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Abstract 

In some lifetime studies abrupt changes in the hazard function are 
observed due to overhauls, major operations or specific maintenance 
activities. In such situations it is of interest to detect the location in 
time where such changes occur. The Weibull regression hazard model 
with a single change-point is proposed, which is a generalization of the 
well-known exponential model. Statistical inference is focused on the 
problem concerning the change-point, taking into account covariates 
and random censorship. A likelihood-based approach is used for 
obtaining estimators for a change-point as well as for the hazard and 
regression parameters for the proposed model. Then the main goal is 
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to prove the consistency of these estimators by relying on modern 
empirical process theory. 

1. Introduction 

The literature about change-point problems is quite rich due to 
applications in diverse fields such as industry, reliability studies, analyzing 
biomedical data, medical follow-up studies, etc. See Chen and Gupta [8]. In 
some lifetime studies, abrupt changes in the hazard function are observed due 
to overhauls, major operations or specific maintenance activities. In such 
situations it is important to detect the location in time where such changes 
occur. 

Some forms of the hazard function have been studied, the oldest and 
most popular is the exponential model. This model was first considered by 
Miller [12]; however, he did not consider inference on the change-point. 

Dupuy [9] developed one of the first change-point exponential models 
that incorporates covariables in the hazard function. He considered the 
piecewise constant hazard function proposed by Wu et al. [3]. Dupuy studied 
the hazard model 

( ) ( { }) {( { }) }.1exp1;0 ZZt tt
′γ+βθ+α=λ τ>τ>  

Using a maximum likelihood approach he proposed estimators of a 
change-point, hazard and regression parameters. 

Here a more general model is introduced, which considers the Weibull 
hazard function as a baseline in the Cox hazard model with a change-point, 
random right hand censorship and covariates Z, are included. It is assumed 
that Z is a vector of baseline covariates whose effects do not change over 
time; however, this assumption can be relaxed to using time-dependent 
covariates of the form ( ).tZ  Covariates depending on time are observed in 

some epidemiological applications. 

In this paper, we consider the following combined parametric model for 
the hazard function with a change-point given by 



Estimation of A Change-point in the Weibull Regression Model 109 

( )
( ) ( ){ }

( ) {( ) ( )}⎪⎩

⎪
⎨
⎧

τ>′+ηηζ

τ≤′λλζ
=|

−ζ

−ζ

;;exp

;;exp

1

1

ttt

ttt
th

Zγβ

Zβ
Z  (1) 

where τ is the unknown change-point in time, ,0>λ  ,0>η  0>ζ  and 

,qR∈β  { }0γ \qR∈  which are unknown regression coefficients. 

Earlier work on change-point regression models has been mainly focused 
on the constant hazard model, Nguyen et al. [7] and Loader [4]; linear 
models, Horvath [10]; and change-point problems in hazard rate models 
without random censoring, Yao [13]. Properties of the estimators of the 
change-points have been investigated via simulations but no theoretical 
results are available, Matthews and Farewell [5], Loader [4]. 

In this paper, we propose to use a profile maximum likelihood approach 
for obtaining estimators for τ and the parameters in model (1). Then the main 
goal is to prove that these estimators are consistent. 

This work is structured as follows: In Section 2, notation and 
terminology are established; in Section 3, the construction of profile 
maximum likelihood estimators for the parameters in model (1) is given; in 
Section 4, the consistency of the estimators is proved; in Section 5, some 
conclusions are established. 

2. Preliminaries 

Consider a random sample of n subjects. Let iT~  denote the underlying 

failure time for the ith subject, which can be potentially censored by a 
random censoring time .iC  For each individual, the random variable 

( )iii CTS ,~min=  is the observation on the failure time. Let ( )iii CTI ≤=Δ
~

 

be the censorship indicator, which takes on value 1 if the failure event is 
observed, and 0 in any other case. Let ( )tiZ  be a q-dimensional left-

continuous covariate process with right hand limits (caglad), associated with 

the occurrence event of interest. Assume iT~  and iC  are independent, but 
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both depend on the vector of covariables ( ).tiZ  Then the observations, 

consist of independent identically distributed triplets ( )( ),,, tST iiii ZΔ=  

for ....,,1 ni =  

According to model (1), the density of the random variable iT  is given 

by 

 ( )itfξ  
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where ( ) ( ) .,,,,,, ′ζηλ=ϕϕ′τ= γβξ  

3. Estimation Procedure 

Assume that the parameters of model (1) belong respectively to bounded 

subsets of ,R  .,, +++ ⊂∈ζ⊂∈η⊂∈λ RRR CBA  For the regression 

parameters we have qR⊂∈ Dβ  and { }.\ 0γ qR⊂∈ E  Suppose that 

,I∈τ  where I  can be either a known interval [ ],, 10 ττ  the union of 

known intervals [ ]∪k
i ii ba1 ,=  or a set of time points { }....,,0 kττ  Suppose 

that a real valued vector of parameters ( )′ϕ′τ= 0ξ ,00  is contained in 

,EDCBAI ×××××=Φ  such that 00 η≠λ  and ;0 0γ ≠  so that a 

change actually occurs. Finally suppose that the covariate process ( )tZ  is 

uniformly bounded in variation (this assumption ensures that the covariate 
function has not too many fluctuations), with positive definite covariance 
matrix ( )( ).tZΣ  Let ( ) ( ),00 tFtF ξ≡  which denotes the distribution function 

and ( ),00 tEξ≡μ  the expectation of iT  in model (1), both under the true 

parameter values. 
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The log-likelihood function for the unknown parameters =ξ  

( ) ,,,,,, ′′′ζηλτ γβ  based on the observed data ( )( ),,, tsT iiii ZΔ=  

ni ..,,1=  is 
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where ( ) { }1,1 =Δ≤= ii tTi tN  is a counting process for the failure of individual i. 

To obtain the maximum likelihood estimator of the vector of parameters 
,0ξ  the following procedure is used. First, let I∈τ  be a fixed value. Then 

the estimator ϕ̂  of 0ϕ  is taken as the value that maximizes the log-likelihood 

function ( )ξnL  on .E�DCBA ××××  Hence, an estimator for 0τ  is 

{ ( ( ( )) ( )( )) ( ( ))},ˆ,supˆ,,ˆ,maxsupˆ τϕτ=±τϕ±ττϕτ|∈τ=τ
∈τ

nnn LLLI
I

 

where ( )( )±τϕ±τ ˆ,nL  is the left or right limit of nL  in τ. Finally, the 

maximum likelihood estimator for ϕ is obtained by taking ( ).ˆˆˆ τϕ=ϕ  

Without loss of generality we will assume that the covariates ( )tZ  do not 

change over time. The proof when ( )tZ  is a vector of time-varying covariates 

is quite similar. For a given τ, we estimate λ, η, ζ, β and γ by considering the 
corresponding score functions: 
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Notice that for each I∈τ  given, the estimates of parameters λ, η, ζ, β and γ 
are obtained by solving the score equations; however, due to the non-
linearity of the score functions, in order to obtain their respective solutions it 
is necessary to use numerical algorithms along with an iterative method. This 
numerical solution can be implemented with the available software at present 
time. 

4. Consistency of the Estimators 

Empirical processes techniques will be used in order to prove that the 
profile ML-estimators converge in probability to the parameter values. 
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Let us define the succession ( ) ( ) ( )( ),1
0ξξξ nnn LLnY −= −  and the 

function ( ) ( )[ ],0 ξξ nn YE=μ  where ξ and 0ξ  are defined as before. The 

following result proves that the class of functions defined by (2) is Glivenko-
Cantelli (definition and properties of this class of functions can be seen in 
van der Vaart and Wellner [2] and van der Vaart [1]), which is equivalent to 
show that nY  converges uniformly to ( ).ξnμ  

Lemma 1. The class of functions { },: Rff →Φ|=F  defined by (2), 

is Glivenko-Cantelli. 

Proof. Since every Donsker class is Glivenko-Cantelli (see [2] and [1]), 
it will be proved that the family of functions F  is Donsker. Since the 
Donsker property is preserved under addition and product, it is enough to 
prove that the family of functions { }Rgg →Φ|= :G  is Donsker, where 

{ }
( ) .1 ζ+

τ>
′

= Teg T
Zγβ  

We know that the family of functions { { }
( ) }TeT

Zγβ ′+
τ>= 1H  is Donsker, 

where β, γ and ,qR∈Z  Z and T are bounded (see Dupuy [9]). 

Let +→ RΦ:g  be the function defined by ( ) .1−ζ= TTg  Then from 

example 2.10.10 pp. 192 in van der Vaart and Wellner [2] we have that class 

g⋅H  is Donsker, that is, { { }
( ) }01 >ζ|= ζ+

τ>
′

TeT
ZγβJ  is Donsker. Given 

that the addition of Donsker classes is Donsker, then the family of functions 
F  defined in (2) is Donsker and so F  is also Glivenko-Cantelli. ~ 

In order to prove this result when covariates depend on time, which are 
denoted by ( ),tZ  it is assumed that ( )tZ  is a caglad and uniformly bounded 

in variation process, the result of Parner [6] follows since, if W is a caglad 
uniformly bounded in variation process on [ ],1,0  then the class 

[ ]{ }1,0∈|χ uu  of projections ( ) ( )uWWW uu =χ→χ :  is Donsker and by 

the continuous mapping theorem, we can show that the class (2) converges 
weakly in the set of bounded real functions on .Φ  
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The following lemma asserts that the real valued vector of parameters for 
model (2) is identifiable. 

Lemma 2. Let ( )tfξ  be the probability density function defined in 

equation (2). If ( ) ( )tftf 0ξξ =  almost anywhere under ,0F  then .0ξξ =  

Proof. The proof of this result follows by contradiction. In fact, assume 
that 0ξξ ≠  and ( ) ( ).tftf 0ξξ =  Without loss of generality, assume that 

;0τ≠τ  in other words, either (i) 0τ<τ  or (ii) .0τ>τ  Assume that (i) 

holds (the opposite is treated analogously). By hypothesis, ( ) ( )tftf 0ξξ =  

almost anywhere. In particular, if ,0=Δ  

{ } [ ( ) ] { } [ ( ) ( ) [( ) ( ) ]]ζζ′+′ζ
τ>

′ζ
τ≤ ητ−η−λ−+λ− teetet tt

ZγβZβZβ exp1exp1  

{ } [ ( ) ]Zβ00
0 0exp1 ′ζ
τ≤ λ−= ett  

{ } [ ( ) ( ) [( ) ( ) ]].exp1 000000
0 00000

ζζ′+′ζ
τ> τη−η−τλ−+ teet

ZγβZβ  (4) 

Values of t and z will be exhibited which satisfy expression (4) with 
.0τ≠τ  This leads to a contradiction in one of the set conditions in Section 3. 

Let z be a realization of Z and let zΛ  be the set of all ( ]0, ττ∈t  such 

that ( )zt,  does not satisfy expression (4). 

Then for almost all observations ( ) ,, xΛ∈zt  except for a set C  with 

zero measure, we get that ( )( ) ,0,0 =ztF  with ( ]., 0ττ∈t  

Taking 1z  and ,2z  two different realizations of Z, such that neither 1z  

nor 2z  are in C  (these values exist, given that Z is non-degenerate), let 

( ],,, 021 ττ∈tt  with ,21 tt ≠  such that pairs ( ) ( ) ( )122111 ,,,,, ztztzt  and 

( )22, zt  satisfy ( )( ) 0,0 =ii ztF  for .2,1=i  

By substituting ( )11, zt  in (4), we get 
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( ) ( ) [( ) ( ) ] ( ) .10011 101
zzz ettee βγββ ′ζζζ′+′ζ λ=ητ−η+λτ  (5) 

Similarly, for a pair ( ),, 12 zt  we get 

( ) ( ) [( ) ( ) ] ( ) .10011 202
zzz ettee βγββ ′ζζζ′+′ζ λ=ητ−η+λτ  (6) 

Subtracting (5) from (6), we get 

( ) ( ) ( ).001001
12012
ζζ′ζζζ′+ζ −λ=−η ttette zz βγβ  (7) 

Proceeding analogously for ( )21, zt  and ( ),, 22 zt  we get, 

( ) ( ) ( ).002002
12012
ζζ′ζζζ′+ζ −λ=−η ttette zz βγβ  (8) 

By hypothesis 0,0, 021 ≠λ>θ+α≠ tt  and ,00 ≠α  then the quotient of 

(8) and (7) is ( ) ( ) ,1120 =−−+ zze βγβ  that is, 

( ) ( ) .0120 =−−+ zzβγβ  (9) 

Considering all pairs of orthogonal vectors to ( )12, zz  we choose a pair 

( )34, zz  that does not belong to ;C  for this pair it is true that 

( ) ( ) .0340 =−−+ zzβγβ  We follow with this process until obtaining q 

pairs of vectors, such that none of these pairs belongs to ,C  and whose 

difference is linearly independent (that is, we are building a base for ),qR  

resulting in ( ) ,00 =−+ βγβ  that is, .0βγβ =+  

By substituting the last expression in (8), we get ( ) =−η ζζζ
12 tt  

( ),000
120
ζζζ −λ tt  that is, 

.0000
101202
ζζζζζζζζ λ−η=λ−η tttt  (10) 

Assume that ,0ζ≠ζ  this is, (i) ζ<ζ0  or (ii) .0 ζ>ζ  Without loss of 

generality, assume that (i) is satisfied, from equation (10), we get 
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Since ,21 tt ≠  it could be that either (a) 21 tt <  or (b) .21 tt >  Assume that 

(a) is true, then we get that .1
0

0
1
2

ζ
ζ
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⎤

⎢⎣
⎡< t
t

 

Given that ,00 >ζ−ζ  then substituting the last expression on the right 

hand side of (11) we obtain 

.120102
0000 tttt ≤⇔λ−η≤λ−η ζζ−ζζζζ−ζζ  

However, this last expression is a contradiction given that (a) was true. 

Analogously for (b), when substituting 
0

0
1
21

ζ
ζ

⎥⎦
⎤

⎢⎣
⎡> t
t

 in (11), we have a 

contradiction. Therefore, it is not possible to have .0 ζ<ζ  To prove that 

0ζ<ζ  is not possible, an analogous procedure is followed. Hence, we 

conclude that .0ζ=ζ  Substituting the last expression in (10), we see that 

.0
ζζ λ=η  (12) 

From 0βγβ =+  and substituting (12) in (4), for ( )1zt ,1  we get 

( ) ( ) .101 ββZ zee ′ζζ ητ=λτ  (13) 

Similarly, for ( )2zt ,1  we get 

( ) ( ) .101 ββZ zee ′ζζ ητ=λτ  

Dividing by (13) we get 

( ) ( ) .01 =−′− zz20ββ  (14) 

By the same reasoning as above, ,0=− 0ββ  that is, ,0ββ =  hence .0γ =  

This is a contradiction, since by hypothesis .0γ ≠  This means that 0τ<τ  
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does not hold. Similarly, it is proved that 0τ>τ  cannot be true. Hence, 

.0τ=τ  With an analogous procedure, it is proved that .0ϕ=ϕ  ~ 

Theorem 3. Under conditions given in Section 3, estimators τ̂  and ϕ̂  

for model (1) converge in probability to 0τ  and ,0ϕ  respectively. 

Proof. Remember that the estimators were obtained through profile 
maximum likelihood, and thus certain properties of these estimators are used. 

Note that ( ) ( )
( ) ( )∫Φ

−
⎥⎦
⎤

⎢⎣
⎡=μ ,ln1 dyYfL

Lnn ξ
0ξ
ξξ  which is minus the 

Kullback-Leibler divergence of ξf  and ,0ξf  where ( )ξL  is the likelihood 

function. Since ( ) ,0=μ 0ξn  0ξ  is a maximum of .nμ  From Lemma 2, we 

get that 0ξ  is the unique maximum of .nμ  From Lemma 1, nY  converges 

uniformly to ,nμ  that is, ξ̂  converges in probability to .0ξ  From this we 

conclude that τ̂  and ϕ̂  converge in probability to 0τ  and ,0ϕ  respectively. ~ 

5. Conclusions 

A more general model than those given by Wu et al. [3], Dupuy [9] and 
Liu et al. [11] is introduced. Following Dupuy, in this paper it is shown that 
the profile maximum likelihood estimation method can be extended to 
estimating the change-point and the hazard and regression parameters in the 
Weibull regression model. It is also proved that these estimators are 
consistent. 
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