Ref. [11] - - 63.305 41.738 30.180 23.429 19.182 16.493  14.681 

  Ref. [14] 281.25 - - 40.2 - 23.997 19.507 16.81  14.8 

  Present 284.695  116.293  65.094 42.446 30.478 23.549 19.296 16.555  14.742 
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Tables 1 and 2 compare the effect of the ratio a
b  on the critical buckling 

load factor, where it was found that by increasing a
b  the critical buckling 

load factor was decreased. This decrease was very significant for the clamped 

boundary condition, especially where a
b  is between 0.2 and 0.5. 

Figures 4 through 17 show the effect of the central elliptical hole on 
critical buckling load factor for clamped and simply supported boundary 
conditions. 

Figure 18 shows a special case when 1=a
b  and b

d
a
c =  (circular plate), 

which was studied previously by several researchers [13, 15]. Results of the 
special case are compared with the previous works and summarized in Tables 
3 and 4. As it can be observed, the two results are in good agreement. 

 

Figure 4. The value of the critical buckling load factor for elliptical plate 

with clamped boundary condition for .2.0=
a
b
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Figure 5. The value of the critical buckling load factor for elliptical plate 

with simply supported boundary condition for .2.0=
a
b

 

 

Figure 6. The value of the critical buckling load factor for elliptical plate 

with clamped boundary condition for .3.0=
a
b

 

 

Figure 7. The value of the critical buckling load factor for elliptical plate 

with simply supported boundary condition for .3.0=
a
b  
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Figure 8. The value of the critical buckling load factor for elliptical plate 

with clamped boundary condition for .4.0=
a
b  

 

Figure 9. The value of the critical buckling load factor for elliptical plate 

with simply supported boundary condition for .4.0=
a
b

 

 

Figure 10. The value of the critical buckling load factor for elliptical plate 

with clamped boundary condition for .5.0=
a
b
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Figure 11. The value of the critical buckling load factor for elliptical plate 

with simply supported boundary condition for .5.0=
a
b

 

 

Figure 12. The value of the critical buckling load factor for elliptical plate 

with clamped boundary condition for .6.0=
a
b  

 

Figure 13. The value of the critical buckling load factor for elliptical plate 

with simply supported boundary condition for .6.0=
a
b
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Figure 14. The value of the critical buckling load factor for elliptical plate 

with clamped boundary condition for .7.0=
a
b

 

 

Figure 15. The value of the critical buckling load factor for elliptical plate 

with simply supported boundary condition for .7.0=
a
b  

 

Figure 16. The value of the critical buckling load factor for elliptical plate 

with clamped boundary condition for .8.0=
a
b
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Figure 17. The value of the critical buckling load factor for elliptical plate 

with simply supported boundary condition for .8.0=
a
b

 

The general trend that can be observed from Figures 4 through 17, 

regardless of the boundary condition types, is that by increasing the ratio ,a
b  

which means changing the geometry of the plate from elliptic to circular, the 
critical buckling load factor is reduced. 

For the simply supported boundary condition cases, the critical buckling 

load factor is fluctuating, where it decreased for ,5.02.0 ≤≤ a
c  and 

increased after that. Moreover, the change in the critical buckling load factor 

magnitude is insignificant as the ratio of a
b  higher than 0.3. In addition, by 

increasing the ratio ,b
d  the critical buckling load factor is constantly 

decreasing. In contrast, with regards to the plates with clamped boundary 
conditions, the general trend for the critical buckling load factor is increasing 

for 3.0≥a
b  as the ratio a

c  is higher than 0.4. 
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Figure 18. The value of the critical buckling load factor for circular plate 
with clamped and simply supported boundary condition. 

Table 3. Values of the critical buckling load factor crλ  for a circular plate 

with a clamped boundary condition 

  bdac =    
Methods 

0.2 0.3 0.4 0.5 0.6 0.7 

    Ref. [13]  13.6039  14.9629  18.5557  25.7589  33.5123  43.69 

    Ref. [15]  13.32  14.52  17.64  24.84 - - 

    Present  13.606  14.962  18.557  25.765  33.560  43.801 

Table 4. Values of the critical buckling load factor crλ  for a circular plate 

with a simply supported boundary 

  bdac =    
Methods 

0.2 0.3 0.4 0.5 0.6 0.7 

    Ref. [13]  3.535  3.1054  2.763  2.5002  2.2973  2.138 

    Ref. [15]  3.60  3.24 2.76 2.52 - - 

    Present  3.535  3.105  2.762  2.500  2.297  2.138 

As shown in Figure 18 and Tables 3 and 4, in a circular plate with a 

simply supported boundary condition, increasing the a
c  value decreases the 

critical buckling load factor, and the first buckling mode shape looks like a 
domed curve. For the clamped boundary condition, the critical buckling load 
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factor decreases until ,55.0≤a
c  then it increases. The reason for this is the 

changing of the first buckling mode shape [13]. 

Figures 19 through 32 show the effect of the non-concentric elliptical 
hole on the critical buckling load factor for clamped and simply supported 

boundary conditions. In a special case, when 1=a
b  and b

d
a
c =  (circular 

plate), the effect of the non-concentric circular hole on the critical buckling 
load factor for clamped and simply supported boundary conditions are 
calculated and compared with the results of [13] in Tables 5 and 6. Also, the 
presented result is in good agreement with [13]. 

 
Figure 19. Effect of non-concentric on critical buckling load factor for 

elliptical plate with clamped boundary condition for .2.0=
a
b  

 
Figure 20. Effect of non-concentric on critical buckling load factor for 

elliptical plate with simply supported boundary condition for .2.0=
a
b  
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Figure 21. Effect of non-concentric on critical buckling load factor for 

elliptical plate with clamped boundary condition for .3.0=
a
b

 

 

Figure 22. Effect of non-concentric on critical buckling load factor for 

elliptical plate with simply supported boundary condition for .3.0=
a
b

 

 

Figure 23. Effect of non-concentric on critical buckling load factor for 

elliptical plate with clamped boundary condition for .4.0=
a
b
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Figure 24. Effect of non-concentric on critical buckling load factor for 

elliptical plate with simply supported boundary condition for .4.0=
a
b

 

 
Figure 25. Effect of non-concentric on critical buckling load factor for 

elliptical plate with clamped boundary condition for .5.0=
a
b

 

 
Figure 26. Effect of non-concentric on critical buckling load factor for 

elliptical plate with simply supported boundary condition for .5.0=
a
b

 



Salahaddin Sanusei, Emad Mazhari and Alireza Shahidi 104 

 

Figure 27. Effect of non-concentric on critical buckling load factor for 

elliptical plate with clamped boundary condition for .6.0=
a
b

 

 

Figure 28. Effect of non-concentric on critical buckling load factor for 

elliptical plate with simply supported boundary condition for .6.0=
a
b  

 

Figure 29. Effect of non-concentric on critical buckling load factor for 

elliptical plate with clamped boundary condition for .7.0=
a
b
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Figure 30. Effect of non-concentric on critical buckling load factor for 

elliptical plate with simply supported boundary condition for .7.0=
a
b

 

 

Figure 31. Effect of non-concentric on critical buckling load factor for 

elliptical plate with clamped boundary condition for .8.0=
a
b

 

 

Figure 32. Effect of non-concentric on critical buckling load factor for 

elliptical plate with simply supported boundary condition for .8.0=
a
b
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From the presented results, Figures 19 through 32, we can see that 

increasing the hole eccentricity for 4.0≥a
b  has little effect on the critical 

buckling load factor for the simply support boundary cases. On the other 
hand, for the elliptical plates with the clamped boundary condition and 

,4.0≥a
b  the critical buckling load factor is decreasing as the hole 

eccentricity is increased except when .2.0=a
c  

Table 5. Values of the critical buckling load factor crλ  for a circular plate 

with non-concentric circular hole with a clamped boundary condition 

 ae  

ab  0.1 0.2 0.3 0.4 

 Present Ref. [13] Present Ref. [13] Present Ref. [13] Present Ref. [13] 

0.2 13.66179 13.6489  13.80971 13.7923 13.97132 13.9546 14.06938 14.0453 

0.3 14.76575 14.7611 14.31159 14.3014 13.79655 13.7645 13.33288 13.2141 

0.4 17.018  17.0063  15.1467 15.1115 13.76248 13.6347 12.84662 12.4178 

0.5 20.27445 20.2086  16.77126 16.5615 14.61959 14.0462 13.47544 11.9623 

Table 6. Values of the critical buckling load factor crλ  for a circular plate 

with non-concentric circular hole with a simply supported boundary 
condition 

 ae  

ab  0.1 0.2 0.3 0.4 

 Present Ref. [13] Present Ref. [13] Present Ref. [13] Present Ref. [13] 

0.2 3.542399 3.5476  3.563933 3.5691 3.59767 3.6046 3.644834 3.6493 

0.3 3.111889 3.1124  3.132943 3.1334 3.167379 3.1705 3.212167 3.2156 

0.4 2.767117 2.7675  2.780587 2.781  2.802094 2.8016 2.833631 2.8241 

0.5 2.500756 2.5008  2.50347 2.502  2.510404 2.4988 2.542105 2.4522 
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Tables 5 and 6 show the effect of non-dimensional distance of the non-
concentric hole from the center of the circular plate on the critical buckling 
load factor for the simply supported and clamped boundary conditions, 
respectively. For elliptic plate with clamped boundary condition, increasing 
hole eccentricity resulted in decreasing the critical buckling factor. In 
contrast, plate with simply supported boundary condition increasing the hole 
eccentricity has insignificant effect on critical buckling factor. 

6. Conclusion 

The Rayleigh-Ritz method has been used as a numerical procedure to 
investigate the buckling analysis of elliptical plates with the non-concentric 
elliptical hole. The natural coordinate system has been employed to express 
the geometry of the plate in a simple form. By implementing the numerical 
procedure, 56 degrees of freedom are considered. This number of degrees of 
freedom plays an important role in the speed of solution. 

In general, increasing the minor elliptic axis of the plate leads to decrease 
the critical buckling load factor. This decrease is more significant in cases 
where the clamped boundary condition is imposed. 

The effect of the elliptic hole on the critical buckling load factor is 
fluctuating by decreasing first and then increasing as the major elliptic axis 
of the hole is increasing. The reason for this fluctuation is the change in the 
first buckling mode. 

Lastly, the elliptic hole eccentricity has an insignificant effect on the 
critical buckling load factor in simply supported boundary conditions cases, 
whereas in the clamped boundary conditions, the critical buckling load factor 
is decreasing as the hole eccentricity is increased. 
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