
 

Advances and Applications in Statistics 
© 2014 Pushpa Publishing House, Allahabad, India 
Published Online: January 2015 
Available online at http://pphmj.com/journals/adas.htm
Volume 43, Number 1, 2014, Pages 37-52 

 

Received: September 7, 2014;  Accepted: October 29, 2014 
2010 Mathematics Subject Classification: 62-XX. 
Keywords and phrases: Bayesian method, noninformative prior, conjugate prior, Gibbs 
sampling, posterior distribution. 

A BAYESIAN METHOD TO ESTIMATE THE 
PARAMETERS OF REGRESSION MODEL 

Nasr Rashwan and Hanaa Salem 

Faculty of Commerce 
Tanta University 
Egypt 
e-mail: nasrrashwan@yahoo.com 
            hanaa_s2000@yahoo.com 

Abstract 

This study presents the Bayesian method to estimate the parameters of 
regression model as an alternative method to the classical methods. 
Although, this method includes complex calculations but it is more 
accurate than other methods because it produces a direct probability 
statement about parameters and allows one to interpret a probability as 
a measure of degree of belief concerning the actual observed data. In 
Bayesian method, Gibbs sampling algorithm was used to select several 
iterations (samples) from posterior distribution of regression 
coefficients using noninformative prior and conjugate prior. The 
empirical results showed that the estimates of coefficients under the 
Bayesian regression model using conjugate prior are more accurate 
than the Bayesian regression model using noninformative prior. 

Introduction 

The Bayesian approach to statistical analysis is different from the usual 
“classical” approach. In the classical approach, the data are only source of 
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information explicitly taken into account in constructing an estimate or test. 
In the Bayesian approach, an estimate or test is produced by combining the 
current data with information from past experience. 

The basic formula that is used to incorporate past knowledge into 
statistical analysis was discovered by Tomas Bayes around 1760. Perhaps the 
first application to regression problems was made by Harold Jeffreys in 
1939. 

Classical approach assumes that the parameters are fixed, unknown 
quantities, and the observed data y can be treated as random variable. The 
goal of the classical approach is to produce estimate of these unknown 

parameters. These estimates are denoted by .θ̂  The most common way to 
obtain these estimates is by the maximum likelihood method. 

When performing Bayesian inference, the assumptions are quite 
different. The unknown parameters θ are treated as random variables, while 
the observed data y is treated as fixed, known quantities. 

The primary goal of each Bayesian analysis is to build a model for the 
relationship between unknown parameter θ which it may be a single 
parameter or a vector of many parameters and the data set of x which it may 
be a vector of observations of a single variable or a matrix with multiple 
observations of many variables. 

From Likelihood to Bayesian analysis 

The strength of maximum likelihood estimation relies on its large-sample 
properties, namely that when the sample size is sufficiently large, we can 
assume both normality of the test statistic about its mean and that likelihood 

ratio tests follow 2χ  distributions. These nice features do not necessarily hold 

for small samples. 

An alternative way to proceed is to start with some initial knowledge 
about the distribution of the unknown parameter(s), ( ).θp  From Bayes’ 

theorem, the data (likelihood) augment the prior distribution to produce a 
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posterior distribution, 

( ) ( ) ( )
( )xP

PxP
PxP θθ=θ \1\  (1) 

( ) ( ) ( )θθ⋅= PxP \constantgnormalizin  (2) 

prior.likelihoodConstant ⋅⋅=  (3) 

As ( ) ( )xLxP \\ θ=θ  is just the likelihood function. ( )xP
1  is a constant 

(with respect to θ), because our concern is the distribution over θ. Because of 
this, the posterior distribution is often written as 

 ( ) ( ) ( ).\\ θθ∝θ PxLxP  (4) 

The constant ( )xP  normalizes ( ).\θxP  ( )θP  to one, and hence can be 

obtained by integration, 

 ( ) ( ) ( )∫θ θθθ= .\ dPxPxP  (5) 

The dependence of the posterior on the prior (which can easily be 
assessed by trying different priors) provides an indication of how much 
information on the unknown parameter values is contained in the data. If the 
posterior is highly dependent on the prior, then the data likely has little 
signal, while if the posterior is largely unaffected under different priors, the 
data are likely highly informative. To see this, taking log on equation (3) 
gives 

 ( ) ( ) ( ).priorloglikelihoodlogposteriorLog +=  (6) 

A very strong feature of Bayesian analysis is that we can remove the 
effects of the nuisance parameters by simply integrating them out of the 
posterior distribution to generate a marginal posterior distribution for the 
parameters of interest (for more details, see Lee [6], Walsh [10]), 

 ( ) ( )∫θ θθθ=θ
n

nn dyPP .\,11  (7) 

The prior distribution is a key part of Bayesian inference and represents 
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the information about an uncertain parameter θ that is combined with the 
probability distribution of new data to yield the posterior distribution. The 
use of a prior distribution depends on guess theory and can vary from one 
statistician to another. There are two types of prior distributions: the first 
type; called noninformative prior, is used when we have very little 
knowledge or information about the prior distribution (no prior information). 
The simplest and oldest rule for determining a noninformative prior is the 
principle of indifference which assigns equal probabilities to all possibilities. 
Thus, the choice of most frequently used and common of the noninformative 
prior is a uniform prior (a flat distribution). The uniform prior distribution is 
improper that is, the function used as a prior probability density has an 
infinite integral but this problem is not necessarily serious if the likelihood 
has abounded range such that the function is nonzero. 

The second type, called the conjugate prior, is one that combines with 
the distribution if the data vector to yield a posterior distribution that has the 
same form as the prior distribution (for more details, see Birkes and Dodge 
[1], Gelman et al. [5] and Stauffer [8]). 

Bayesian Simple Linear Regression Using Noninformative Prior 

It is considered the following simple linear regression model: 

 ,...,,2,1,110 niexy ii =+β+β=  (8) 

where 0β  and 1β  are unknown parameters, { }n
iiy 1=  are values of the response 

variable y, { }n
iix 1=  are values of the predictor variable x and { }n

iie 1=  are 

normal distribution random errors with zero mean and variance .2σ  The 
model that relates observations and parameters is written 

( ) ( ).,~,,\, 10
2

10 σβ+βσββ ixNxy  

Then the likelihood function becomes 

 ( )∏
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

σ

β−β−
−

σπ
=

n

i

ii xyL
1

2

2
10 .

2
exp

2
1  (9) 
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Assuming σ in known, the noninformative prior distribution that 
commonly used for linear regression is 

 ( ) .1, 10 ∝ββP  (10) 

The posterior density is 

 ( )
( )

.
2

exp1,,\, 2
1

2
10

2
10

⎟
⎟
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⎠

⎞

⎜
⎜
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⎝

⎛

σ

β−β−−
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∝σββ

∑
=
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i
ii

n

xy
xyP  (11) 

We take the estimates of 0β  and 1β  to be ( )0βE  and ( )1βE  under the 

posterior distribution. These estimates are unbiased, that is ( ) 00
ˆ β=βE  and 

( ) .ˆ
11 β=βE  

Bayesian Simple Linear Regression Using Conjugate Prior 

Let nyy ...,,1  be a simple random sample with normal density function 

as follows: 

 ( ) ( )( ) .
2

exp
2
1,\ 2

2
102

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

σ

β+β−−
−

σπ
=σμ ii xyyf  (12) 

The likelihood of nyy ...,,1  is 

 ( )( )∏
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

σ

β−β−−
σπ

=
n

i

ii xyL
1

2

2
10 .

2
exp

2
1  (13) 

Assume that ( )10, ββP  is the joint prior distribution and since 0β  and 1β  

are independent, ( )10, ββP  is the product of two individual priors (Eltelbany 

[3]). 

As result, the joint posterior distribution is proportional to the product of 
the likelihood with the joint prior distribution 
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( ) ( ) ( ),,
2
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2
1,\,

1
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∝σββ
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0β  is a random variable with normal distribution with mean 1μ  and variance 

,2
1δ  

 ( ) ( ) .
2

exp
2
1
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1β  is a random variable with normal distribution with mean 2μ  and variance 

,2
2δ  
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The joint prior distribution is 

 ( ) ( ) ( )., 1010 β⋅β=ββ PPP  (17) 

The posterior distribution 

( )2
10 ,\, σββ yP  

 

( ) ( )

( )( ) ( )
,

,
2

exp
2
1

,
2

exp
2
1

1
102

2
10

1
102

2
10

∫ ∏

∏

θ
=

=

θββ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

σ

β+β−−
σπ

ββ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

σ

β−β−−
σπ

= n

i

ii

n

i

i

dPxy

Pxy

 (18) 

where [ ]., 10 ββ=θ  

The marginal posterior distributions for the parameters are: 

( ) ( ) ,\,,,\
1

1
2

10
2

0 ∫β βσββ=σβ dyPyP  (19) 

( ) ( )∫β βσββ=σβ
0

.,\,,\ 0
2

10
2

1 dyPyP  (20) 
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Bayesian Multiple Regression Using Noninformative Prior 

Now, we consider the regression model in which a response variable y is 
related to one or more explanatory or predictor variables 12 ...,,, −ki xxx  for 

a random sample of n observations, the model is 

.1122110 ikki exxxY +β++β+β+β= −−  

Also, this model can be written in matrix form as 

 ,eXBY +=  (21) 
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Based on this normal model, the likelihood is 

 ( ) ( ) ( ) ,
2

1exp2 2
22

⎥⎦
⎤

⎢⎣
⎡ β−β−
σ

−
πσ= − XyXyL Tn  (22) 

where T refers to transpose of matrix. 

Consider the noninformative prior distribution 

 ( ) .1∝βP  (23) 

Then posterior distribution is 

( ) =σβ 2,\ XP  Likelihood * Prior distribution 

.1∗= L  (24) 



Nasr Rashwan and Hanaa Salem 44 

Bayesian Multiple Regression Model Using Conjugate Prior 

Let nyy ...,,1  be a simple random sample with normal distribution as 

follows: 

 ( ) ( ) ( ) .
2
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1,/ 2
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⎟⎟
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⎞
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⎝

⎛
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The likelihood function is: 

( )∏
=

σβ=
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2,,\  
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⎞

⎜
⎝
⎛ β−β−

σ

−
πσ= − XyXy Tn  (26) 

where β is a random vector has a multivariate normal distribution with mean 
vector μ and variance matrix ∑, so the density function of β is 

 ( ) ( ) ( ) ( ) .2
1exp2 1212

⎟
⎠
⎞

⎜
⎝
⎛ μ−β∑μ−β
−

∑π=β −−− TPP  (27) 

The posterior function is 

 ( ) ( )
( )yP

LPxyP ⋅β=σβ 2,,\  (28) 

or 

 ( ) ( ) .,,\ 2 LPxyP ×β∝σβ  (29) 

This posterior function has exactly the same shape a normal distribution, 
with 

 ( ) ( ) ( )211212,,\ σ+μ∑σ+∑=σβ −−− yxxxxyE TT  (30) 

and 

 ( ) ( ) .,,\ 1212 −− σ+∑=σβ xxxyV T  (31) 
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Gibbs Sampling 

Gibbs sampling algorithm has been widely used on broad class of areas, 
e.g., Bayesian analysis, statistical inference, bioinformatics and econometrics. 
It is a particular form of Markov Chain Monte Carlo (MCMC) algorithm for 
approximating Joint and Marginal distributions by sampling from conditional 
distributions. 

In the case of multiple regression model, the calculations are more 
complicated and more difficult to evaluate and analyze the solution of a 
posterior distribution. The Gibbs sampling algorithm becomes quite useful, it 
is a technique that generates random variables from a distribution without 
having to calculate the density. 

The Gibbs sampling can be used to compute the posterior distribute of β 
and allows one to sample from a multivariate distribution using full 
conditional distribution of a parameter given all the other parameters in the 
model (Gelfand and Smith [4]). Tektas and Guany [9] presented the Gibbs 
sampling algorithm for the parameter ( )kjj ...,,1,0=β  as follows: The 

initial values are taken as ( ( ) ( ) ( ) )....,,, 00
1

0
0 kβββ  

After the initial values of the parameters are determined, Gibbs sampling 
is implemented by sampling from the full conditional distributions: 
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 (32) 

Suppose we draw m data vectors ( ) ( ( ) ( ) ( ) ),...,,, 10
L

x
LLL βββ=β  ,2,1=L  

m...,  from posterior distribution. According to Gelfand and Smith [4], we 

can find accurate Bayesian estimate for vector β as 
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( )

.ˆ 1
Bayes m

m

i

L∑
=
β

=β  (33) 

Results and Conclusion 

In this section, we will focus on the analysis of multiple linear regression 
using the Bayesian method as an alternative method of least squares 
estimates. To simplify our complexity calculations WinBugs 1.4 of the Gibbs 
sampling software was used to compute the regression coefficients as follows 
(Spiegelhalter et al. [7]): 

- In Bayesian multiple linear regression model using noninformative 
prior, given that we have no prior knowledge of the data in Table 1. For this 
reason, we will use a uniform prior distribution, ( ) 1,, 210 ∝βββP  and 

variance is constant value which is assumed to be 0.001. 

Phosphorus Data Example 

An investigation of the source from which corn plants obtain their 
phosphorus was carried out. Concentrations of phosphorus in parts per 
millions in each of 18 soils were measured. The variables are: 

=1x  concentrations of inorganic phosphorus in the soil. 

=2x  concentrations of organic phosphorus in the soil, and 

=y  phosphorus content of corn grown in the soil at 20°C. 

This example is taken from Chatterjee and Hadi [2, p. 81]. 

Table 1. Corn plants data 
y 64 60 71 61 54 77 81 93 93 51 76 96 77 93 95 54 168 99 

x1 0.4 0.4 3.1 0.6 4.7 1.7 9.4 10.1 11.6 12.6 10.9 23.1 23.1 21.1 23.1 1.9 26.2 29.9 

x2 53 23 19 34 24 65 44 31 29 58 37 46 50 44 56 36 58 51 

By using the likelihood function in equation (22) and using the program 
is showed in the following Figure 1: 
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1) program code 

model 

{ 

for(i in 1:n) 

{y[i] ~ dnorm(mu[i],0.001) 

mu[i]<- beta0 +beta1*x1[i] +beta2*x2[i] 

} 

beta0 ~ dunif(0,0.001) 

beta1 ~ dunif(0,0.001) 

beta2 ~ dunif(0,0.001) 

} 

2. data 

list(x1=c(0.4,0.4,3.1,0.6,4.7,1.7,9.4,10.1,11.6,12.6,10.9,23.1,23.1,21.1,23.1,1.9,26.8,29.9
), 

x2=c(53.0,23.0,19.0,34.0,24.0,65.0,44.0,31.0,29.0,58.0,37.0,46.0,50.0,44.0,56.0,36.0,58.
0,51.0), 

y=c(64.0,60.0,71.0,61.0,54.0,77.0,81.0,93.0,93.0,51.0,76.0,96.0,77.0,93.0,95.0,54.0,168.
0,99.0), 

n=18) 

3. initial values 

list(beta0=0.000000001, beta1=0.0000000001, beta2=0.00000001) 

Figure 1. WinBugs program (noninformative prior). 

After performing several iterations (60,000 iterations), we obtain the 
marginal posteriors densities of parameters ,0β  1β  and 2β  in Figure 2 and a 

summary of results in Figure 3. 

     

Figure 2. The posterior distribution of estimates. 
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Figure 3. Summary results in WinBugs. 

From the previous results, the posterior means are serve as estimates of 
regression 

( ) ( ) ,6854.0,\,00052.0,\ 10 =β=β XYEXYE  

( ) 9143.0,\1 =β XYE  

and the regression model is 

.9143.06854.000052.0ˆ 21 xxy ++=  

Note that, in the case of noninformative prior, the posterior means are 
approximately equal to the maximum likelihood estimates of the parameters 
( ).and, 210 βββ  

- In Bayesian multiple linear regression using conjugate prior we 
assumed that the parameters (β vector) have multivariate normal distribution 
with mean vector ( )μ  and variance-covariance matrix ∑ as showed in 

equation (27). By using the likelihood equal (26) and we use the program in 
Figure 4. 

1) program code 

model 

{ 

for(i in 1:n) 

{y[i] ~ dnorm(mu[i],0.01) 

mu[i]<- beta0 +beta1*x1[i] +beta2*x2[i] 

} 

beta0 ~ dnorm(0,0.000000000001) 

beta1 ~ dnorm(0,0.000000000001) 
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beta2 ~ dnorm(0,0.000000000001) 

} 

2. data 

list(x1=c(0.4,0.4,3.1,0.6,4.7,1.7,9.4,10.1,11.6,12.6,10.9,23.1,23.1,21.1,23.1,1.9,26.8,29.9
), 

x2=c(53.0,23.0,19.0,34.0,24.0,65.0,44.0,31.0,29.0,58.0,37.0,46.0,50.0,44.0,56.0,36.0,58.
0,51.0), 

y=c(64.0,60.0,71.0,61.0,54.0,77.0,81.0,93.0,93.0,51.0,76.0,96.0,77.0,93.0,95.0,54.0,168.
0,99.0), n=18) 

3. initial values 

list(beta0=0, beta1=0, beta2=0) 

Figure 4. WinBugs program. 

After performing iterations, we obtain the marginal posterior 
distributions of parameters in Figure 5 and a summary of some the Bayesian 
results in Figure 6. 

     

Figure 5. The posterior distributions of estimates. 

 
Figure 6. Summary results in WinBugs. 

From the previous, we find that the estimate of vector of regression 
parameters which referred to a posterior means and are given by 

( ) ( ) ,839.1,,\,63.55,,\ 2
1

2
0 =σβ=σβ XYEXYE  

( ) .0947.0,,\ 2
2 =σβ XYE  
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This means that 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=β

0947.0
839.1

63.55
ˆ  and the regression model is given by 

.0947.0839.163.55ˆ 21 xxy ++=  

Testing the significance of intercept and regression coefficients, we can 
test 0:0 =β jH  versus 0:1 ≠β jH  at significance level α by using the 

appropriate critical value. 

If the null hypothesis is true, then the population of all possible values of 
the test statistic 

j

jj
sd

b
t

β−
=  

has a t distribution with ( )1+− kn  degrees of freedom. 

Table 2 

Noninformative Conjugate 
j bj sdj t bj sdj t 
0 5.222E-4 2.996E-4 1.74 55.63 6.647 8.37 
1 0.6854 0.1194 5.74 1.839 0.02647 69.47 
2 0.9143 0.03289 27.79 0.09477 0.01411 6.716 

Table 2 summarizes the calculation of the t statistics for testing the 
significance of the intercept and regression coefficient. Since in 
noninformative case, we reject 0H : 0=β j  for 2,1=j  at the 0.05 level of 

significance, we use the critical value 131.215,025.0 =t  and the intercept is 

not significant. In conjugate case, we reject 0H : 0=β j  for 2,1,0=j  at 

the 0.05 level of significance. 

- Comparison between the Bayesian multiple regression model using 
noninformative prior and the Bayesian multiple regression model using 
conjugate prior, in the following Table 3 which shows some of the Bayesian 
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results from 60,000 iterations obtained from posterior distributions of the 
regression parameters. 

Table 3. Some Bayesian results 

Bayesian regression 
 (noninformative prior) 

Bayesian regression 
(conjugate prior) Coefficients 

Mean sdj MC error Mean sdj MC error 

β0 0.00052 0.00029 0.00086 55.63 6.647 0.00637 

β1 0.6854 0.1194 0.03199 1.839 0.02647 0.000398 

β2 0.9143 0.0329 0.00811 0.0947 0.0114 0.000212 

From Table 3, we find that 

- The standard deviation (sd) of regression coefficients ( )21, ββ  in the 

case of conjugate prior is less than the standard deviation of regression 
coefficients ( )21, ββ  in the case of noninformative prior. 

- Also, the Markov Chain error (MC error) in the conjugate prior is less 
than the MC error in the noninformative prior. 

Based on the previous results, we infer that the Bayesian regression 
model under conjugate prior is better and more accurate than the Bayesian 
regression model under flat noninformative prior. 
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