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Abstract 

The purpose of this paper is to present modified projection methods 
for solving strongly pseudomonotone Ky Fan inequalities. Error 
estimates for the sequences generated by this method are established 
under few assumptions. We also analyze the strong convergence              
of the proposed algorithm in a real Hilbert space and report some 
computational results. 

1. Introduction 

Let H  be a real Hilbert space with inner product ⋅⋅,  and norm ,⋅  

respectively, and let C be a nonempty closed convex subset of .H  Recall  
that a mapping CCT →:  called to be nonexpansive if ( ) ( ) ≤− yTxT  

yx −  for all ., Cyx ∈  Denote by ( )TFix  the set of fixed points of T. 
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We consider the typical form of equilibrium problems which are formulated 
by the Ky Fan inequalities [13] as follows: 

 Find Cx ∈∗  such that ( ) 0, ≥∗ yxf  for all ,Cy ∈  (1.1) 

where f is a bifunction from CC ×  to R  such that ( ) 0, =xxf  for all 

.Cx ∈  Let ( )CfSol ,  denote the set of solutions of problem (1.1). When 

( ) ( ) xyxFyxf −= ,,  for all Cyx ∈,  with ,: H→CF  problem (1.1) 

can be formulated as variational inequalities: 

 Find Cx ∈∗  such that ( ) .,0, CxxxxF ∈∀≥− ∗∗  (1.2) 

In recent years, problem (1.1) becomes an attractive field for many 
researchers both in theory and applications in the electricity market, the 
transportation, economics and networks (see [1, 2, 5, 6, 8, 11, 10, 16]). 
Methods for solving problem (1.1) have studied extensively in many 
different ways. There exist several methods for solving (1.2) with F being       
a monotone mapping. The simplest method is the projection one. At each 

iteration k of this method, a point Cxk ∈  and then the vector ( )k
k

k xFx λ−  

with stepsize ,0>λk  is projected on the feasible domain C. Recently, 

motivated by the basic projection method for solving problem (1.2) with a 
fixed stepsize, Khanh and Vuong [14] showed that the iteration sequences 
proposed by the method converge linearly to a unique solution of       
problem (1.2), where the function F only requires Lipschitz continuous and 
the strongly pseudomonotone assumptions. In the special case ( ) =yxf ,  

( ) xyxF −,  for all ,, Cyx ∈  and the subproblem needed to solve in the 

projection method is of the form 

( ( ))k
k

k
C

k xFxPry λ−=  

( )




 ∈−λ+−= CyxyxFxy kk

k
k :,2

1minarg 2  

( ) ,:,2
1minarg 2





 ∈λ+−= Cyyxfxy k

k
k  
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where CPr  is the metric projection on C. This strategy has also been recently 

incorporated in this method by Mastroeni [16] via the following the auxiliary 
principle: 

 
( )












 ∈−+λ=

∈

+ .:2
1,minarg

,

21

0

Cyxyyxfx

Cx

kk
k

k
 (1.3) 

The author showed that if f is strongly monotone and Lipschitz-type 

continuous on C, then { }kx  converges to the unique solution to problem (1.1) 

in .nR  

Otherwise, among other generalized monotone Ky Fan inequalities, the 
class of strongly pseudomonotone Ky Fan inequalities has been investigated 
by many researchers (see [3, 4, 17-20]). It is well-known to see that the class 
of strongly pseudomonotone Ky Fan inequalities virtually contains the      
class of strongly monotone Ky Fan inequalities. As the above, the projection 
method is an efficient and very simple method for solving strongly monotone 
Ky Fan inequalities, a natural question arises: Could the iteration sequence  
of the projection method (1.3) be strongly convergent in a real Hilbert   
space only under Lipschitz-type continuous and strongly pseudomonotone 
assumptions of the bifunction f ? In this paper, we will give a complete 
solution for the above question by showing that the projection method not 
only works well for strongly monotone Ky Fan inequalities but also succeeds 
in solving strongly pseudomonotone Ky Fan inequalities. We also analyze 
the strong convergence of the algorithm in a real Hilbert space. 

The rest of the paper is organized as follows: In Section 2, we               
give formal definitions of our target problem (1.1) and the strong 
pseudomonotonicity of f, describe the projection method for strongly 
pseudomonotone Ky Fan inequalities and the proof of its convergence. In  
the last section, we apply the extragradient method for the Nash market 
equilibrium model, and the numerical results are reported. 
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2. Modified Projection Method 

Let C be a nonempty closed convex subset of .H  For each ,H∈x  there 

exists a unique point in C, denoted by ( )xPrC  such that 

( ) { }.:minarg CyyxxPrC ∈−=  

Let R→Cg :  be convex and subdifferentiable on C. Then a point 

Cx ∈∗  is a solution to the following convex problem ( ){ }Cxxg ∈:min  if 

and only if ( ) ( ),0 ∗∗ +∂∈ xNxg C  where ( )⋅∂g  denotes the subdifferential 

of g and ( )∗xNC  is the (outward) normal cone of C at .Cx ∈∗  

We recall some well-known definitions on monotonicity and Lipschitz-
type continuity of a bifunction. 

Definition 2.1. Let C be a nonempty closed convex subset of a real 
Hilbert space .H  The bifunction R→× CCf :  is said to be 

  (i) γ-strongly monotone on CC ×  if for each ,, Cyx ∈  

( ) ( ) ;,, 2yxxyfyxf −γ−≤+  

 (ii) monotone on CC ×  if for each ,, Cyx ∈  

( ) ( ) ;0,, ≤+ xyfyxf  

(iii) β-strongly pseudomonotone on CC ×  if for each ,, Cyx ∈  

( ) ( ) ;,0, 2yxxyfyxf −β−≤⇒≤  

(iv) Lipschitz-type continuous with constants 01 >c  and 02 >c  on 

CC ×  if for each ,,, Czyx ∈  

( ) ( ) ( ) .,,, 2
2

2
1 zycyxczxfzyfyxf −−−−≥+  



Modified Projection Method Extended to Strongly … 147 

Choosing the real Hilbert space H  and the subset C satisfies the 
following: 

( )












∞+<== ∑
∞

=0

2
21 :...,,:

k
kxxxxH  

and 

{ }.:: axxC ≤∈= H  

By using ( ) ( ) ,,, xyxxbyxf −−=  for ,,2 




∈ bba  Khanh and      

Vuong [14] showed that f is strongly pseudomonotone on CC ×  with 
constant .ab −=β  But it is neither strongly monotone nor monotone on 

.CC ×  Moreover, we will show that f is Lipschitz-type with constants =1c  

( )
( )ab

ab
−

+
2

2 2
 and .22

abc −=  Indeed, for each ,,, Czyx ∈  we have 

( ) ( )zxfyxf ,, −  

( ) ( ) xzxxbxyxxb −−−−−= ,,  

( ) zyxxb −−= ,  

( ) ( ) ( ) yzyybxxbyzyyb −−−−+−−= ,,  

( ) ( ) ( ) ( )zyabyybxxbabzyf −−−−−
−

+−= ,1,  

( ) ( ) 2
2
1, zyabzyf −−−−≥  

( ) ( ) ( ) .2
1 2yybxxbab −−−
−

−  (2.1) 

From [14], it implies that 

 ( ) ( ) ( ) .,,2 Cyxyxabyybxxb ∈∀−+≤−−−  (2.2) 
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Combining (2.1) and (2.2), we get 

( ) ( ) ( ) ( ) ( )
( )

2
2

2
2

2
2
1,,, yxab

abzyabzyfzxfyxf −
−

+−−−−−≥−  

and hence 

( ) ( ) ( ) ,,,,,, 2
1

2
2 Cyxyxczyczxfzyfyxf ∈∀−−−−≥+  

where ( )
( )ab

abc
−

+= 2
2 2

1  and .22
abc −=  

Let .0>ε  As usual, we say that a point Cx ∈  is an ε-solution to 

problem (1.1) if there exists ( )CfSolx ,∈∗  such that .ε≤− ∗xx  The 

following algorithm is designed for solving the Ky Fan inequalities, where 
the bifunction f is γ-strongly pseudomonotone and Lipschitz-type continuous 
with constants 01 >c  and 02 >c  on .CC ×  

Algorithm 2.2. Choosing positive sequence { }kλ  satisfies the following 

conditions: 

 
( )

.
21

1,0,,2
10

2
2

1 ca
ccba k −γ+

=δ>εγ<<≤λ≤<  (2.3) 

Step 0. ,0=k  find an initial point .0 Cx ∈  

Step 1. Solve the strongly convex program: 

( ) .:2
1,minarg 21





 ∈−+λ=+ Cyxyyxfx kk

k
k  

Step 2. If ( ) ,11
δ
δ−ε<− +kk xx  then terminate: 1+kx  is an ε-solution 

to (1.1). Otherwise, set 1: += kk  and go back to Step 1. 

Let us discuss the global convergence of Algorithm 2.2. 
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Theorem 2.3. Let R→× CCf :  be γ-strongly pseudomonotone on  

C, Lipschitz-type continuous bifunction with constants 01 >c  and .02 >c          

For each ,Cx ∈  let ( )⋅,xf  be convex and subdifferentiable on C. Then 

( )CfSol ,  has a unique point ∗x  and 

 ( )[ ] .0,21 221
2 ≥∀−≤−−γλ+ ∗∗+ kxxxxc kk

k  (2.4) 

Moreover, the sequence { }kx  generated by Algorithm 2.2 converges 

strongly to the point ∗x  with computational error as follows: 

∗
+

∗+∗+ −
δ−

δ≤−δ≤− xxxxxx
k

kk 0
1

011
1  

and 

.1
11 +∗∗+ −

δ−
δ≤−δ≤− kkkk xxxxxx  

Proof. Using the well-known necessary and sufficient condition for 
optimality of convex programing, we see that 

( )




 ∈−+λ=+ Cyxyyxfx kk

k
k :2

1,minarg 21  

if and only if 

( ) ( ) ( ).2
1,0 112

2
++ +





 −+λ∂∈ k

C
kkk

k xNxxyyxf  

By the well-known Moreau-Rockafellar theorem, we have 

( ) ( ).,0 11
2

1 +++ +∂λ+−∈ k
C

kk
k

kk xNxxfxx  

This implies that 

 ,0 211 wwxx k
kk +λ+−= +  (2.5) 

where ( )1
2

1 , +∂∈ kk xxfw  and ( ).12 +∈ k
C xNw  By the definition of the 

normal cone ,CN  we have 
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.,0, 1
2 Cyxyw k ∈∀≤− +  

Combining this and (2.5), we get 

.,0, 111 Cyxywxx k
k

kk ∈∀≤−λ−− ++  

Replacing y by ,Cx ∈∗  we get 

 .,, 1111 +∗+∗+ −λ≤−− k
k

kkk xxwxxxx  (2.6) 

Using the definition of ( ),, 1
2

1 +∂∈ kk xxfw  we have 

( ) ( ) .,,,, 111 Cxxxwxxfxxf kkkk ∈∀−≥− ++  

Applying this for ,∗= xx  we obtain 

 ( ) ( ) .,,, 111 ++∗ −≥− kkkk xxwxxfxxf  (2.7) 

From (2.6) and (2.7), it implies that 

 [ ( ) ( )].,,, 111 +∗+∗+ −λ≤−− kkk
k

kkk xxfxxfxxxx  (2.8) 

Since the bifunction f is Lipschitz-type continuous with constants 01 >c  

and 02 >c  on C, and CxCx k ∈∈∗ ,  for all ,0≥k  we have 

( ) ( )1,, +∗ − kkk xxfxxf  

 ( ) ., 21
2

21
1

1 ∗++∗+ −+−+≤ xxcxxcxxf kkkk  (2.9) 

Since ∗x  is a unique solution to problem (1.1) and ,1 Cxk ∈+  we have 

( ) .0, 1 ≥+∗ kxxf  By the strong pseudomonotonicity of f, we get 

 ( ) ., 211 ∗+∗+ −γ−≤ xxxxf kk  (2.10) 

Combining (2.9) and (2.10), we get 

( ) ( )1,, +∗ − kkk xxfxxf  

21
2

21
1

21 ∗++∗+ −+−+−γ−≤ xxcxxcxx kkkk  

( ) .21
1

21
2

+∗+ −+−−γ−= kkk xxcxxc  
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Combining this and (2.8), we have 

[ ( ) ]., 21
1

21
2

11 +∗++∗+ −+−−γ−λ≤−− kkk
k

kkk xxcxxcxxxx  

Using the assumption ,2
1,0

1





∈λ ck  we get 

( )[ ] 21
221 ∗+ −−γλ+ xxc k

k  

( ) .21 221
1

2 ∗+∗ −≤−λ−−−≤ xxxxcxx kkk
k

k  

This implies (2.4). 

From (2.3) and (2.4), it follows that 

( )[ ] .0,21 221
2 ≥∀−≤−−γ+ ∗∗+ kxxxxca kk  

Then 

,0,221 ≥∀−δ≤− ∗∗+ kxxxx kk  

where 
( )

( ).1,0
21

1
2

∈
−γ+

=δ
ca

 This implies that 

∗−∗∗+ −δ≤−δ≤− xxxxxx kkk 121  

.01 ∗+ −δ≤≤ xxk  

Otherwise, 

,111 ∗+∗++∗ −δ+−≤−+−≤− xxxxxxxxxx kkkkkkk  

and so .1
1 1+∗ −
δ−

≤− kkk xxxx  Therefore, we have 

∗
+

∗+∗+ −
δ−

δ≤−δ≤− xxxxxx
k

kk 0
1

011
1  

and 

.1
11 +∗∗+ −

δ−
δ≤−δ≤− kkkk xxxxxx  

The proof is complete. 
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For each ,, Cyx ∈  by using ( ) ( ) ,,:, xyxFyxf −=  we will give   

the iteration projection for strongly pseudomonotone ( )CFVI ,  and its 

convergence is linearly convergent, provided that the given problem has a 
solution. 

Corollary 2.4. Let C be a nonempty closed convex set of a real Hilbert 
space H  and let H→CF :  be strongly pseudomonotone with a modulus γ 

and Lipschitz continuous with a constant .0>L  Let ,20 2L
ba k

γ<≤λ≤<  

and the sequence { }kx  be defined by 

( ( )) .0,, 10 ≥∀λ−=∈ + kxFxPrxCx k
k

k
C

k  

Then the sequence { }kx  converges strongly to the unique solution ∗x  of 

problem ( )CFVI ,  with computational error as follows: 

∗
+

∗+∗+ −
δ−

δ≤−δ≤− xxxxxx
k

kk 0
1

011
1  

and 

.1
11 +∗∗+ −

δ−
δ≤−δ≤− kkkk xxxxxx  

3. Illustrative Examples and Numerical Results 

We consider a Nash equilibrium model (see [15]) as an example for 
problem (1.1). In the model, it is assumed that there are n-firms producing       
a common homogeneous commodity and that the price ip  of the firm i 

depends on the total quantity ∑
=

=σ
n

i
ix x

1
 of the commodity. Let ( )ii xh  

denote the cost of the firm i when its production level is .ix  Suppose that the 

profit of the firm i is given by 

 ( ) ( ) ( ) ,...,,1,:...,,1 nixhpxxxf iixiini =−σ=  (3.1) 
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where ih  is the cost function of the firm i that is assumed to be dependent 

only on its production level. 

Let { }( )nixxCi ...,,10:: =≥∈=⊂ + RR  denote the strategy set     

of the firm i. Each firm seeks to maximize its own profit by choosing the 
corresponding production level under the presumption that the production of 
the other firms is parametric input. In this context, a Nash equilibrium is         
a production pattern in which no firm can increase its profit by changing        
its controlled variables. Thus, under this equilibrium concept, each firm 
determines its best response given other firms’ actions. Mathematically, a 

point ( ) n
T

n CCCxxx ××=∈= ∗∗∗
11 :...,,  is said to be a Nash equilibrium 

point if 

( ) ( ) ....,,1,,...,,...,,,,...,, 1111 niCyxxfxxyxxf iininiiii =∀∈∀≤ ∗∗∗∗
+

∗
−

∗  (3.2) 

When ih  is affine, this market problem can be formulated as a special Nash 

equilibrium problem in the n-person noncooperative game theory. 

Set 

 ( ) ( )∑
=

+−−=φ
n

i
niiii xxyxxfyx

1
111 ...,,,,...,,:,  (3.3) 

and 
 ( ) ( ) ( ).,,:, xxyxyxf φ−φ=  (3.4) 

Then it has been proved in [15] that the problem of finding an equilibrium 
point of this model can be formulated as problem (1.1). We consider classical 
Cournot-Nash models (see [15]), the price and the cost functions for each 
firm are assumed to be affine with the following forms: 

( ) ( ) xxxi pp χσ−α=σ=σ 0:  with ,0,00 >χ≥α  

( ) iiiii xxh ξ+µ=  with ( )....,,10,0 niii =≥ξ≥µ  

Combining this with (3.1), (3.2), (3.3) and (3.4), we get 

 ( ) ( ) ,,, xyxyAxyxf n −α−µ++χ+=  (3.5) 
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where 

 ( ) ( ) ....,,,...,,,

0

0
0

0

100
T

n
T

nn

A µµ=µαα=α























⋅χχ
⋅⋅⋅⋅
χχχ
χχχ
χχχ

=

×

 (3.6) 

Example 3.1. Consider now a numerical example with 5=n  and 













≥++++

≤++−+

≤++++

∈

=

+

.45.0

,1532

,102

,

54321

54321

54321

5

xxxxx

xxxxx

xxxxx

x

C

R

 

The bifunction f is extensively defined (3.5) as follows: 

( ) ( ) .,, 2yxxyxyAxyxf n −−−α−µ++χ+=  

Then, from (3.6), it follows that 

( ) ( )xyfyxf ,, +  

( ) ( ) yxyxAyxyxyAx nn −α−µ++χ++−α−µ++χ+= ,,  

22 yx −−  

( ) 22, yxxyxyA −τ−−−−=  

.2 2yx −−≤  

So, f is strongly pseudomonotone on CC ×  with constant .2=γ  It is         

easy to compute that f is Lipschitz-type with constants Ac 5
1

21 +γ≥  and 

.5
1

22 Ac +γ≥  The parameters are taken as follows: ,10 4−=ε  =0x  
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( ) ,1,1,1,2,1 CT ∈  ,1=χ  ,20 =α  ( ) .6,7,5,4,3 T=µ  Choose +τ=2c  

8.12
1 =A  and .2.61 =c  Since ,2778.02

10
1
=<≤λ≤< cba k  we choose 

2.0===λ bak  for all .0≥k  Then we have .9623.0=δ  

The approximate solution obtained after 11 iterations is (see Table 1): 

( ) .4510.0,9405.0,9426.0,9447.0,9467.011 Tx =  

The computations are performed by Matlab R2008a running on a PC 
Desktop Intel(R) Core(TM)i5 650@3.2GHz 3.33GHz 4Gb RAM. 

Table 1. The sequence { }kx  given by Algorithm 2.2, 5=n  

Iteration (k) kx1  kx2  kx3  kx4  kx5  

0 1 2 1 1 1 

1 0.5763 1.9897 0.6786 0.9821 0.9922 

2 0.7892 1.3473 0.7345 0.9808 0.8327 

3 0.8945 1.2437 0.8009 0.8992 0.7033 

4 0.9008 1.1751 0.9008 0.9112 0.6670 

5 0.9045 1.0437 0.9109 0.9210 0.5033 

6 0.9338 0.9751 0.9298 0.9278 0.4670 

7 0.9428 0.9540 0.9387 0.9366 0.4559 

8 0.9455 0.9475 0.9414 0.9393 0.4524 

9 0.9464 0.9456 0.9422 0.9402 0.4514 

10 0.9466 0.9449 0.9425 0.9404 0.4511 

11 0.9467 0.9448 0.9426 0.9405 0.4510 
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