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Abstract 

We present the methodology for the measurement of the average 
treatment effects under a bivariate selection mechanism. The 
formulation of the bivariate average treatment effect comes from the 
multivariate sample-selection model, where the bivariate normal 
distribution is necessary in order to derive the bivariate inverse Mills 
ratio. Under this approach there are seven different average treatment 
effects. An application case is done using a cross-section data for 
Brazilian industrial firms. It is shown that this methodology can be 
easily used in any bivariate self-selection mechanism case since there 
is not an intricate computational solution for the problem. 
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1. Introduction 

The average treatment effect (ATE) estimation has an increasing 
importance in public policy evaluations. The availability of large 
observational surveys and the interest of measuring the impact of public 
policies is making ATE a necessary and popular methodology. The need of 
more structured class of econometric models highlights the importance of 
micro-econometric developments in order to cover some issues about the 
selection process acting over an interest variable. 

The work of Heckman [4] has backgrounded the use of ATE for 
measuring the impact of a public policy, known as a dummy endogenous 
variable. The quantitative framework of the ATE is widely developed and 
applied. On the other hand, the literature covering more than one selection 
mechanism is still incipient, appearing only in [2], and do not deal 
specifically with the bivariate ATE measurement problem. The main concern 
in the existence of two self-selection mechanisms is the correlation that both 
processes exhibit one another and with the dependent variable of interest               
and, in the case of a probit link-function, this leads to a trivariate normal 
distribution. Consequently, the inverse of the Mills ratio exhibits a different 
formulation from the univariate case. 

2. The Multivariate Case 

We begin by overviewing the multivariate Heckman model which 
constitutes a generalization of the bivariate approach. The multivariate 
sample-selection model is given by the set of equations represented in (1) 
and (2) (Tauchmann [7]), denoting the latent variable underlying the 
relationship between the observable variables ijz  and :ijy  

,ijjijijy ε+′=∗ βx  (1) 
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,ijijij zyy ∗=  (4) 

where j denotes the selection equations ( )mj ...,,1=  and i denotes individual 

observation ( )....,,1 ni =  The m-selection equations act simultaneously over 

all the observable response variables ( )ijq  and interact between themselves 

through the multivariate error correlation structure. In Tauchmann’s 

formulation, because of the weightings ,ijij zy∗  the variables ( )ijy  are not 

observable for ,0=ijy  however in ATE evaluation the impact variable 

( )ijy  is available for 1=ijy  and .0=ijy  

The errors structure linking the errors [ ]imij εε=ε′ ...,,1  and =ξ′j  

[ ]imi ξξ ...,,1  can be represented by the following covariance matrix: 
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As noted by Tauchmann, it is advisable to first estimate a multivariate 
probit model (2) which gives the estimation for .jγ  In a second run, using 

the multivariate inverse Mills expression, it is possible to get consistent, but 
inefficient estimation of ( ).1jβ  A consistent generalized two-step estimation 

of the equations (1) to (4) is provided by the following equations: 
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where ( )hiih ≠ψ  are used as the elements for a diagonal matrix Ψ and hjR~  

defines a partial correlation matrix [ ],
~

hjjhjR μ|μρ=  with elements =hjR~  

.hjhjhj R ΨΨ  In (6) the normal multivariate distributions with dimension h 
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and 1−h  are denoted by, respectively, hΦ  and .1−Φh  The parameters 

estimation of (6) provided by OLS leads to unbiased estimators, but the 
standard errors are still inconsistent. In the absence of the analytic expression 
for the covariance parameter estimator matrix a bootstrap approach is done 
for the standard errors1. 

3. BATE: Bivariate Analysis Treatment Effect 

3.1. The bivariate selection mechanism 

Let the bivariate self-selection mechanism be generated by a bivariate 
normal density where ρ is the correlation parameter: 

,1111 iiiz ξ+′=∗ γw  (9) 
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⎩
⎨
⎧

<
≥= ∗

∗

,0if,0
,0if,1

1

1
1

i

i
i z

zz  (11) 

⎩
⎨
⎧

<
≥= ∗

∗

,0if,0
,0if,1

2

2
2

i

i
i z

zz  (12) 

,22112211 iiiiiii zzy ε+λβ+λβ+′+δ+δ= λλβx  (13) 

where ∗
1iz  and ∗

2iz  denote the latent correlated selection process which 
generates the dichotomous variables in (11) and (12). In (13) the dependent 

variable simultaneously affected by ∗
1iy  and ∗

2iy  is denoted by :ijq  
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1In Section 4, we briefly present the methodology of Murphy and Topel [5]. But in the case of 
the bivariate selection mechanism presented in this paper still is cumbersome to derive it. For 
this reason we had made the choice of a bootstrap estimation. 
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The bivariate inverse Mills expression are developed using the following 
ancillary functions, which follows a notation close to Greene [3, p. 787]: 

[ ],;;12;12 212121 ξξρ=ρ−=−= ∗ iijijiiji qqzqzq  (15) 

( ) ( ),,,;, 22112212211 jiiii sqsqzZzZP ∗ρΦ=|== ww  (16) 

,ijijij sqk =  (17) 

,jijij ws γ=  (18) 

( ) ([ ] ),1 2
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( ) ([ ] ).1 2
2122 jijiii kkkg ∗∗ ρ−ρ−Φφ=  (20) 

Separately dividing the terms (19) and (20) by the bivariate cumulative 
normal density leads to the inverse Mills ratio. In case of a univariate 
selection process, as in ATE model, there were only two expressions for the 
inverse Mills ratio. In the present case, there are eight possibilities, that 
correspond to all combinations of 1iz  and .2iz  
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Applying mathematics expectation in equation (13) gives the following 
terms: 

[ ] ,0,0 221121 iiiiii zzyE λβ+λβ+′===| λλβx  (25) 

[ ] ,0,1 2211121 iiiiii zzyE λβ+λβ+′+δ===| λλβx  (26) 

[ ] ,1,0 2211221 iiiiii zzyE λβ+λβ+′+δ===| λλβx  (27) 

[ ] .1,1 22112121 iiiiii zzyE λβ+λβ+′+δ+δ===| λλβx  (28) 

Subtracting equations (25) through (28) results in the following 
interpretations of the bivariate average treatment effect (BATE): 

  (i) BATE1. The effect of both treatments ( )1,1 21 == ii zz  against 

having none of them ( ).0and0 21 == ii zz  

 (ii) BATE2. The effect of only the first on treatment ( ,11 =iz )02 =iz  

against having none of them ( ).0,0 21 == ii zz  

(iii) BATE3. The effect of the second treatment ( )1,0 21 == ii zz  against 

none of them ( ).0,0 21 == ii zz  

(iv) BATE4. The effect of both treatments ( )1,1 21 == ii zz  against 

having only the first one ( ).0,1 21 == ii zz  

 (v) BATE5. The effect of both treatments ( )1,1 21 == ii zz  against the 

only second ( ).1,0 21 == ii zz  

 (vi) BATE6. The effect of only the first treatment ( ,11 =iz )02 =iz  

against only the second one ( ).1,0 21 == ii zz  
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(vii) BATE7. The effect of only the second treatment ( ,01 =iz )12 =iz  

against only the first one ( ).0,1 21 == ii zz  

[ ] [ ]0,01,11 2121 ==|−==|= iiiiii zzyEzzyEBATE  
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[ ] [ ]0,11,07 2121 ==|−==|= iiiiii zzyEzzyEBATE  
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where ( ),0,0
1λ  ( ),0,0

2λ  ( ),0,1
1λ  ( ),0,1

2λ  ( ),1,0
1λ  ( ),1,0

2λ  ( ),1,1
1λ  ( )1,1

2λ  denote the 

bivariate inverses Mills ratios expressions from (21) to (24). 

3.2. Robust covariance matrix and Murphy and Topel theorem 

The robust covariance matrix is based on Murphy and Topel [5] 
methodology for two-step estimations in the case of non-linear models. 
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Consider the regression ( ) ε+= γwβx ,,,hy  with covariance matrix .bV  In 

the first step, the parameters of γ are estimated with x as the explanatory 
variables. In the second step, estimation of the regression of 

( )γwβx ˆ,,,hy =  is done, where γ̂  is the first round estimate of γ. The 

parameters in γ have a covariance matrix given by cV  and assuming 

asymptotic normality this matrix is unbiased ( ).ˆ cV  The step below gives the 

second stage covariance matrix estimate: .ˆbV  Let β̂  be an unbiased estimator 

of β, with estimated covariance matrix bV̂ . Let bs V̂2  be the estimated matrix 

of =σ bV2 ( ) ,1002 −′σ XX  where 0X  is the matrix of pseudo-regressions 

evaluated at the values: ( ) .ˆ,,,0 β∂∂= γwβxx hi  Under the necessary 

conditions assumed for the non-linear least square estimation, the second-
step estimation of β is consistent and asymptotically normally having 
covariance matrix given by: 

[ ( ) ],1ˆ 2
bcccbbb n VCRVRCVCCVVVV ′−′−′+σ=  (36) 
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The R matrix depends on the score function of the bivariate probit 
likelihood. 

In the BATE, the first derivatives of the (21) to (24) are necessary in 
order to get the C matrix. In Appendix A, we show some analytics problems 
in a more detailed manner. Given the trouble calculation for those 
derivatives, in the present paper the robust variance estimates are done via 
bootstrap method. 
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3.3. Bootstrap estimation 

One of the main concerns of our work is in the estimation of BATE’s 
models variance estimators. There is no ordinary direct formula for the 
variance estimates of the second stage model. One way to surpass this 
problem is to use simulation strategies to investigate the properties from the 
estimators. A nonparametric bootstrap analysis was used where the main 
concern was to generate robust standard errors and confidence intervals for 
the estimates. These methods are weak consistent for the parameters 
estimates what is sufficient for most statistical problems (Shao and Tu [6]). 

To avoid problems in estimation of the standard errors and confidence 
limits (CLs) in cases where the population could be generated from a highly 
skewed distribution we used 5.000 replicas2. There are a few bootstrap 
confidence sets in the literature, such as, bootstrap-t, bootstrap percentile, 
bootstrap bias-corrected percentile (BC), bootstrap accelerated bias-corrected 
percentile (BCa) and the hybrid bootstrap. Even though, BCa and the 
bootstrap-t methods are more accurate it is not an easy task to implement 
them. We chose the hybrid method (Shao and Tu [6]) which has the same 
accuracy as the traditional normal approximation when a considerable size of 
resample is used. The exact3 1-2α confidence interval for θ of the hybrid 
bootstrap method is presented below: 

( )[ ( ) ( )],αθ̂,α1θ̂ 11
ˆ,21

−ς−−ς−
θα− −−− BootnBootn HnHnIC

n
 (37) 

where ς is a fixed constant, where BootH  comes from 

( ) { ( ) }.ˆˆ xnPxH nnBoot ≤θ−θ= ∗ς
∗  (38) 

4. Application Using PINTEC Data 

Three data base were used, on firm level for the year 2008: the Brazilian 
Annual Survey of Industry (PIA/IBGE-A), the Brazilian Innovation Survey 

                                                           
2For the SE and CL of the estimates, two SAS macros, %BOOT and %BOOTIC, respectively. 
3A confidence set is exact when its confidence coefficient is exactly equal to its nominal level. 
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(PINTEC/IBGE-B) and the Annual Relation of Social Information 
(RAIS/MTE-C). We describe below the variables. 

Product Innovation (Product) (B): Dummy variable indicating that the 
firm has introduced a new product for the firm; 

Process Innovation (Process) (B): Dummy variable indicating that the 
firm has introduced a new process for the firm; 

National: Dummy variable for no foreign controller capital; 

Firm Size (l)(A): Total numbers of employees; 

Total Revenue: Total revenue; 

Labor Productivity (y/l)(A): Total revenue over number of employees (l); 

Market Share (Share) (A): Total number of employees from the firm 
over total number of employees of the sector; 

R&D (B): Total spending on R&D activities. Includes intra and 
extramural R&D; 

R&D Effort (B): Ratio between R&D and total sales; 

Schooling (Skill) (C): Weighted average of employees schooling; 

Gross fix capital stock (k)(A/C): Capital stock measured by perpetual 
inventory method, according to Alves and Silva [1]; 

Turnover rate (rot) (C): Rate of employees that leaves the firm on the 
next year; 

Geographic Localization (locus) (B): Category for geographic Brazilian 
regions; 

Economic Classification (ocde4) (B): (i) Extractive Industry; (ii) High 
Technology; (iii) Medium-High Technology; (iv) Medium-Low Technology; 
(v) Low Technology; and (vi) Services; 

                                                           
4Classification from Organization for Economic Cooperation and Development (OECD).  
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Cooperation for innovation (coop) (B): Category of cooperation for 
innovation in several levels of partnership. 

Age of the firm (age) (C): Age in years of the firm. 

4.1. Results 

We report the results in which the objective was to investigate the impact 
of Product and Process Innovation over Labor Productivity. This impact is 
what we call a bivariate average treatment. In the microeconomic literature 
the process and product innovation appears to be correlated in the sense that 
entrepreneurs decide to do both kinds of innovation in order to successfully 
internalize the economics results. 

Considering the correlation between the two of innovative activities we 
present the bivariate probabilistic models in (39). The second step regression 
model is represented in equation (40). 

[ ] [ iiiimklimkl ShareSkillRDeffortprocprod 3210 γγγγ; +++Φ=  

],μηγγ4 illikkimmi ocdelocuscoopNational ++++  (39) 

[ ] ( ) ( )imklimklimklimklimkl klprocprodl lnηlnηδδηγln 21210 ++++=  

( ) ( ) ( ) .ξλβλβlnη 2
2

1
13 imklimklimklimklAGE ++++ λλ  (40) 

Table 1. First step estimation: bivariate probit model (2008) 

  Product Process 

Parameter Levels Estimate 
Std

Error
t-value p-value Estimate

Std
Error

t-value p-value 

Intercept  –1,951 0,198 –9,87 < 0,001 –1,810 0,184 –9,83 < 0,001 

R&D effort  0,002 0,001 3,56 0,001 0,001 0,001 0,15 0,879 

Skill  0,705 0,073 9,69 < 0,001 0,665 0,067 9,95 < 0,001 

Share  5,019 1,072 4,68 < 0,001 5,468 1,177 4,64 < 0,001 

National  –0,233 0,060 –3,86 0,001 –0,051 0,060 –0,86 0,391 

Cooperation 1 1,212 0,095 12,81 < 0,001 1,051 0,095 11,01 < 0,001 
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 2 0,955 0,086 11,05 < 0,001 1,466 0,101 14,53 < 0,001 

 3 1,412 0,300 4,70 < 0,001 2,125 0,439 4,84 < 0,001 

 4 0,974 0,197 4,93 < 0,001 0,643 0,190 3,38 0,001 

 5 1,157 0,217 5,33 < 0,001 1,238 0,232 5,34 < 0,001 

 6 0,838 0,204 4,11 < 0,001 1,456 0,236 6,18 < 0,001 

 7 - - - - - - - - 

Correlation  0,716 0,010 72,65 < 0,001     

Source: Elaborated by the authors from 2008, Brazilian Innovation Survey, 
PIA and RAIS. 

Note: The algorithm converged with the qlim procedure (SAS), using the 
method NEWRAP. 

The process and product estimated correlation was 71.6%, so we do have 
a bivariate process between these two variables. The average schooling of the 
labor force had a positive and significant high impact over both the product 
and process innovation. The same is true for the market concentration. 

Table 2. Second-step estimation: linear regression 

Variable Estimate 
Boot. 

SE 
t-value p-value Variable Estimate

Boot.
SE 

t-value p-value 

Int. 1.646 0.071 8.76 < 0.001 ln(cap) 0.064 0.002 34.1 < 0.001 

Prod 0.292 0.043 6.79 < 0.001 ln(age) 0.167 0.020 8.55 < 0.001 

Proc –0.029 0.035 –0.84 0.401 Rot –0.090 0.040 –2.24 0.025 

ln(posgrad) 0.173 0.055 3.16 0.002 Mills(Prod) –0.045 0.022 –2.01 0.044 

ln(employee) 0.060 0.013 4.49 < 0.001 Mills(Proc) 0.194 0.044 4.43 < 0.001 

2R  0.194    

Source: Elaborated by the authors from 2008, Brazilian Innovation Survey, 
PIA and RAIS. 

Note: Results from the reg procedure (SAS). 
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Table 3. Bivariate average treatments-BATE 

Effects Est. 
Boot

Lower 
C.L. 

Boot 
Upper 
C.L. 

[ ] [ ]0;01;11 2121 ==|−==|= iiiiii zzyEzzyEBATE  0.832 0.801 0.866 

[ ] [ ]0;00;12 2121 ==|−==|= iiiiii zzyEzzyEBATE  3.876 3.711 4.069 

[ ] [ ]0;01;03 2121 ==|−==|= iiiiii zzyEzzyEBATE  1.223 1.179 1.276 

[ ] [ ]0;11;14 2121 ==|−==|= iiiiii zzyEzzyEBATE  –3.043 –3.206 –2.909 

[ ] [ ]1;01;15 2121 ==|−==|= iiiiii zzyEzzyEBATE  –0.389 –0.426 –0.364 

[ ] [ ]1;00;16 2121 ==|−==|= iiiiii zzyEzzyEBATE  2.654 2.519 2.811 

[ ] [ ]0;10;17 2121 ==|−==|= iiiiii zzyEzzyEBATE  –2.009 –2.146 –1.873 

Source: Elaborated by the authors from 2008, Brazilian Innovation Survey, 
PIA and RAIS. 

In Table 3, we see that the effect of innovating in both product and 
process is negative relative to the effect of innovating only in process 
(BATE4 = –3,043). This does not mean that there is any negative effect from 
the both types of innovation, as shown in BATE2 and BATE3. The negative 
effect in BATE4 means that, given the innovation process that has already 
been taken by the firm, it is not worth to do both process and product 
innovation. This benefit would be possible only if a bivariate treatment 
analysis (BATE) is used. 

5. Conclusions 

The bivariate analysis of treatment (BATE) was a great analytic potential 
compared with the univariate analysis of treatment (ATE), because in the 
BATE model it is considered a bivariate process of self-selection acting over 
an impact variable of interest. For example, in BATE methodology we can 
compute seven different possibilities for the effects. In a future work, we can 
construct the analytical asymptotic expression for the covariance matrix in 
the second stage. 
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Appendix A - Derivatives for the R Matrix 

In this appendix, we present some of the derivatives that are necessary                         
to derive the C matrix in Subsection 3.2, specifically in the case where  
( ).0;0 21 == ii zz  Considering the inverse Mills ratio in Subsection 3.1 we 

have: 
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where ( ),γ1H  ( ),γ 1iG  ( ),γ 1iK  ( ),γ1H ′  ( )1γiG′  and ( )1γiK ′  are given by: 
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