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Abstract

In this paper we studied the effect of non-uniform permeability and
magnetic field strength on heat and mass transfer for the flow of non-
Newtonian fluid (biviscosity fluid) underlying an axisymmetric
spreading surface. In modeling the flow, when the magnetic field

strength and permeability are depending on the radial distance r,
similarity solutions were utilized to represent the governing equations
with appropriate boundary layer assumptions. The biviscosity model was
used to characterize the non-Newtonian fluid behavior. Numerical
results for the governing boundary layer equations were obtained by
applying the quasi-linearization method. The results have been shown
graphically, and the effect of non-dimensional parameters of the

problem, such as, M (magnetic parameter), β (parameter denotes the

upper limit of apparent viscosity), 0K  (permeability parameter), n (the

surface temperature and concentration variation parameter), Sc

(Schmidt number), Sr (Soret number), Df (Dufour number), and Pr

(Prandtl number) illustrated on the velocity, temperature and
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concentration. Also, values of the skin friction ,fC  Nusselt number Nu

and Sherwood number Nm are tabled and illustrated by accompanying
profiles.

Nomenclature

ba, Constants, defined in equation (9)

B Magnetic field strength [ ]2mWb

C Concentration [ ]−

pc Specific heat capacity ( )[ ]kg.KJ

sc Concentration susceptibility [ ].kgJ 1−

Df Dufour number [ ]−

mD Mass diffusivity [ ]sm2

ije The deformation rate component [ ]s1

F Constant [ ]smh2Q 2π=

f Dimensionless stream function [ ]−

h Spreading film thickness [ ]m

wh Rate of mass transfer, defined in equation (25)

K Permeability of the porous medium [ ]2m

Tk Thermal diffusion ratio [ ]−

M Magnetic parameter [ ]−

n Parameter of surface temperature and concentration variation [ ]−

Nu Nusselt number [ ]−

Nm Sherwood number [ ]−

Pr Prandtl number [ ]−

yp Yielding stress [ ]Pa
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Q Volume flux at the surface [ ]sm3

wq Rate of heat transfer, defined in equation (25)

r Radial coordinate [ ]m

Sc Schmidt number [ ]−

Sr Soret number [ ]−

T Temperature [ ]K

mT Mean fluid temperature [ ]K

u Radial velocity component [ ]sm

w Axial velocity component [ ]sm

z Axial coordinate [ ]m

Greek symbols

µ Plastic viscosity of the fluid [ ]2mN.s

σ Electric conductivity ( )[ ]ohm.m1  or [ ]m1−Ω

ρ Density [ ]3mkg

α Thermal conductivity ( )[ ]m.KW

η Dimensionless coordinate [ ]−

ijτ The shear stress components [ ]Pa  or [ ]2mN

θ Temperature distribution function [ ]−

φ Concentration distribution function [ ]−

ν Kinematic viscosity of the fluid [ ]sm2ρµ=

,0 jiijee=π  where ije  as defined above

β Dimensionless parameter denotes the upper limit of apparent

viscosity coefficient, defined in equation (2)
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Introduction

Industrial and biological flows through a spreading surface are quite

common and have relevant applications such as, dip-coating of sheet

metal, gravity drainage of paints, spin-coating of surface layers on silicon

substrates, coating of inks on paper, spray-type heat exchangers, cooling

towers, rotating condensers, evaporators and the study of spilling

pollutant crude oil over the surface of sea water. One of the more

important applications of the flow underlying an axisymmetric spreading

surface is the spreading of blood through tissues and porous membranes

in human body. On the other hand, many recent studies pointed out the

importance of non-Newtonian characteristics of many fluids material,

both in technology and in nature. A variety of non-Newtonian models

have been developed in the last years, as an expression of the rheological

properties of many fluids. Also, most of physiological fluids in the human

body behave like non-Newtonian fluids. Blood is a suspension of red blood

cells (erythrocytes), white blood cells (leukocytes) and platelets in a

complex solution (called plasma) of gases, salts, proteins, carbohydrates,

and lipids. Plasma is constituted by 90% water and can be considered as

a Newtonian fluid. But, it is commonly assumed that blood is non-

Newtonian fluid, because the elastic and deformable saturation of red

cells gives it a shear dependent viscosity and a viscoelastic nature [3, 4,

11, 19, 24]. The viscosity, or internal friction, of blood increases as the

percentage of cells in the blood increases, more cells mean more friction,

which means a greater viscosity. The percentage of the blood volume

occupied by red blood cells is called the hematocrit. Hematocrit is an

important determinant of the viscosity of blood. As hematocrit increases

there is an increase in viscosity, although the relationship is not linear

(see Figure 1a). With a normal hematocrit of about 40 (that is,

approximately 40% of the blood volume is red blood cells and the

remainder plasma), the viscosity of whole blood (cells plus plasma) is

about 3 times that of water (which is the reference viscosity). On the

other hand, the viscosity of plasma alone is about 1.5 times that of water.

Although the concentrations and types of proteins in the plasma can

affect its viscosity, this has a little, if any, effect on the overall viscosity of

whole blood. When the hematocrit rises to 60 or 70, which it often does in
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patients with polycythemia, or abnormally high red blood cell counts, the

blood viscosity can become as high as 10 times that of water.

Alternatively, when the hematocrit falls drastically, as it does in patients

with anemia (a decreased number of red cells in the blood), blood

viscosity can approach that of plasma alone, therefore, a 50% increase in

hematocrit from a normal value increases blood viscosity by about 100%.

If we are interested in the raw numbers, the coefficient of viscosity for

water is 0.001 Newton-second per meter squared 2mN.s(  or Pa.s) at

C20  and the coefficient of viscosity for whole blood at the same

temperature is 0.00345 Pa.s. Also, the coefficient of viscosity for whole

blood at C37  is 0.0027 Pa.s [12].

Figure 1a. Relative viscosity of all blood and plasma with
hematocrit [17]

The relation between the viscosity of blood and hematocrit with the

viscosity of plasma is ( ),5.21 tps H+µ=µ  considering =µs  blood viscosity,

=µp  viscosity of plasma and =tH  hematocrit. But, the formula is not

accurate for high values of hematocrit, for which the relation is no longer
linear [29].

So, the blood is considered as a non-Newtonian fluid and in general
Casson model is used as a constitutive equation of the blood, but,
Nakamura and Sawada [21] have shown that there is no significant
difference between Casson model and biviscosity model. Accordingly, the
two constitutive equations resemble each other except in the very low
shear rate region (see Figure 1b). In addition, the numerical calculations
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based on the Casson model are very difficult to compare with the
biviscosity model. Therefore, the biviscosity model can be used as a
constitutive equation of blood and the calculated results are not affected
very much [21]. Also, they have shown that the difference between the
Casson model and the biviscosity model exists in a very low shear rate
region and the calculated velocity distribution based on the biviscosity
model agrees with that of measured by Casson model. So, in this study we
can use the biviscosity model as a constitutive equation of blood.

Figure 1b. Shear stress and shear rate correlation

The effect of axial magnetic field on the flow and heat transfer about
a Newtonian fluid underlying an axisymmetric spreading surface is
investigated by Lin and Chen [18]. Nakamura and Sawada [22]
considered the starting and stopping flows of a biviscosity fluid through a
pipe with and without stenosis. Also, many mathematical models for
describing rheological behavior of blood have been extensively developed
in the last decades [23, 27, 30, 31]. El-Dabe et al. [5-8] studied the
MHD flow of non-Newtonian fluid through different flows, where the
magnetic force is considered uniform during the motion. Also, El-Dabe et
al. [9-10] studied the flow and heat transfer of MHD non-Newtonian
Casson fluid between two rotating cylinders, and the flow of MHD non-
Newtonian fluid with heat and mass transfer with heat source over an
accelerating surface through a porous medium. Hong et al. [14] studied
the effects of non-Darcian and non-uniform permeability conditions on
the natural convection from a vertical plate in porous media. The effect of
variable permeability of the porous medium for the natural convection
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from inclined plate due to solar radiation was considered by Chamkha et
al. [1]. Rahman et al. [25] studied the radially spreading flow of a thin
liquid film with axisymmetric discharge of liquid through a thin slot and
where a liquid jet impinges.

In this paper, we extend [18] to study the effect of an axial non-
uniform magnetic field on the flow of non-Newtonian fluids. Especially,
the effect of non-Newtonian property of blood on the flow with heat and
mass transfer underlying an axisymmetric spreading surface through
porous medium with non-uniform permeability using the biviscosity
model as a constitutive equation of blood [16, 20].

Formulation of the Problem

We confined our attention on the most important biological fluid, the
blood. While the linear theory of Navier-Stokes fluid is acceptable for

modeling blood flow in large arteries, at shear rate higher than ,s100 1−

and when red blood cells not clump together therefore blood behaves as a

Newtonian fluid. While, at low shear rate ( ),s100 1−<  red blood cells

clump together to form aggregates and this behavior results for higher
values of apparent viscosity. Then, the role of non-linearity and the effect
of red cells on the viscosity become more important as well as in small
vessels and for the spreading of blood through membranes [2]. Such flows
cannot be well described by a simplistic linear constitutive equation. The
biviscosity model [21] can be used as a constitutive equation of blood in
some range of shear rates - as we illustrated above - where the shear
stress can be written as
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where β is a dimensionless parameter, which refers to the upper limit of
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apparent viscosity coefficient. According to [21], when the mean shear

rate of the calculation is about ,s150-20 1−  the biviscosity model can be

used as a constitutive equation instead of Casson model and calculated
results are in a good agreement. Also it should be noted that, for the
blood, the upper limit of apparent viscosity has a very large value and

this means that β must take a small value.

The system under consideration is shown in Figure 2, it consists of a
flow of an incompressible non-Newtonian fluid (blood) underlying a
spreading film of thickness h lies in the plane ,0=z  and the fluid is

permeated by a non-uniform magnetic field with strength ( )rB  in

z-direction. Also, the fluid saturated porous medium (membrane) with

non-uniform permeability ( )rK  as a function of radial distance r.

Transport through membrane takes place when a driving force is applied

to the blood; these driving forces are a pressure difference ,P∆

concentration difference ,C∆  temperature difference T∆  or electric

potential difference E∆  across the membrane [28]. In our study, we

studied the concentration and temperature effects on the flow.

Figure 2. Schematic of spreading of blood through porous membrane
with different driving forces that are present

Under these assumptions, and according to the boundary layer

approximation with axisymmetric cylindrical polar coordinates ( ),, zr  the

steady laminar free convection flow of non-Newtonian fluid, is described
by the following equations:
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The continuity equation:

( ) ( )
,0=

∂
∂+

∂
∂

z
rw

r
ru

(3)

The equation of motion:

( )
( ) ,1 2

u
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u
rB

zz
uw
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uu rz
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∂
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∂
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The energy equation:

,
2

2

2

2

z

C
cc
kD

z

T
cz

Tw
t
T

ps

Tm

p ∂
∂+

∂
∂

ρ
α=

∂
∂+

∂
∂ (5)

The diffusion equation:
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The appropriate boundary conditions are

( ) ( ) ,
,,,0,0

0,,0,







∞→====

→====

∞∞ zCCTTwu

zrCCrTTw
r
Fu ww (8)

where ww CT ,  and ∞∞ CT ,  are the temperature and concentration at the

surface and far away from it, respectively. We define ( ) ,n
w arTrT += ∞

( ) ,n
w brCrC += ∞  and the other symbols were listed in Nomenclature.

In order to simplify the governing equations (3)-(7) and the boundary
conditions (8), we may introduce the following transformations:
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where n is the surface temperature and concentration variation
parameter. Upon substituting the expression (9) into equations (3)-(7) and
boundary conditions (8), one finds

,0111
0

2 =′





 +−′′+′+′′′








β
+ f

K
Mffff (10)

,0=φ ′′+′θ−θ′+θ ′′ DfPrfnPrfPr (11)

,0=θ ′′+′φ−φ′+φ ′′ SrScfnScfSc (12)

with the boundary conditions

,
at000

0at1110





∞→η=φ=θ=′

=η=φ=θ=′=

f

ff
(13)

where the primes denote the partial differentiation with respect to the

variable η. It should be noted that the dimensionless parameters are
defined by

F
B

M
ρ
σ

=
2
0 Magnetic field parameter

α
µ

= pc
Pr Prandtl number

mD
Sc ν= Schmidt number

( )
( )ν−

−
=

∞

∞
TTcc

CCkD
Df

wps

wTm Dufour number

( )
( )ν−

−
=

∞

∞
CCT

TTkD
Sr

wm

wTm Soret number.

Equations (10)-(12) with letting β, ,0 ∞→K  0=Df  and ignoring

equation (12) have been solved by Lin and Chen [18] for ordinary
Newtonian fluid. The present problem treats a general case of non-
Newtonian fluid to discuss the effect of rheological property of the fluid,

which depends on β, and taking into account the flow through porous
medium with considering the thermal diffusion and the diffusion-thermo
effects on the flow.
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Numerical Solution: Quasi-linearization Method

The set of equations (10)-(12) is highly non-linear ordinary

differential equation, therefore this system of equations cannot be solved

analytically. The quasi-linearization method has been used to transform

these equations into a system of linear differential equations, and then

we applied the method of complementary function to solving these

yielding equations. The quasi-linearization method, which also known as

the generalized Newtonian-Raphson method, was shown in details in

[26]. This method is used due to following advantages:

1. The method is quadratically convergent, starting from the initial

guess value.

2. The solution is valid for a large range of parameters. Even when

the required number of initial conditions are not given, this method

converges at a fast speed.

The quasi-linearization method applied for solving the equations (10)-(12)

with rearrangement gives the following equations:

,1
1 0

2 





 ′






 ++′′−′−

β+
β=′′′ f

K
Mffff (14)

( ),
1

1 φ′−φ′+θ′−θ′
−

=θ ′′ fPrDfnScfPrDfScfPrfnPr
SrScDfPr

(15)

( ).
1

1 θ′−θ′+φ′−φ′
−

=φ ′′ fSrPrnScfSrPrScfScfnSc
SrScDfPr

(16)

Define new variables as follows:

,,, 321 fxfxfx ′′=′==

,,, 654 φ=θ′=θ= xxx

.7 φ′=x

Using the above new variables, the system of higher order differential

equations (14)-(16) and boundary conditions (13) may be transformed in

to the another system of first order differential equations (17) and

boundary conditions (18), respectively, as given hereunder
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( )

( )

,

1
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1
1

1
1

425171627

76

627151425
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2
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2
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

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
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x
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x
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x
K

Mxxxx

xx

xx

(17)

.
0,0,0:

1,1,1,0:0

642

6421





===∞→η

=====η

xxx

xxxx
(18)

Equations in (17) are in the form

( ) ( ),7...,,2,1,, ==η=′ mjixgx jii (19)

where ig ’s  are taken as vectors in the mth dimensional space. The

( )1+k th approximation ( )1+k
ix  to the solution of (19) is obtained by

expanding the functional ig  about the kth approximation ,k
ix  containing

only the linear and constant terms. The kth approximation k
ix  is

assumed to be a set of known approximate solutions.

By performing Taylor’s series expansion of differential equations in
(17), one can obtain the following equations expressed in matrix form:
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which can be written in the form

( ) ( ) 7...,,2,1,,1
,

1 =+=′ ++ jisxax i
k
jji

k
i (20)
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or

SAXX +=′

with the boundary conditions

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

.
0,0,0

,10,10,10,00

642

6421







=∞=∞=∞

====
kkk

kkkk

xxx

xxxx
(21)

The elements of the matrix 77×A  and 17×S  are thus obtained as given

below

( ) 

















∂
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−η=







∂
∂

=

∑
=

m

j

k
j

xj

ik
jii

xj

i
ij

x
x
g

xgs

x
g

a

k

k

1

,
  for  .7...,,2,1, == mji (22)

The values of these elements jia ,  and is  are defined in the Appendix

(part 1). The system given by equation (20) is linear in ( )1+k
ix  and its

general solution can be obtained by using the method of complementary
function, which determine the general solutions as particular and
homogeneous solutions. The boundary conditions for the particular
solution and homogeneous solution are given as follows:

(i) For the particular solution

( ) ( ) ( ).0,1,0,1,0,1,001 =+k
iq

(ii) For the homogeneous solution

( ) ( ) ( ),0,0,0,0,1,0,001 =iU

( ) ( ) ( ),0,0,1,0,0,0,002 =iU

( )( ) ( ).1,0,0,0,0,0,003 =iU

Then, the general solution of the system of equation (20) is given by

( ) ( ) ( ) ( ) ( ) ( )∑
=

++ η+η=η
3

1

11 ,
l

l
il

k
i

k
i Ubqx (23)
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where ,1b  2b  and 3b  are the missing initial conditions and are determined

by considering the boundary conditions at .∞→η  The values of these

constants defined in the Appendix (part 2).

The set of differential equations given in (20), have been solved by
employing the fourth order Runge Kutta method for the boundary
conditions given in (21) and solution is obtained by invoking the method

of complementary function. The coefficients ija  and is  in (22) depend on

the nominal trajectories ( ) ( ).0 ηix  Hence, depending on the initial guess of

nominal trajectories ( ) ( ),0 ηix  the solution of equation (20) yields the

neighboring trajectories ( ) ( ).1 ηix  These neighboring trajectories are

treated as nominal trajectories and the next neighboring trajectories are
obtained, and this process is continued until the convergence is obtained.
It is important to note that, the initial guess values for nominal
trajectories need not be closer to the required solution. Any guess, such
as, assuming zero values for all independent variables will be normally
yield solutions. The whole range is divided into 100 equal parts with
equal subinterval of width .05.0=η∆

Results and Discussion

In the present analysis, we considered heat and mass transfer of non-
Newtonian fluid (biviscosity fluid) through a porous medium underlying
an axisymmetric spreading surface. After certain transformation,
numerical solution has been obtained by quasi-linearization method.
Then, the numerical results were obtained for distributions of velocity of
spreading, temperature and concentration, according to different values
of parameters of the problem; namely, the dimensionless parameter of

upper limit of apparent viscosity β, magnetic parameter M, Schmidt

number Sc, permeability parameter ,0K  Soret number Sr, Dufour number

Df and Prandtl number Pr.

One of the purposes of this study is to evaluate the effects of the non-

Newtonian property of blood on its spreading through porous membranes

in human body. The viscosity of blood effects its rate of flow through
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small vessels and porous membranes. This phenomenon is illustrated in

Figures 3-4. As seen from these figures the non-Newtonian property of

blood (according to different values of β) works to decrease the functions f

and .f ′  This implies that the velocity components u and w decrease as β

increases. Therefore, the non-Newtonian property of blood can be one of

the factors, which inhibit the spreading of blood through membranes.

Also, in Figure 3 there is a comparison with Newtonian case, which is

studied by [29], illustrated by dashing curve. Figure 5 shows that the

absolute value of shear stress, according to different values of the

function ,f ′′  decreases as β increases up to ,2=η  but when 2>η  the

inverse occur, and f ′′  asymptotically to zero when .∞→η  Another

resistance for the flow of blood is the magnetic parameter, as is shown

from Figure 6 where the magnetic parameter reduces the flow velocity. It

is expected that, an increase in the permeability of the porous membrane

leads to a rise in the spreading of blood through it. This result is

illustrated in Figure 7, where the velocity of the fluid increases as

permeability parameter 0K  increases.

For blood, if the value of thermal conductivity ( ) 1m.KW543.0 −=α

and specific heat capacity ( ) ,kg.KJ4180 1−=pc  then the value of Prandtl

number is about 25=Pr  for human blood [13], and for air at C20

7.0=Pr  [15]. We have seen from Figure 8 that the temperature

decreases with increase in Prandtl number. Also, in the same figure the

dependence of the blood viscosity on its temperature is illustrated, where

a decrease in values of β corresponds to an increase in the temperature of

blood for ,1=n  while the inverse situation occurs at .1−=n  The effect

of permeability parameter 0K  on temperature and concentration

distributions is plotted in Figures 9-10 for different values of n

( ).1and0,1−=n  The increase in the value of 0K  decreases the

temperature and concentration distributions for 0=n  and ,1−  but for

1=n  the inverse occurs. In Figures 11-12 we illustrate the effect of the

temperature difference ∞−=∆ TTT w  and concentration difference =∆C

∞− CCw  on temperature and concentration profiles. In the case under
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consideration, an increase in the values of Dufour number Df and a

decrease in Soret number Sr means a decrease in the temperature

difference ,T∆  between the hot surface of spreading and the free stream,

and an increase in the corresponding concentration difference .C∆  This

leads to decreasing in the value of the dimensionless temperature ( )ηθ

inside the thermal boundary layer (Figure 11), and this is clear for higher

values of the dimensionless distance η from the hot surface. This result

can be explained by the fact that the Dufour or diffusion-thermo effect

becomes more important for smaller temperature differences and also for

higher concentration differences. Inversely, it is evident from Figure 12

that when the concentration difference C∆  decreases and temperature

difference T∆  increases (Sr increases or Df decreases) the dimensionless

concentration profiles ( )ηφ  decrease, in the sense that the value of φ

decreases as the value of η increases. This result is a consequence of the

increase of the thermal-diffusion parameter or Soret number. Figure 13

depicts the variation of dimensionless concentration function ( )ηφ  with

Schmidt number Sc for prescribed values of β. Profiles are shown both for

005.0=β  and .01.0=β  It is observed that the concentration is higher

for 005.0=β  as compared to ,01.0=β  i.e., the concentration is inversely

proportional with β. Also, the concentration continuously decreases with

an increase in Schmidt number. The variation in the temperature

distribution with reference to the variation in magnetic parameter M for

different values of Schmidt number Sc is presented in Figure 14. The

results are given for negative value of n ( ).1−=n  It is observed that the

temperature values for 2.0=Sc  are more than that for .5.0=Sc  Also,

from this figure we observed that as the magnetic parameter increases

(i.e., an increase in the strength of applied magnetic field) the

temperature continuously increases. The same pattern is observed for the

concentration distribution in Figure 15. This indicates that the

concentration can be increased by an increase in the magnetic field. While

the concentration of the fluid reduces by increasing the value of Prandtl

number, which corresponds to the fluid type; i.e., for blood 25=Pr  the

concentration of the fluid is less than for air .7.0=Pr  The variation of
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the dimensionless boundary layer thickness δ with β for different values

of both M and 0K  is presented in Figures 16-17 and the accompanying

Table 1. Here, δ is defined as the value of the similarity variable η at

which the dimensionless velocity ( )η′f  equals 0.01. It is observed from

Figures 16-17 and Table 1 that the boundary layer thickness increases

with permeability parameter ,0K  and it can be reduced by increasing

both β and M.

For the present problem, the local skin-friction can be written as

( ),0112

2
1 2

f

r
F

FC w
f ′′








β
+=






ρ

τ
ν

= (24)

where wτ  is the wall shear stress.

Obtaining temperature and concentration distributions, we can study
the rate of heat and mass transfer. These rates can be written as

,
0=




∂
∂α−=

z
w z

Tq   and  .
0=




∂
∂−=

z
mw z

CDh (25)

The local Nusselt number and the local Sherwood number Nu, Nm are

defined by the following relations:

( ) ( )0θ′−=ν
−α

=
∞ FTT

rq
Nu

w

w  and ( ) ( ).0φ′−=ν
−

=
∞ FCCD

rh
Nm

wm

w

The numerical results for some values of ( ),0f ′′  ( )0θ′  and ( )0φ′  were

obtained in Tables 2-4. Table 2 illustrates the variation of ( )0f ′′  with the

effective parameters of the velocity, which are M, 0K  and β. Since the

shear stress ( )0f ′′  represents the friction between the fluid flow and the

surface, this friction increases as the fluid velocity increases and vice

versa. Since the fluid velocity decreases as both M and β increase and

increases as 0K  increases, the value of ( )0f ′′  has the same behavior, i.e.,

reduces with an increase of M and β, and increases with an increase of

.0K  The values of Nusselt and Sherwood numbers have been given for

,2−=n  1=n  and 2=n  in Table 3 and for 4=n  in Table 4, which
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show their variation with respect to all parameters of our problem. From

the numerical results obtained as given in Table 3, it can be noticed that

the rate of heat transfer and the rate of mass transfer have the same

pattern, i.e., their values increase with an increase of M and β, while,

these rates decrease with an increase in .0K  From Table 4 the rate of

heat transfer has an opposite behavior compared to that of the rate of

mass transfer, i.e., ( )0θ′  increases with Soret number Sr and decreases

with the other parameters Schmidt number Sc, Prandtl number Pr and

Dufour number Df, while ( )0φ′  has the inverse behavior.

Physical Applications

In this problem we studied the spreading of non-Newtonian fluid

through a porous layer in the presence of variable magnetic field

strength. An important type of non-Newtonian fluid is a viscoplastic or

yield stress fluid. Bingham plastics are a special class of viscoplastic

fluids that exhibit a linear behavior of shear stress against shear rate. An

important example of these types of fluids is the blood. So, blood is

considered to be a non-Newtonian fluid. The biviscosity model was used

as a constitutive equation to describe the non-Newtonian property of

blood. The applicable example for our problem is the flow of blood, which

is considered as a non-Newtonian fluid, through porous membranes in

human body. The spreading of blood through membrane takes place

when a driving force is applied to it; we studied two types of these driving

forces, which are concentration difference C∆  and temperature difference

T∆  and its related parameters.

We mention here two applications corresponding to our results:

1. Very low flow states in the microcirculation occur during

circulatory shock, the blood viscosity can increase quite significantly.

This occurs because at low flow rates there are increased cell-to-cell and

protein-to-cell adhesive interactions that can cause erythrocytes to adhere

to one another and increase the blood viscosity [17]. This means that an

increase in the blood viscosity leads to a decrease in its velocity of flow,

this phenomenon is shown in Figure 3.
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2. Temperature also has a significant effect on viscosity. As

temperature decreases, viscosity increases (see Figure 8 for ).1=n

Viscosity increases approximate 2% for each C  decrease in temperature.

This effect has several implications. For example, when a person’s hand

is cooled upon exposure to a cold environment, the increase in blood

viscosity contributes to the decrease in blood flow (along with neural-

mediated thermoregulatory mechanisms). The use of whole body

hypothermia during certain surgical procedures also increases blood

viscosity and therefore increases resistance to blood flow [17].

Table 1. Numerical results for the dimensionless boundary

layer thickness δ

β 0K M

0.2 0.5 0.8 10 15 20

0.01 9.3 9.45 9.5 9.5 9.2 8.85

0.02 8.05 8.6 8.75 8.65 7.75 6.9

0.03 6.9 7.65 7.85 7.75 6.55 5.75

0.04 6.1 6.9 7.15 7.00 5.75 5.00

0.05 5.55 6.35 6.6 6.45 5.2 4.5

0.06 5.15 5.95 6.25 6.1 4.8 4.15

0.07 4.8 5.65 6.00 5.8 4.5 3.85

0.08 4.55 5.4 5.75 5.55 4.25 3.65

0.09 4.35 5.25 5.6 5.4 4.05 3.45

0.1 4.2 5.1 5.5 5.25 3.9 3.3
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Table 2. Numerical values of ( )0f ′′  at ,25,4 == Prn

15,20,10 === SrScDf

β 0K M ( )0f ′′

0.01 0.2 5 – 0.31466963

0.02 0.2 5 – 0.44400287

0.03 0.2 5 – 0.54215267

0.01 0.2 5 – 0.31466963

0.01 0.2 10 – 0.38542688

0.01 0.2 15 – 0.44511524

0.01 0.2 10 – 0.38542688

0.01 0.5 10 – 0.34469549

0.01 0.8 10 – 0.33374573

Table 3. Numerical values of ( )0θ′  and ( )0φ′  for different values of n

( ) ( )

212212

00

==−===−=

φ′θ′

nnnnnn










=β

02.0

01.0

005.0

09074221.013357643.001233564.126977528.012322711.019592048.1

13991564.014795133.071911269.027996025.015060519.086215861.0

17842655.015888259.048016258.028642434.017178066.058991046.0

−−−−

−−−−

−−−−










=

20

10

5

M

07656772.012760955.004591893.125863585.011381816.023230407.1

10971325.013858672.088460699.027135704.013332377.004975591.1

14002035.014796479.071828365.027992953.015062428.08608884.0

−−−−

−−−−

−−−−










=

7.0

4.0

1.0

0K

14466575.014936193.069164604.028105755.015324288.083605284.0

13621048.014681191.073993084.027897198.014847085.088549231.0

09720548.013455057.094852505.026705146.012604851.012219344.1

−−−−

−−−−

−−−−
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Table 4. Numerical values of ( )0θ′  and ( )0φ′  for different

parameters of the problem

β M 0K Sr Sc Pr Df ( )0θ′ ( )0φ′

0.01 5 0.2 15 20 25 10 – 0.14002524 – 0.63968175

0.02 5 0.2 15 20 25 10 – 0.10023263 – 0.57540332

0.03 5 0.2 15 20 25 10 – 0.07744655 – 0.53266295

0.01 5 0.2 10 20 5 10 – 0.36331682 – 0.46616821

0.01 10 0.2 10 20 5 10 – 0.33725361 – 0.43554638

0.01 15 0.2 10 20 5 10 – 0.31801400 – 0.41256149

0.01 10 0.2 15 25 20 10 – 0.12243221 – 0.60308489

0.01 10 0.5 15 25 20 10 – 0.13261217 – 0.62319120

0.01 10 0.8 15 25 20 10 – 0.13558458 – 0.62877579

0.01 5 0.2 10 20 25 10 – 0.42179256 – 0.41168107

0.01 5 0.2 15 20 25 10 – 0.14002524 – 0.63968175

0.01 5 0.2 20 20 25 10 – 0.10731087 – 0.64913957

0.01 5 0.2 10 5 25 15 – 0.63699862 – 0.14109781

0.01 5 0.2 10 10 25 15 – 0.63811786 – 0.14105136

0.01 5 0.2 10 20 25 15 – 0.63868444 – 0.14102256

0.01 10 0.2 10 20 0.7 10 – 0.25565150 – 0.49348682

0.01 10 0.2 10 20 5 10 – 0.33725361 – 0.43554638

0.01 10 0.2 10 20 25 10 – 0.39315013 – 0.38348246

0.01 10 0.2 15 20 20 10 – 0.12147827 – 0.60393707

0.01 10 0.2 15 20 20 15 – 0.29512038 – 0.29512038

0.01 10 0.2 15 20 20 20 – 0.34885959 – 0.19835983
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Appendix

1. The elements of the matrix 77×A  and 17×S  are given as follows:































=

7,76,75,74,72,71,7

7,56,55,54,52,51,5

3,32,31,3

0

1000000

0

0010000

0000

0000100

0000010

aaaaaa

aaaaaa

aaa

A  and ,

0

0

0

0

7

5

3































=

s

s

s

S

where the elements jia ,  are defined as follows:

,
1 31,3

kxa
β+

β−= ,12
1 0

22,3 





 ++−

β+
β=

K
Mxa k

,
1 13,3

kxa
β+

β−= ( ),
1

1
571,5
kk xPrxPrDfSc

PrDfSrSc
a −

−
=

( ),
1 642,5

kk xPrDfScxPr
PrDfSrSc

na −
−

=

,
1 24,5

kx
PrDfSrSc

nPra
−

=

,
1 15,5

kx
PrDfSrSc

Pra
−

−= ,
1 26,5
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PrDfnSc
a

−
−

=

,
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a

−
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1
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PrDfSrSc
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−
=



w
w

w
.p

ph
m

j.c
om

N. T. M. EL-DABE, M. A. A. MOHAMED and M. A. HASSAN288

( ),
1 462,7

kk xPrSrScxSc
PrDfSrSc

na −
−

=

,
1 24,7

kx
PrDfSrSc

PrSrnSc
a

−
−=

,
1 15,7

kx
PrDfSrSc

PrSrSc
a

−
= ,

1 26,7
kx

PrDfSrSc
nSca

−
=

,
1 17,7

kx
PrDfSrSc

Sca
−

−=

and the elements is  are defined as follows:

( ),
1 22313

kkkk xxxxs +
β+

β=

( ),
1

1
426271515
kkkkkkkk xxnPrxxPrDfnScxxPrDfScxxPr

PrDfSrSc
s −+−

−
=

( ).
1

1
624251717
kkkkkkkk xxnScxxPrSrnScxxPrSrScxxSc

PrDfSrSc
s −+−

−
=

2. The constants 321 ,, bbb  are given as follows:

,,, 3
3

2
2

1
1 d

d
b

d
d

b
d
d

b ===

where
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Figure 3. Velocity plotted versus position for different values of β at

15,3,15,20,10,67.0,25 0 ======= SrnDfScMKPr
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Figure 4. The similarity function f plotted versus position for the effect

of β at 4,5,5,20,10,2.0,25 0 ======= nSrDfScMKPr

Figure 5. The similarity function f ′′  plotted versus position for the

effect of β at 4,5,5,20,10,2.0,25 0 ======= nSrDfScMKPr
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Figure 6. Velocity plotted versus position for the effect of magnetic

parameter M at ,25=Pr  ,67.00 =K  ,03.0=β  ,20=Sc  ,15=Df

3,15 == nSr

Figure 7. Velocity plotted versus position for the effect of

permeability parameter 0K  at ,20,03.0,1,25 ==β== ScMPr

3,15,15 === nSrDf
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Figure 8. Temperature plotted versus position for the effect of

Prandtl number Pr and different values of β at ,5.00 =K  ,5=M

5,6,5.0 === SrDfSc

Figure 9. Temperature plotted versus position for the effect of

temperature variation parameter n and permeability parameter

0K  at 5,6,10,5,25,01.0 ======β DfSrScMPr
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Figure 10. Concentration plotted versus position for the effect of

concentration variation parameter n and permeability parameter

0K  at 6,5,25,5,25,01.0 ======β DfSrScMPr

Figure 11. Temperature plotted versus position for the effect of

Soret number Sr and Dufour number Df at ,01.0=β  ,25=Pr

8.0,10,1,10 0 ==== KScnM
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Figure 12. Concentration plotted versus position for the effect of

Soret number Sr and Dufour number Df at ,003.0=β  ,25=Pr

1,8.0,25,10 0 ==== nKScM

Figure 13. Concentration plotted versus position for the effect of

Schmidt number Sc and different values of β at ,7.00 =K  ,5=M

1,5,20,25 ==== nSrDfPr
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Figure 14. Temperature plotted versus position for the effect of

magnetic parameter M and Schmidt number Sc at ,005.0=β

6,5.0,5,1,25 0 ===−== DfKSrnPr

Figure 15. Concentration plotted versus position for the effect of

magnetic parameter M and Prandtl number Pr at ,005.0=β

5,7.0,5.0,1,6 0 ===−== SrKScnDf
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Figure 16. The boundary layer thickness plotted versus β for the

effect of permeability parameter 0K  at ,20,10,20 === ScMPr

15,4,20 === SrnDf

Figure 17. The boundary layer thickness plotted versus β for the

effect of magnetic parameter M at ,20=Pr  ,6.00 =K  ,20=Sc

15,4,20 === SrnDf
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